Kinks and nucleation in a stochastic PDE
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Equations of motion

The ¢* stochastic PDE can be written

d®,(x) = (Dr(x) — B(x)? + 2 B¢ (x)) dt + (2KT)2dW,(x),
where x € [0, L] periodic
and IE(dW(x)dW(x')) = §(x — x")o(t — t')dt.

Discretised using finite differences, it is a system of N SDEs

> x

i—1 i i+1

Ao, (i) = (tbt(i) —®,(i)* + ﬁ,-tbt)dt + (2KT /Dx)2dW, (i),

Li®y = Ax2(P(i + 1) + ®(i — 1) — 2(i)),
E(dW,(/)dW,(i")) = §;_ydt. L= NAx, and 3 =1/KT.



Double-well potential and energy

The SPDE can be written

dd,(x) = (= V/(®e(x)) + 05P:(x)) dt + V2KTdW,(x),

where V(¢) = —3¢ + 3¢, \/\/

or
5E[®,]
5,

dd(x) = — dt + V2KTdW,(x),

where

et - | <V(f(x)) +;(8Xf(x))2> dx.

Faris and Jona-Lasinio Large fluctuations for a nonlinear heat equation with noise
Journal of Physics A (1982)



kinks and antikinks

... are localised structures interpolating between minima of V.

MY

A (noiseless) kink at x = xg, An antikink at x = xg,
¢*(x) = tanh(*32), ¢*(x) = —tanh(*230),

has energy £, = E[¢*(x)] = /8/9. has the same energy.



The stationary density

The discretized SPDE is a system of N SDEs with a stationary
density:

r(¢(1),- ., d(N)) = Z 7 exp (= BH(¢(1). ..., 6(N))),

where

N i — #(i))?
H(B(L), ..., ¢(N) =Y <;(¢( +1A)X2 o()” _ %dﬂ(i) + iqb“(i)) .

i=0

The normalization constant to be calculated is

Z:/_oo"'/ HT(¢(/),¢(/+1)) dep(1)...do(N),




The transfer integral method

Calculation of Z is reduced to an eigenvalue problem.
If we can find the 1, and t, such that

/mn¢wmww=mmw»

—00
we can write T(¢,¢') = Zt,,w,, Yn(¢') and Z = Zt
Suppose ty > t1... > ty. Then, as N — o0, Z ~ tO )

Auxiliary Schrodinger equation

Let t, = e PA% As Ax — 0, the ¢, and p, satisfy

1 92
(“a 00+ V() ¥ = ot
As N — oo, Z ~ ¢ Pleo,

Scalapino, Sears and Ferrell Statistical Mechanics of One-D Ginzburg-Landau Fields
Physical Review B 6, 3409 (1972)
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Correlation function

The correlation function: ¢(x) = tlim E(®.(x)®.(0)).

() = 3 snexp(—Blx|(en—co)) where s, = / oo (1) o) du.

As x — 00, c(x) — spexp(—x/)), where A1 = B(e1 — €p).
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Currie, Krumhansl, Bishop and Trullinger Physical Review B 6 22, 477 (1980).



Number of kinks per unit length

J.0100 !
).0010 - N
).0001 ! . ! . ! . ! . |
6 7 8 9 10
B

(a)
Figure: (a) Kink density vs 3. The dots are obtained from large-scale
numerical solutions of the stochastic PDE. The solid line is ﬁ, where the
correlation length X is obtained from the transfer integral. The dashed
line is the approximation p ~ /E, (3 exp(—Exf3).
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Nucleation o Diffusion o Annihilation
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Spacetime diagram
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Diffusion-limited reaction: point particles in one dimension

R 1 a

& 3

m Particles are nucleated at random times and positions

in pairs with separation b at rate [
or
one at a time at rate @

m Particles diffuse independently with diffusivity D
m Particles annihilate on collision.



Rate equation for unpaired nucleation?

p(t) = mean number of particles per unit length.
Exact expressions can be found for p(t) and p = tlim p(t).
— 00
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r(x, t) = probability that the number of particles between 0 and x
at time t is even.

Habib, Lindenberg, Lythe and Molina-Paris Diffusion-limited reaction in one dimension: paired and unpaired
nucleation Journal of Chemical Physics 115 73-89 (2001)



Kink diffusion coefficie

Part of a configuration that
contains only one kink can be
decomposed as

®4(x) = P (x—Xe)+xe(x—Xe).

|
The position, X;, of an isolated kink undergoes Brownian motion.

1
Let D = lim E(X;%). Then D = L + O((%)?).

D.J. Kaup
Thermal corrections to overdamped soliton motion
Physical Review B 27 6787-6795 (1983)

GL and Franz Mertens
Rice’s ansatz for overdamped ¢4 kinks at finite temperature
Physical Review E 67 027601 (2003)



Long-term kink dynamics
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The density of kinks, po, is proportional to exp(—3E).
Nucleation events occur at random spacetime points with rate
[ o exp(—26Ek).

The mean lifetime, 7, of a kink satisfies pg = I'7.

Thus the mean lifetime of a kink is proportional to exp(3Ek).

M. Biittiker and T. Christen,
Diffusion controlled initial recombination
Physical Review E 58, 1533 (1998)



Width of the nucleated region

Using short-to-medium length chains, measure the mean time for
whole system to cross from one well to another.
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Choose initial condition ®¢(i) = —1, i =1,..., N and denote

N
h=inf{t>0:> ®.(i)=N}.
i=1

The complete passage time, 7, is the mean of h: 7 = IE(h).
k = Ax—2 L= NAx.



Collective transition or nucleation-diffusion
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nucleation-diffusion regime.



Width of the nucleated region

T = A(L) exp(z4+f(L)), where f(L) — b?
We fit numerical results to InT = ﬁb.
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As L — oo, f(L) — b where b =7.4+£0.1.
Note: b = 8Ey is consistent with I oc exp(—25E).

Mario Castro and GL, Numerical Experiments on Noisy Chains: From Collective Transitions to Nucleation-Diffusion
SIAM Applied Dynamical Systems 7 207-219 (2008)



Kink dynamics when the SPDE is second order in time?

Ao, (i) = N,(i)dt

ANG) = (@) ~ OF) + £0:(1) ~ () de + (ZHT ) aw(i)

m The stationary density is independent of 7.
m The nucleation rate is always proportional exp(—23Ey).
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s i n = 0.2 (triangles),
4 'S | n =1 (filled circles)

. = ¥y . n =5 (diamonds)
RN The solid line is ' = p?.

m The dynamits is strongly n-dependent.
|

Lythe and Habib Dynamics of kinks: nucleation, diffusion and annihilation
Physical Review Letters 84 1070 (2000)
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