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Mixed-Mode Oscillations (MMOs)

Belousov-Zhabotinsky reaction (Hudson, Hart and Marinko 1979):
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Mixed-Mode Oscillations (MMOs)

Layer Il Stellate Cells (Dickson

et al. 2000):
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Q: What is the mechanism for the small-amplitude oscillations?



Fast-Slow Systems

A general fast-slow system is a special ODE:

dx /

? = X = f(X7y)
F =y = exy)

where (x,y) e R" xR"and 0 < e < 1.



Fast-Slow Systems

A general fast-slow system is a special ODE:

? = X = f(x,y)
@ =Y = elxy)

where (x,y) e R" xR"and 0 < e < 1.

On the slow time scale s = et we get:

€F = e = f(x,y)
e y = g(Xay)



The Singular Limits

fast subsystem

X = f(xy) X' = f(xy)
y' = eg(x,y) e y =0
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The Singular Limits

fast subsystem
X/ = f(ny) X, = f(X7-y)
y' = eg(x,y) =0 yy =0
slow subsystem
ex = f(x,y) 0 = f(x,y)
y = &xy) = y = &y




The Singular Limits

fast subsystem

X = f(xy) X' = f(xy)
y' = eg(x,y) =0 y =0

slow subsystem

ex = f(x,y) 0 = f(xy)
y = g(X>Y) = y = g(X7Y)

o

Idea: Combine the two systems to analyze the case 0 < ¢ < 1.



Define the critical manifold

G ={(x,y) e R" xR": f(x,y) =0}



Define the critical manifold
G ={(x,y) e R" xR": f(x,y) =0}
Co is normally hyperbolic at P € ( if

(D«f)(P) has no eigenvalues \; with zero real parts.

» (p is attracting if \; < 0 for all ;.
> (y is repelling if there exists \; > 0.



Define the critical manifold
G ={(x,y) e R" xR": f(x,y) =0}
Co is normally hyperbolic at P € ( if

(D«f)(P) has no eigenvalues \; with zero real parts.

» (p is attracting if \; < 0 for all ;.
> (y is repelling if there exists \; > 0.

Theorem (Fenichel's Theorem, 1979)

A normally hyperbolic critical manifold Cy perturbs (0 < ¢ < 1) to
a slow manifold C.. C. is an O(e)-distance away from Cy and the
slow subsystem flow approximates the flow on C..



An Example - The Planar Fold

ex = y—x°
y = p—x
(k)
N
0.1 << :
}

Figure: €¢=0.05. (a) p=0.1 (b) p =0 (c) p = —0.1.



Folded Singularties in R3

Consider the following normal form:

ex = y—x°
.)./ = —(/,L+1)X—Z,
: o= b



Folded Singularties in R3

Consider the following normal form:

ex = y—x°
.)./ = _(H+1)X_Za
: o= b

The critical manifold decomposes as:

G={(xy,2)eR’:y=x}=CGULUQG




Let's calculate the slow flow

0=y —x> = y=2xx.

Therefore the slow subsystem is

2xx = —(u+1)x -z,
5 —
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Let's calculate the slow flow

0=y —x> = y=2xx.

Therefore the slow subsystem is

2xx = —(u+1)x -z,
5 —
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Set s — 2x s; the desingularized slow subsystem is

x = —(M—Fl)X—Z,
Z = ux.



Equilibrium (x, z) = (0, 0) for desingularized slow flow.
Eigenvalues are
(As; Aw) == (=1, —p).

The origin (0,0) is a folded node for 1 € (0,1).
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Figure: Strong singular canard 7g; weak singular canard ~§'.



Equilibrium (x, z) = (0, 0) for desingularized slow flow.
Eigenvalues are
(As; Aw) == (=1, —p).

The origin (0,0) is a folded node for 1 € (0,1).
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Figure: Strong singular canard 7g; weak singular canard ~§'.

Definition: A maximal canard is an orbit in CZ2 N C/.



Theorem (Benoit 1990; Szmolyan/Krupa/Wechselberger 2000)

For € > 0 sufficiently small the singular strong canards 5"
perturb to maximal canards v&'"'. Suppose k € N and

2k+1<put<2k+3 and pl#£2k+1).

there are k other maximal canards that rotate around 2.



Theorem (Benoit 1990; Szmolyan/Krupa/Wechselberger 2000)

For € > 0 sufficiently small the singular strong canards 5"
perturb to maximal canards v&'"'. Suppose k € N and

2k+1<put<2k+3 and pl#£2k+1).

there are k other maximal canards that rotate around ~!".
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Geometric Desingularization (or Blow-Up)

Recall the normal form

ex = y—x°
.)./ = —(M+1)X—Z,
z = &

2
and apply

(x,y,z,s) = (\/EF(, €y, ez, \/EE)



Geometric Desingularization (or Blow-Up)

Recall the normal form

ex = y—x°
.)./ = —(/,L+1)X—Z,
: o= b

and apply
(x,y,2,5) = (Vex, €7, /ez,\/é5)

This yields (dropping overbars for convenience)

X = y—x
}I/ —(/.L—|—].)X—Z,
z

NI=



Q: Spacing of canards on {z = 0}?



Q: Spacing of canards on {z = 0}?

The linearized variational equation around the weak canard 7y’ is

“% - ( —2(zz+ 1) g > u=A(z)u

=:A(z2)

Eigenvalues are 2z £ jw(z) = contraction (z < 0) + rotation!?



Q: Spacing of canards on {z = 0}?
The linearized variational equation around the weak canard 7y’ is

“% - ( —2(zz+ 1) g > u=A(z)u

=:A(z2)

Eigenvalues are 2z + jw(z) = contraction (z < 0) + rotation!?

Lemma (Canard Spacing)

On {z = 0} the distance of the k-th maximal canard to ~v§ is

O(e—c0(2k+1)2u)



Stochastic Folded Nodes

Consider the normal form

de = Lyo —xF)ds + ZdWY,
dys = [—(u+1)xs — z5] ds + o' dWS?,
dz; = Lds.

Main Idea: Control sample paths near deterministic solution.



Stochastic Folded Nodes

Consider the normal form

de = Lyo —xF)ds + ZdWY,
dys = [—(u+1)xs — z5] ds + o' dWS?,
dz; = Lds.

Main Idea: Control sample paths near deterministic solution.

Strategy:

1.

o e

Geometric desingularization (Blow-Up).

Linearization around deterministic solution.
Covariance evolution provides tubular neighbourhoods.
Stay inside tubes for —1 < z < /p.

Need to control nonlinearity and diffusion.



Blow-up (rescale) the normal form as before

(x,y,z,s) = (\/EF(, €y, ez, \/E§)

then (dropping overbars for convenience)

d = (vs —x2)ds + FzdwiV,
dys = [~(u+1)x — 2] ds + SdW
dz;, = Gds.



Blow-up (rescale) the normal form as before

(x,y,z,s) = (\/EF(, €y, ez, \/E§)

then (dropping overbars for convenience)

dXs = (yS — st)ds + #dWS(I%
dys = [~(u+ 1) — 2] ds + ZrdWi?,
dzs = %ds.

We also re-scale the noise level parameters and set
(%0, e3/%0") =: (5,5)

Observe: Can use s or z as “time” variable.



The Stochastic Variational Equation

Focusing on (xz,y,) = (xJ¢t + &,, ydet +1,) we get

de, = 2(n, — €2 - 2, )dz + Y22 dWD,

dn; = —2(u+1)Edz + */jg dWi?,




The Stochastic Variational Equation

Focusing on (xz,y,) = (xJ¢t + &,, ydet +1,) we get

de, = 2(n, — €2 - 2, )dz + Y22 dWD,
dn; = —2(u+1)Edz + ﬁfg dWi?,
Proposition

Linearize the variational equation; set V(z) := o2 Cov(z) then

vii, = —8Xdet(Z)V11 + 4vio + 2,
V22 = —4(# + 1)V12 + 2(0'//0')2,
vio = —2(p+ 1)vig +2vpp — 4Xdet(Z)V12.

Note vip = Cov({z,n;) = Cov(nz,&;) = voi.



Neighbourhoods of Deterministic Solutions

Let (x(2),y(z)) =: w(z) be a deterministic solution. Define a
tube-shaped-neighbourhood

B(r) = {(x,y,2):20<z< /K,
[(x,y) — w(2)] - V(2) H(x,y) — w(2)] < 2}



Neighbourhoods of Deterministic Solutions

Let (x(2),y(z)) =: w(z) be a deterministic solution. Define a
tube-shaped-neighbourhood

B(r) = {(x,y,2):20<z< /K,
[(x,y) — w(2)] - V(2) H(x,y) — w(2)] < 2}
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Covariance Estimates

Theorem (Covariance Tubes)
On the section {z = 0} = {Z = 0} we have (as x — 0):

vi=001/yn), va=0(1/ypn), wv3=0(1), (v—v)=0(Q1)



Covariance Estimates

Theorem (Covariance Tubes)
On the section {z = 0} = {Z = 0} we have (as x — 0):

vi=001/yn), va=0(1/ypn), wv3=0(1), (v—v)=0(Q1)

Sketch of Proof.

1. Change coordinates in the variational equation.
Use a symmetry to reduce it to a planar system.
A complex eigenvalue pair crosses the imaginary axis at z = 0.

View the planar system as a fast subsystem with slow time z.

o R~ b

Apply the delayed Hopf bifurcation theory.
O



The Nonlinear Variational SDE

It turns out that in suitable coordinates we have to deal with

1 o
d¢, = m [A(z)¢; + b((z, 2)]dz + ﬁF(z)sz,

where ¢, = (£,,7m,) and A(z) is now given by

M= (0 5%0)



Staying inside B(r) ...
Theorem (Staying inside Covariance Tubes)
There exists a function K(z, zg) such that for k =1 — O(+)

2
P{rp(r) < z} < K(z,z0) exp {—HF}

holds for all z such that zo < z < /.



Staying inside B(r) ...
Theorem (Staying inside Covariance Tubes)
There exists a function K(z, zg) such that for k =1 — O(+)

P{rp(r) < z} < K(z,z0) exp {—fi%}
holds for all z such that zo < z < /.
Sketch of Proof.
1. Consider a short time interval [z1, z2].

2. Consider the fundemental solution U(z, u) for u¢ = A(z)C.
3. Set T, := U(z,u)(, and observe T, = T% + T1

10 = % [y Fv)aw,
VI Jz

TL = %/U U(z,v)b(¢y, v)dv.

20



Sketch of Proof (continued).

4. T9is a Gaussian martingale.
5. Doob’s submartingale inequality, let M, := || Q(z1, z2)TY||

r2
IP’{ sup eMi > e’Z} < %E [eMﬁ} <(---)O (e‘ﬁ)
e

z1<ulz,

where Q(z1, 22) is defined via the covariance matrix V.
From last step we bound P {sup,,<,<,, My > r}.
Estimate ||Q(z1,22) T} || directly and show that it is small.
We find that escape during a short time is highly unlikely.

© © N o

Piece previous result together for a “nice” partition of [z, z].

O



Theorem (Noise, Canards and SAOs)

Depending on noise intensity & and bifurcation parameter y the
“noisy interactions” of canards are:

(b)

0.1

1/4e—(2k+1)2u

Gr(p) = p



Further Result - Early Jumps
For z > /i beyond the folded node, SDE paths jump early.

de = Ly—x2—x)ds+ Zawl

dy = [-(p+1)x—z]ds+ o' dW? |
dz = [§+4ax+ bx?]ds.




Theorem (Escape of Sample Paths)

In blow-up coordinates, consider z > /i and let D be a tube
around " that grows like O(\/z). Then the probability that a
sample path stays in D becomes small as soon as

z> +\/ul|logo|/v.

where v > 0.



Theorem (Escape of Sample Paths)

In blow-up coordinates, consider z > /i and let D be a tube
around " that grows like O(\/z). Then the probability that a
sample path stays in D becomes small as soon as

z> +\/ul|logo|/v.

where v > 0.

Sketch of Proof.

la.
1b.
2a.
2b.
2c.
2d.

Diffusion-dominated escape from small set near v".
Subdivide again, need Markov property to re-start.
Drift-dominated escape from D.

Change to polar coordinates.

Use averaging to consider radius SDE.

Show that drift dominates diffusion.



Back to Mixed-Mode Oscillations...

(x, z)-proj.
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Figure: 3D model system again, different parameters ...



Conclusions

Overview I
> Fast-slow systems can have intricate singularities.
» The SAOs of MMOs are often caused by these mechanisms.

» Deterministic scenario is often unrealistic (biophysics!).



Conclusions

Overview I
> Fast-slow systems can have intricate singularities.
» The SAOs of MMOs are often caused by these mechanisms.

» Deterministic scenario is often unrealistic (biophysics!).

Overview II:

» Metastable sample paths for SDEs are natural extension.

v

Variational equations around solutions play a key role.

v

Use Doob’s inequality to control sample paths.

v

Early jumps after passage through folded node region.

v

Intricate dependencies between o, 1 and e.
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Thank you for your attention.



