Paradoxical Noise-Effects far from Thermal Equilibrium

Peter Reimann Universität Bielefeld

- Ratchet Effects
- Negative Mobility in a Microfluidic Device
- Sorting Chiral Particles

Ratchet and Pawl

[Smoluchowski 1912, Feynman 1963]

Ratchet and Pawl

[Smoluchowski 1912, Feynman 1963]

$$m \ddot{x} = -\gamma \dot{x} - V'(x) + \xi(t)$$

$$m \rightarrow 0: \quad \gamma \dot{x} = -V'(x) + \xi(t)$$

It follows:

 $egin{array}{ll} \xi(t) \ {
m Gauss} \ , \ \langle \xi(t)
angle = 0 \ , \ \langle \xi(t) \, \xi(s)
angle = 2 \gamma k T \, \delta(t-s) \end{array}$

 $egin{array}{ll} \xi(t) & {
m Gauss} \;,\;\; \langle \xi(t)
angle = 0 \;,\;\; \langle \xi(t) \, \xi(s)
angle = 2 \gamma k T \, \delta(t-s) \end{array}$

Theory of Fokker-Planck processes:

$$\langle \dot{x}
angle := \lim_{t \to \infty} rac{x(t)}{t} = \mathbf{0}$$
 (2nd law)

 $egin{array}{ll} \xi(t) & {
m Gauss} \;,\;\; \langle \xi(t)
angle = 0 \;,\;\; \langle \xi(t) \, \xi(s)
angle = 2 \gamma k T \, \delta(t-s) \end{array}$

Theory of Fokker-Planck processes:

$$\langle \dot{x}
angle := \lim_{t o \infty} rac{x(t)}{t} = 0$$
 (2nd law)

Generalization:

$$\gamma \dot{x} = -V'(x) + F + \xi(t)$$

 $F < 0 \Rightarrow \langle \dot{x} \rangle < 0 \text{ for any } T > 0$

Temperature Ratchet

$$\gamma \dot{x} = -V'(x) + \xi(t) + F$$

 $\langle \xi(t) \xi(s) \rangle = 2\gamma k T(t) \delta(t-s)$

dimensionless units:

 $kT_{max} = 3, kT_{min} = 0.5,$ $\tau = 5, \gamma = 1$

Temperature Ratchet

$$\gamma \dot{x} = -V'(x) + \xi(t) + F$$

 $\langle \xi(t) \xi(s) \rangle = 2\gamma k T(t) \delta(t-s)$

dimensionless units:

 $kT_{max} = 3, kT_{min} = 0.5, \tau = 5, \gamma = 1$

Explanation

 $(F = 0, kT_{min} \ll \Delta V, kT_{max} \gg \Delta V, \tau \text{ large})$

Explanation

 $(F = 0, kT_{min} \ll \Delta V, kT_{max} \gg \Delta V, \tau \text{ large})$

- Particle pump
- Mechanism robust (provided τ large)
- No contradiction to 2nd law
- x(t) and T(t) "loosely coupled"

Transport Direction

 $\gamma\,\dot{x} = -V'(x) + \xi(t) \;\;, \;\;\; \langle \xi(t)\,\xi(s)
angle = 2\gamma kT(t)\,\delta(t-s)$

Consider $\langle \dot{x} \rangle$ as a function of an <u>arbitrary</u> parameter μ (γ , τ , T_{min} ,...) and choose μ_0 <u>arbitrarily</u>.

There exists a V(x) with a current inversion at μ_0

Transport Direction

 $\gamma\,\dot{x} = -V'(x) + \xi(t) \;\;, \;\;\; \langle \xi(t)\,\xi(s)
angle = 2\gamma kT(t)\,\delta(t-s)$

Consider $\langle \dot{x} \rangle$ as a function of an <u>arbitrary</u> parameter μ (γ , τ , T_{min} ,...) and choose μ_0 <u>arbitrarily</u>.

There exists a V(x) with a current inversion at μ_0

Example: $\mu = \gamma$, $\mu_0 = 0.7$, $kT_{max} = 0.18$, $kT_{min} = 0.02$, $\tau = 0.02$

Transport Direction

 $\gamma\,\dot{x} = -V'(x) + \xi(t) \;\;, \;\;\; \langle \xi(t)\,\xi(s)
angle = 2\gamma kT(t)\,\delta(t-s)$

Consider $\langle \dot{x} \rangle$ as a function of an <u>arbitrary</u> parameter μ (γ , τ , T_{min} ,...) and choose μ_0 <u>arbitrarily</u>.

There exists a V(x) with a current inversion at μ_0

Example: $\mu = \gamma$, $\mu_0 = 0.7$, $kT_{max} = 0.18$, $kT_{min} = 0.02$, $\tau = 0.02$

as a quantum effect:

Keay et al., PRL 75, 4102 (1995)

as a classical effect:

Eichhorn, Reimann, Hänggi, PRL 88, 190601 (2002)

Theoretical Prediction

[Eichhorn & Reimann, 2005]

 $(2 \,\mu\text{m} \text{ particle diameter}, U_0 = 30 \text{ V}, \tau = 25 \text{ s})$

Experiment versus Theory

Physical Mechanism

Physical Mechanism

 $U_{DC} < 0$, $U_{DC} + U_0 > 0$

 $U_{DC} < 0$, $U_{DC} - U_0 < 0$

Theoretical Prediction

 $(U_0 = 6 \text{ V}, \tau = 70 \text{ s})$

 $1.9\,\mu m$ particles: blue

2.8 μ m particles: red

Experiment versus Theory

[Eichhorn, Regtmeier, Anselmetti, Reimann, Soft Matter $\mathbf{6}$, 1858 (2010)]

1.9 μ **m particles: blue**

 $2.8\,\mu m$ particles: red

A tunable microfluidic ratchet for particle sorting

[Bogunovich, Eichhorn, Regtmeier, Anselmetti, Reimann, submitted]

 $U(t) = U_{DC} + U_{AC} \sin(\omega t) \Rightarrow \text{velocity in } x\text{-direction }?$

A tunable microfluidic ratchet for particle sorting

[Bogunovich, Eichhorn, Regtmeier, Anselmetti, Reimann, submitted]

A tunable microfluidic ratchet for particle sorting

[Bogunovich, Eichhorn, Regtmeier, Anselmetti, Reimann, submitted]

Electrophoresis: $\vec{F}(\vec{r}) = q \vec{E}(\vec{r})$

 $\vec{T}(\vec{z})$

Dielectrophoresis: $F(\vec{r}) = \vec{\nabla} [\vec{p} \cdot \vec{E}(\vec{r})]$ $\vec{p} = \alpha \vec{E}(\vec{r})$

 $\vec{\nabla}$ $\vec{\Gamma}^2(\vec{z})$

Sorting Chiral Particles

[Speer, Eichhorn, Reimann, PRL 105, 090602 (2010)]

Sorting Chiral Particles

[Speer, Eichhorn, Reimann, PRL 105, 090602 (2010)]

static force $\vec{A} = A \vec{e}_{\alpha}$ with $\alpha = 45^{\circ}$

resulting average velocity $\vec{v} = v \, \vec{e}_\vartheta$:

Sorting Chiral Particles

[Speer, Eichhorn, Reimann, PRL 105, 090602 (2010)]

time-periodic $\vec{A}(t) = A(t) \vec{e}_{\alpha}$, $\alpha = 45^{\circ}$, A(t) alternating between 6 and -4

 $\vec{r}(t)$ for $t \in [0, 100]$, kT = 0.02, A(t) = 6 for 2 time units, A(t) = -4 for 4 time units

Other chiral objects

First experimental steps

[Experiment: Wegener, Regtmeier, Anselmetti. Theory: Fliedner, Reimann]

Paradoxical Noise-Effects far from Thermal Equilibrium

Peter Reimann Universität Bielefeld

- Ratchet Effects
- Negative Mobility in a Microfluidic Device
- Sorting Chiral Particles

Theory: A. Engel, P. R. Experiment: H.-W. Müller, A. Jung PRL **91**, 060602 (2003)

 $H_y(t) \propto \sin(\omega t) + \sin(2\omega t + \delta)$

 $H_y(t) \propto \sin(\omega t) + \sin(2\omega t + \delta)$

Theory: A. Engel, P. R. Experiment: H.-W. Müller, A. Jung PRL 91, 060602 (2003)

 $H_y(t) \propto \sin(\omega t) + \sin(2\omega t + \delta)$

Theory: A. Engel, P. R. Experiment: H.-W. Müller, A. Jung PRL 91, 060602 (2003)

 $H_y(t) \propto \sin(\omega t) + \sin(2\omega t + \delta)$

Theory: A. Engel, P. R. Experiment: H.-W. Müller, A. Jung PRL **91**, 060602 (2003)

In the plane:

Supersymmetry

[P. R., PRL 86, 4992 (2001)]

Granular Ratchet

[v.d. Meer, P. R., v.d. Weele, Lohse, PRL 92, 184301 (2004); J. Stat. Mech. P07021 (2007)]

Granular Ratchet

[v.d. Meer, P. R., v.d. Weele, Lohse, PRL 92, 184301 (2004); J. Stat. Mech. P07021 (2007)]

Negative Absolute Resistance in a Josephson Junction

J. Nagel, D. Speer, T. Gaber, A. Sterck, R. Eichhorn, P. Reimann,

K. Ilin, M. Siegel, D. Koelle, R. Kleiner, Phys. Rev. Lett. 100, 217001 (2008)

Directing Brownian Motion on a Periodic Surface

D. Speer, R. Eichhorn, P. Reimann, Phys. Rev. Lett. 102, 124101 (2009)

Molecular Motors

[Huxley 1957, Vale and Oosawa 1990, ...]

- x(t) : mech./geom. configuration (cyclic) or position
- V(x) periodic & asymmetric
- length scale \sim 10nm \Rightarrow thermal noise relevant
- Chemical reaction cycle (ATP-hydrolysis) \Rightarrow heat production \Rightarrow local temperature changes T(t)

Molecular Motors

[Huxley 1957, Vale and Oosawa 1990, ...]

Physical Mechanism

 $U_{DC} < 0, \quad U_{DC} + U_0 > 0$

 $U_{DC} < 0 \,, \quad U_{DC} - U_0 < 0$

Indispensable:

- "particle traps"
- fluctuations (diffusion)

Physical Mechanism

 $U_{DC} < 0$, $U_{DC} - U_0 < 0$

Theoretical concept: Phys. Rev. Lett. 88, 190601 (2002) Experiment versus theory: Nature 436, 928 (2005)

Single Particle Trajectories

 $(U_0 = 6 \text{ V}, \tau = 70 \text{ s}, U_{DC} = 2 \text{ V})$

Optimized Microstructure

[Regtmeier, Grauwin, Eichhorn, Reimann, Anselmetti, Ros, J. Sep. Sci. 30, 1461 (2007)]

Optimized Microstructure

[Regtmeier, Grauwin, Eichhorn, Reimann, Anselmetti, Ros, J. Sep. Sci. 30, 1461 (2007)]

$$\vec{F}(\vec{r}) = q_{\text{eff}} \vec{E}(\vec{r}) , \quad \vec{E}(\vec{r}) = -\nabla \phi(\vec{r}) = ?$$

$$\vec{F}(\vec{r}) = q_{\text{eff}} \vec{E}(\vec{r}) , \quad \vec{E}(\vec{r}) = -\nabla \phi(\vec{r}) = ?$$

$$\vec{F}(\vec{r}) = q_{\text{eff}} \vec{E}(\vec{r}) , \quad \vec{E}(\vec{r}) = -\nabla \phi(\vec{r}) = ?$$

fluid (buffer): conductor, $\vec{j}(\vec{r}) \parallel \vec{E}(\vec{r})$, e.g. $\vec{j} = \sigma \vec{E}$ solid (PDMS): insulator, $\vec{j}(\vec{r}) = \vec{0}$

$$\dot{
ho} +
abla ec{j} = 0$$
 (charge conservation) , $\dot{
ho} = 0$ (steady state)
 $\Rightarrow \quad
abla ec{j}(ec{r}) = 0 \quad \Rightarrow \quad ec{j}_{\perp}(ec{r}) = ec{0}$ for $ec{r}$ at fluid-solid border

$$\vec{F}(\vec{r}) = q_{\text{eff}} \vec{E}(\vec{r}) , \quad \vec{E}(\vec{r}) = -\nabla \phi(\vec{r}) = ?$$

fluid (buffer): conductor, $\vec{j}(\vec{r}) \parallel \vec{E}(\vec{r})$, e.g. $\vec{j} = \sigma \vec{E}$ solid (PDMS): insulator, $\vec{j}(\vec{r}) = \vec{0}$

$$\dot{\rho} + \nabla \vec{j} = 0$$
 (charge conservation) , $\dot{\rho} = 0$ (steady state)

$$\Rightarrow \quad
abla ec j(ec r) = 0 \quad \Rightarrow \quad ec j_{\perp}(ec r) = ec 0 \quad ext{for} \quad ec r \quad ext{at fluid-solid border}$$

$$\Rightarrow \qquad \vec{E}_{\perp}(\vec{r}) = \vec{n}(\vec{r}) \cdot \nabla \phi(\vec{r}) = \vec{0} \text{ at border } (\text{Neumann b.c.})$$

\Rightarrow no particle trap at border possible

Earnshaw's Theorem: no trap inside fluid ($\nabla \vec{E} = \rho/\epsilon = 0$)

Electrical Field

 $\Delta \phi(\vec{r}) = 0$ with mixed boundary conditions $\Rightarrow \vec{E}(\vec{r}) = - \nabla \phi(\vec{r})$

Electrical Field

 $\Delta \phi(\vec{r}) = 0$ with mixed boundary conditions $\Rightarrow \vec{E}(\vec{r}) = - \nabla \phi(\vec{r})$

z-direction trivial

Electrical Field

 $\Delta \phi(\vec{r}) = 0$ with mixed boundary conditions $\Rightarrow \vec{E}(\vec{r}) = -\nabla \phi(\vec{r})$

z-direction trivial

Central "unit cell" periodically continued

Electroosmosis

$$ec{v}(ec{r}) = \lambda \, ec{E}(ec{r}) \qquad \qquad \lambda = -rac{\epsilon \, \zeta}{
u}$$

$$\vec{v}(\vec{r}) = \lambda \vec{E}(\vec{r}), \ \lambda = -\frac{\epsilon \zeta}{\nu}$$

Electrophoresis

(no form factor, Smoluchowski 1903)

$$v(r) = \lambda E(r), \ \lambda = -\frac{c\varsigma}{\nu}$$

 \Rightarrow net particle velocity

$$ec{v}_0(ec{r}) = (ilde{\lambda} + \lambda) \, ec{E}(ec{r}) = rac{\epsilon \, (ilde{\zeta} - \zeta)}{
u} \, ec{E}(ec{r})$$

Electroosmosis \vec{E} \vec{E}

 $\vec{v}(\vec{r}) = \lambda \vec{E}(\vec{r}), \ \lambda = -\frac{\epsilon \zeta}{\kappa}$

 \Rightarrow net particle velocity

$$ec{v}_0(ec{r}) = (ilde{\lambda} + \lambda) \, ec{E}(ec{r}) = rac{\epsilon \, (ilde{\zeta} - \zeta)}{
u} \, ec{E}(ec{r})$$

 \Rightarrow general dynamics

$$m\ddot{\vec{r}}(t) = \vec{F}(\vec{r}(t)) - \eta \left[\dot{\vec{r}}(t) - \vec{v}_0(\vec{r}(t))\right]$$

m particle mass: negligible (overdamped)

 $ec{v}$

- $\eta~$ viscous friction coefficient
- $\vec{F}(\vec{r})$ non-electric forces: hard walls $-\nabla V(\vec{r})$, thermal noise $\vec{\xi}(t)$

$$\Rightarrow$$
 net particle velocity

$$ec{v}_0(ec{r}) = (ilde{\lambda} + \lambda) \, ec{E}(ec{r}) = rac{\epsilon \, (ilde{\zeta} - \zeta)}{
u} \, ec{E}(ec{r})$$

 \Rightarrow general dynamics

$$m\,\ddot{ec r}(t)=ec F(ec r(t))-\eta\left[\dot{ec r}(t)-ec v_0(ec r(t))
ight]$$

$$\Rightarrow \quad \eta \, \dot{ec r}(t) = -
abla V(ec r(t)) \, + \, ec ec t(t) \, + \, q_{ ext{eff}} \, ec E(ec r(t)) \qquad q_{ ext{eff}} := rac{\eta \, \epsilon \, (ec \zeta - \zeta)}{
u}$$

Quantitative Theory

$egin{aligned} &\eta\,\dot{ec r}(t) = abla V(ec r(t))\,+\,ec \xi(t)\,+\,q_{ ext{eff}}\,ec E(ec r(t))\,\,,\quad q_{ ext{eff}} := \eta\,\epsilon\,(ec \zeta-\zeta)/ u \ &\langle\xi_i(t)\,\xi_j(s) angle = 2\eta kT\,\delta(t\!-\!s)\,\delta_{ij}\,\,,\quad T=293\,ec k \end{aligned}$

Quantitative Theory

 $ec{E}(ec{r}) \; \mapsto \; ec{E}(ec{r},t) := ec{E}_{*}(ec{r}) \, [U_{AC}(t) + U_{DC}]/U_{*}$ (quasi-static)

Quantitative Theory

 $ec{E}(ec{r}) \; \mapsto \; ec{E}(ec{r},t) := ec{E}_{*}(ec{r}) \, [U_{AC}(t) + U_{DC}]/U_{*}$ (quasi-static)

$q_{ m eff}/U_{*}$ and η unknown

Theoretical determination practically impossible

Experimental determination by measuring free mobility and diffusion $(D = kT/\eta)$

Kipp-Ratsche: Symmetrien

$$\gamma \dot{x} = \xi(t) - V'(x) + F(t) V(x+L) = V(x), F(t+\tau) = F(t), \int_{0}^{\tau} F(t) dt = 0$$

Kipp-Ratsche: Symmetrien

Quantum-Ratchet

[Figure: M. Brooks, New Scientist 2222, 28 (2000)]

Quantum-Ratchet

[Figure: M. Brooks, New Scientist 2222, 28 (2000)]

high $T \Rightarrow \langle \dot{x}
angle \! > \! 0$

Quantum-Ratchet

[Figure: M. Brooks, New Scientist 2222, 28 (2000)]

high $T \Rightarrow \langle \dot{x}
angle \! > \! 0$ low $T \Rightarrow \langle \dot{x}
angle \! < \! 0$
Quantum-Ratchet

Theory: Reimann et al., Phys. Rev. Lett. **79**, 10 (1997) Experiment: Linke et al., Science **286**, 2314 (1999)

1. Beispiel: Quanten-Ratsche

Theorie: Reimann et al., Phys. Rev. Lett. **79**, 10 (1997) Experiment: Linke et al., Science **286**, 2314 (1999)

Einzelmolekül-Kraftspektroskopie

Experimente: R. Ros, D. Anselmetti (Bielefeld); R. Merkel (Jülich) Theorie: M. Raible, P. Reimann

z.B. expG-Protein und expE-DNA

 $f\simeq\kappa\,s$, $\kappa\simeq$ 3 pN/nm

Zentrale Grösse: Verteilung der Abreisskräfte

Verteilung der Abreisskräfte

(*expG*-Protein und expE-DNA)

Verteilung der Abreisskräfte ist abhängig von Ziehgeschwindigkeit v: Interpretation ?

Standard-Theorie von Evans & Ritchie

[Biophys. J. 72, 1541 (1997); ca. 400 mal zitiert]

 $\dot{p}_v(f(t)) = -r(f(t))\,p_v(f(t))$

 $p_v(f)$ Überlebensw'keit, r(f) Dissoziationsrate, f(t) Kraft

Standard-Theorie von Evans & Ritchie

[Biophys. J. 72, 1541 (1997); ca. 400 mal zitiert]

 $\dot{p}_v(f(t)) = -r(f(t))\,p_v(f(t))$

 $p_v(f)$ Überlebensw'keit, r(f) Dissoziationsrate, f(t) Kraft

Theoretische Voraussage:

[Raible, Evstigneev, Reimann]

 $\Rightarrow -v \ln p_v(f)$ unabhängig von v[Phys. Rev. E 68, 045103(R) (2003)]

Standard-Theorie von Evans & Ritchie

[Biophys. J. 72, 1541 (1997); ca. 400 mal zitiert]

 $\dot{p}_v(f(t)) = -r(f(t))\,p_v(f(t))$

 $p_v(f)$ Überlebensw'keit, r(f) Dissoziationsrate, f(t) Kraft

Theoretische Voraussage:

[Raible, Evstigneev, Reimann]

 $\Rightarrow -v \ln p_v(f)$ unabhängig von v[Phys. Rev. E 68, 045103(R) (2003)]

Vergleich mit Messdaten:

[von Ros & Anselmetti sowie Merkel]

- ⇒ Standard-Theorie falsch !
- [J. Biotechnology 112, 13 (2004)]

Neue Theorie

[Raible & Reimann, submitted]

Heterogenität der Dissoziationsrate

 $r(f)\simeq r_o \; e^{lpha f} \;, \;\;\; lpha$ Zufallsvariable

 $\langle lpha
angle \simeq 0.13 \ {
m pN}^{-1}, \ \sigma \simeq 0.07 \ {
m pN}^{-1}, \ r_o \simeq 0.0034 \ {
m s}^{-1}$

Neue Theorie

[Raible & Reimann, submitted]

Heterogenität der Dissoziationsrate

 $r(f) \simeq r_o \; e^{lpha f} \;, \;\;\; lpha$ Zufallsvariable

 $\langle \alpha
angle \simeq 0.13 \ \mathrm{pN^{-1}}, \ \sigma \simeq 0.07 \ \mathrm{pN^{-1}}, \ r_o \simeq 0.0034 \ \mathrm{s^{-1}}$

Verteilung der Abreisskräfte

Experimentelle Messdaten: schwarze Histogramme Standard-Theorie [Evans & Ritchie]: blaue Kurven Neue Theorie [Raible & Reimann]: rote Kurven

Atomic Friction

Atomic Friction

Atomic Friction

Quantity of main interest:

$$ar{F} := \lim_{t o \infty} rac{1}{t} \int \limits_0^t dt' \, F(t')$$

Velocity Dependence of Atomic Friction

Experiment: Riedo et al., PRL 91, 084502 (2003)

(mica surface, L = 0.52 nm, T = 293 K, $F_N = 12$ nN)

Velocity Dependence of Atomic Friction

Experiment: Riedo et al., PRL 91, 084502 (2003)

(mica surface, L = 0.52 nm, T = 293 K, $F_N = 12$ nN)

Theory: P. R. & Evstigneev, PRL 93, 230802 (2004)

$$v(f) \simeq rac{L\,k\,T\,[1-e^{-Lf/kT}]}{\gamma \int_0^L dx \int_x^{x+L} dy \,e^{[U(x)-U(y)+(x-y)f]/kT}} , \quad \bar{F}(f) \simeq f - \gamma v(f)$$

Velocity Dependence of Atomic Friction

Experiment: Riedo et al., PRL 91, 084502 (2003)

(mica surface, L = 0.52 nm, T = 293 K, $F_N = 12$ nN)

Theory: P. R. & Evstigneev, PRL 93, 230802 (2004)

$$v(f) \simeq rac{L\,k\,T\,[1-e^{-Lf/kT}]}{\gamma \int_0^L dx \int_x^{x+L} dy \,e^{[U(x)-U(y)+(x-y)f]/kT}} , \quad \bar{F}(f) \simeq f - \gamma v(f)$$

• stick-slip-amplitude $\hat{=}$ dissipation $\Rightarrow \bar{F}(v)$ decreasing

• slips: thermally activated transitions

 $\Rightarrow \bar{F}(v)$ increasing

- stick-slip-amplitude $\hat{=}$ dissipation $\Rightarrow \bar{F}(v) \underline{\text{decreasing}}$
- slips: thermally activated transitions $\Rightarrow \bar{F}(v)$ increasing

together $\overline{F}(v)$ non-monotonic

 $\dot{p}_v(F(t)) = -r(F(t)) p_v(F(t))$

F(t) instantaneous force, r(F) "slip rate", $p_v(F)$ "stick probability"

 $\dot{p}_v(F(t)) = -r(F(t)) \, p_v(F(t))$

F(t) instantaneous force, r(F) "slip rate", $p_v(F)$ "stick probability"

 \Rightarrow $-v\ln p_v(F)$ independent of v

[Evstigneev, Schirmeisen, Jansen, Fuchs, P. R., PRL 97, 240601 (2006)]

 $\dot{p}_v(F(t)) = -r(F(t)) \, p_v(F(t))$

F(t) instantaneous force, r(F) "slip rate", $p_v(F)$ "stick probability"

 \Rightarrow $-v\ln p_v(F)$ independent of v

[Evstigneev, Schirmeisen, Jansen, Fuchs, P. R., PRL 97, 240601 (2006)]

 $\dot{p}_v(F(t)) = -r(F(t))\,p_v(F(t))$

F(t) instantaneous force, r(F) "slip rate", $p_v(F)$ "stick probability"

 \Rightarrow $-v\ln p_v(F)$ independent of v

- stick-slip-amplitude $\hat{=}$ dissipation $\Rightarrow \bar{F}(v) \underline{\text{decreasing}}$
- slips: thermally activated transitions $\Rightarrow \bar{F}(v)$ increasing

together $\overline{F}(v)$ **non-monotonic**

[P.R. & Evstigneev, New J. Phys. 7, 25 (2005)]

Feature Articles

• D. Bradley, **IOP press release**, Feb. 2005 Scientists close in on "superbrakes" for cars

• L. Hutson, Material World (London), March issue 2005 Breaking news

• P. Grumberg, **Science & Vie (Paris)**, March issue 2005 Un effet inattendu du frottment pourrait améliorer le freinage