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Equations of motion

The φ4 stochastic PDE can be written

dΦt(x) =
(
Φt(x)−Φt(x)3 + ∂2

xx Φt(x)
)
dt + (2KT )

1
2 dWt(x),

where x ∈ [0, L] periodic

and IE(dWt(x)dWt′(x ′)) = δ(x − x ′)δ(t − t ′)dt.

Discretised using finite differences, it is a system of N SDEs

← ∆x →
. . .× × × × . . . ×

i − 1 i i + 1 N

dΦt(i) =
(

Φt(i)−Φt(i)3 + Li Φt

)
dt + (2KT/∆x)

1
2 dWt(i),

Li Φt = ∆x−2(Φt(i + 1) + Φt(i − 1)− 2Φt(i)),
IE(dWt(i)dWt(i ′)) = δi−i ′ dt. L = N∆x , and β = 1/KT .



Double-well potential and energy

The SPDE can be written

dΦt(x) =
(
−V ′(Φt(x)) + ∂2

xx Φt(x)
)
dt +

√
2KTdWt(x),

where V (φ) = −1
2φ

2 + 1
4φ

4,

or

dΦt(x) = −δE [Φt ]

δΦt
dt +

√
2KTdWt(x),

where

E [f ] =

∫ (
V (f (x)) +

1

2
(∂x f (x))2

)
dx .

Faris and Jona-Lasinio Large fluctuations for a nonlinear heat equation with noise
Journal of Physics A (1982)



kinks and antikinks

. . . are localised structures interpolating between minima of V .

A (noiseless) kink at x = x0,
φk(x) = tanh( x−x0√

2 ),

has energy Ek = E [φk(x)] =
√

8/9.

An antikink at x = x0,
φa(x) = − tanh( x−x0√

2 ),
has the same energy.



The stationary density

The discretized SPDE is a system of N SDEs with a stationary
density:

r(φ(1), . . . , φ(N)) = Z−1 exp (−βH(φ(1), . . . , φ(N))) ,

where

H(φ(1), . . . , φ(N)) =
N∑

i=0

(
1

2

(φ(i + 1)− φ(i))2

∆x2
− 1

2
φ2(i) +

1

4
φ4(i)

)
.

The normalization constant to be calculated is

Z =

∫ ∞
−∞

. . .

∫ ∞
−∞

N∏
i=1

T (φ(i), φ(i + 1)) dφ(1) . . . dφ(N),

where

T (φ, φ′) = exp

(
−1

2β∆x

((
φ′ − φ

∆x

)2

+ V (φ) + V (φ′)

))
.



The transfer integral method

Calculation of Z is reduced to an eigenvalue problem.
If we can find the ψn and tn such that∫ ∞

−∞
T (φ, φ′)ψn(φ)dφ = tnψn(φ′),

we can write T (φ, φ′) =
∑

n

tnψn(φ)ψn(φ′) and Z =
∑

n

tN
n .

Suppose t0 > t1 . . . > tN . Then, as N →∞, Z ' tN
0 .

Auxiliary Schrodinger equation

Let tn = e−β∆xεn . As ∆x → 0, the εn and ψn satisfy(
− 1

2β2

∂2

∂u2
+ V (u)

)
ψn(u) = εnψn(u).

As N →∞, Z ' e−βLε0 .

Scalapino, Sears and Ferrell Statistical Mechanics of One-D Ginzburg-Landau Fields
Physical Review B 6, 3409 (1972)



One-point density

For any x ∈ [0, L], lim
t→∞

IE(f (Φt(x))) =

∫ ∞
−∞

f (φ)ψ0(φ)2dφ.

Figure: One-point density, R(u) = lim
t→∞

d
du
P[Φt(x) < u], for β = 7. The

solid line is ψ0(u)2. The dots are obtained from a numerical histogram,
run with grid spacing ∆x = 0.2.

Lythe and Habib Stochastic PDEs: convergence to the continuum?
Computer Physics Communications 142 29 (2001)



Correlation function

The correlation function: c(x) = lim
t→∞

IE(Φt(x)Φt(0)).

c(x) =
∑

n

sn exp(−β|x |(εn−ε0)) where sn =

∫
uψn(u)ψ0(u)du.

As x →∞, c(x)→ s1 exp(−x/λ), where λ−1 = β(ε1 − ε0).
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Currie, Krumhansl, Bishop and Trullinger Physical Review B 6 22, 477 (1980).



Number of kinks per unit length

(a)

Figure: (a) Kink density vs β. The dots are obtained from large-scale
numerical solutions of the stochastic PDE. The solid line is 1

4λ , where the
correlation length λ is obtained from the transfer integral. The dashed
line is the approximation ρ '

√
Ekβ exp(−Ekβ).
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Dynamics

Nucleation . . . Diffusion . . . Annihilation



Spacetime diagram

A well-defined mean number of kinks per unit length is maintained
by a dynamic balance between nucleation and annihilation of
kink-antikink pairs.

Lythe and Habib Dynamics of kinks: nucleation, diffusion and annihilation
Physical Review Letters 84 1070 (2000)



Diffusion-limited reaction: point particles in one dimension

Particles are nucleated at random times and positions

in pairs with separation b at rate Γ
or
one at a time at rate Q

Particles diffuse independently with diffusivity D

Particles annihilate on collision.



Rate equation for unpaired nucleation?

• • • • • • •• •

ρ(t) = mean number of particles per unit length.
Exact expressions can be found for ρ(t) and ρ∞ = lim

t→∞
ρ(t).

x0• • • • • • •• •

r(x , t) ≡ probability that the number of particles between 0 and x
at time t is even.

ρ(t) = − lim
x→0+

∂

∂x
r(x , t).

As
(

2Γ
D

) 1
3 b → 0, ρ∞ →

(
bΓ
2D

) 1
2 .

Habib, Lindenberg, Lythe and Molina-Paŕıs Diffusion-limited reaction in one dimension: paired and unpaired
nucleation Journal of Chemical Physics 115 73-89 (2001)



Kink diffusion coefficient

Part of a configuration that
contains only one kink can be
decomposed as

Φt(x) = φk(x−Xt)+χt(x−Xt).

The position, Xt , of an isolated kink undergoes Brownian motion.

Let D = lim
t→∞

1

2t
IE(Xt

2). Then D = KT
Ek

+O(( KT
Ek

)2).

D.J. Kaup
Thermal corrections to overdamped soliton motion
Physical Review B 27 6787-6795 (1983)

GL and Franz Mertens
Rice’s ansatz for overdamped φ4 kinks at finite temperature
Physical Review E 67 027601 (2003)



Long-term kink dynamics

The density of kinks, ρ0, is proportional to exp(−βEk ).
Nucleation events occur at random spacetime points with rate
Γ ∝ exp(−2βEk ).
The mean lifetime, τ , of a kink satisfies ρ0 = Γτ .
Thus the mean lifetime of a kink is proportional to exp(βEk ).

M. Büttiker and T. Christen,
Diffusion controlled initial recombination
Physical Review E 58, 1533 (1998)



Width of the nucleated region

Using short-to-medium length chains, measure the mean time for
whole system to cross from one well to another.

Choose initial condition Φ0(i) = −1, i = 1, . . . ,N and denote

h = inf{t > 0 :
N∑

i=1

Φt(i) = N}.

The complete passage time, τ , is the mean of h: τ = IE(h).
k = ∆x−2 L = N∆x .



Collective transition or nucleation-diffusion

Upper timeseries: N = 5, collective
regime;
Lower timeseries: N = 50,
nucleation-diffusion regime.
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Width of the nucleated region

τ = A(L) exp( 1
4KT f (L)), where f (L)→ b?

We fit numerical results to ln τ = 1
4KT b.

As L→∞, f (L)→ b where b = 7.4± 0.1.
Note: b = 8E0 is consistent with Γ ∝ exp(−2βEk ).

Mario Castro and GL, Numerical Experiments on Noisy Chains: From Collective Transitions to Nucleation-Diffusion
SIAM Applied Dynamical Systems 7 207-219 (2008)



Kink dynamics when the SPDE is second order in time?

dΦt(i) = Πt(i)dt

dΠt(i) =
(
Φt(i)−Φ3

t (i) + LΦt(i)− ηΠt(i)
)
dt +

(
2ηKT

∆x

) 1
2

dWt(i)

The stationary density is independent of η.

The nucleation rate is always proportional exp(−2βEk ).

η = 0.2 (triangles),
η = 1 (filled circles)
η = 5 (diamonds)
The solid line is Γ = ρ2

k .

The dynamics is strongly η-dependent.

Lythe and Habib Dynamics of kinks: nucleation, diffusion and annihilation
Physical Review Letters 84 1070 (2000)


	 Kinks in the 4 SPDE
	stationary density
	transfer integral

	Dynamics
	diffusion-limited reaction
	width of the nucleated region
	different dynamics, same stationary density


