Convergence of a self-stabilizing process

Julian Tugaut

Bielefeld University

Thursday 4th November 2010

イロト イボト イヨト イヨト

ъ

Summary

Local convergences

The purpose Preliminaries

The purpose Preliminaries

Mean-field system

 $(W_t^i)_t \perp (W_t^j)_t \quad \forall i \neq j$. We consider this dynamical system:

$$dX_t^i = \sqrt{\epsilon} \, dW_t^i - V'(X_t^i) \, dt - \frac{1}{N} \sum_{j=1}^N F'(X_t^i - X_t^j) \, dt$$

イロト 不得 トイヨト イヨト

3

The purpose Preliminaries

Mean-field system

 $(W_t^i)_t \perp (W_t^j)_t \quad \forall i \neq j$. We consider this dynamical system:

$$dX_t^i = \sqrt{\epsilon} \, dW_t^i - V'(X_t^i) \, dt - \frac{1}{N} \sum_{j=1}^N F'(X_t^i - X_t^j) \, dt$$

Propagation of chaos

 $\exists (\overline{X_t})_t$ such that $d\overline{X_t} = \sqrt{\epsilon} dB_t - (V' + F' * \mathcal{L}(\overline{X_t}))(\overline{X_t}) dt$ and C_T which verifies:

$$\sup_{t\in[0;T]} \mathbb{E}\left\{\left|X_t^1 - \overline{X_t}\right|^2\right\} \leq \frac{C_T}{N}.$$

ヘロト ヘ帰 ト ヘヨト ヘヨト

The purpose Preliminaries

Non-linear equation

$$\begin{cases} X_t = X_0 + \sqrt{\epsilon}B_t - \int_0^t (V' + F' * u_s)(X_s) \, ds \\ \mathcal{L}(X_s) = du_s(x) \end{cases}$$
(1)

ヘロト 人間 とくき とくきとう

æ

The purpose Preliminaries

Non-linear equation

$$\begin{cases} X_t = X_0 + \sqrt{\epsilon}B_t - \int_0^t (V' + F' * u_s)(X_s) \, ds \\ \mathcal{L}(X_s) = du_s(x) \end{cases}$$
(1)

with
$$V(x) := \frac{x^4}{4} - \frac{x^2}{2}$$
 and $F(x) := \frac{\alpha}{2}x^2$, $\alpha > 0$.

ヘロト 人間 とくほとく ほとう

æ

The purpose Preliminaries

Non-linear equation

$$\begin{cases} X_t = X_0 + \sqrt{\epsilon}B_t - \int_0^t (V' + F' * u_s)(X_s) \, ds \\ \mathcal{L}(X_s) = du_s(x) \end{cases}$$
(1)

with
$$V(x) := \frac{x^4}{4} - \frac{x^2}{2}$$
 and $F(x) := \frac{\alpha}{2}x^2$, $\alpha > 0$.

The equation (1) can be rewritten in this way:

$$X_t = X_0 + \sqrt{\epsilon}B_t - \int_0^t \left(X_s^3 + (\alpha - 1)X_s - \alpha \mathbb{E}\left[X_s\right]\right) ds.$$

イロト イポト イヨト イヨト

э

The purpose Preliminaries

Non-linear equation

$$\begin{cases} X_t = X_0 + \sqrt{\epsilon}B_t - \int_0^t (V' + F' * u_s)(X_s) \, ds \\ \mathcal{L}(X_s) = du_s(x) \end{cases}$$
(1)

with
$$V(x) := \frac{x^4}{4} - \frac{x^2}{2}$$
 and $F(x) := \frac{\alpha}{2}x^2$, $\alpha > 0$.

The equation (1) can be rewritten in this way:

$$X_t = X_0 + \sqrt{\epsilon}B_t - \int_0^t \left(X_s^3 + (\alpha - 1)X_s - \alpha \mathbb{E}\left[X_s\right]\right) ds.$$

What is the exit time of this process?

The purpose Preliminaries

Well-known results

Existence+uniqueness of the process BRTV, HIP.

Julian Tugaut Convergence of a self-stabilizing process

イロト 不得 トイヨト イヨト

э

The purpose Preliminaries

Well-known results

Existence+uniqueness of the process BRTV, HIP.

Existence+uniqueness of the stationary measure BRTV, CMV.

The purpose Preliminaries

Well-known results

Existence+uniqueness of the process BRTV, HIP. Existence+uniqueness of the stationary measure BRTV, CMV. Convergence towards the stationary measure BRV, CGM.

The purpose Preliminaries

Well-known results

Existence+uniqueness of the process BRTV, HIP. Existence+uniqueness of the stationary measure BRTV, CMV. Convergence towards the stationary measure BRV, CGM. Exit time of the process FW, DZ, HIP.

The purpose Preliminaries

Well-known results

Existence+uniqueness of the process BRTV, HIP.

Existence+uniqueness of the stationary measure BRTV, CMV.

Convergence towards the stationary measure BRV, CGM.

Exit time of the process FW, DZ, HIP.

Non-uniqueness of the stationary measures

Herrmann and Tugaut. Non-uniqueness of stationary measures for self-stabilizing processes. *Stochastic Processes and their Applications*, (2010).

The purpose Preliminaries

Non-linear PDE

Set $(X_t)_{t \in \mathbb{R}_+}$ the strong solution of the SDE. Then:

Julian Tugaut Convergence of a self-stabilizing process

イロト 不得 トイヨト イヨト

3

Non-linear PDE

Set $(X_t)_{t \in \mathbb{R}_+}$ the strong solution of the SDE. Then:

The Parabolic equation

 $d\mathbb{P}[X_t = x] = u_t(x)dx$ for all t > 0. Moreover:

$$\frac{\partial}{\partial t}u_t = \frac{\partial}{\partial x}\left\{\frac{\epsilon}{2}\frac{\partial}{\partial x}u_t + u_t\left(V' + F' * u_t\right)\right\}$$

for all t > 0 and $u_0(dx) = \mathbb{P}(X_0 \in dx)$.

イロト 不得 トイヨト イヨト

æ

Preliminaries

The purpose Preliminaries

Free energy

$$\begin{split} \Upsilon_{\epsilon}(\mu) &:= \int_{\mathbb{R}} \left\{ \frac{\epsilon}{2} \ln(\mu(x)) + V(x) + \frac{1}{2} F * \mu(x) \right\} \mu(x) dx \\ \text{and} \quad \mathcal{D}_{\epsilon}(\mu)(x) &:= \frac{\epsilon}{2} \mu'(x) + \left[V'(x) + F' * \mu(x) \right] \mu(x) \,. \end{split}$$

Julian Tugaut Convergence of a self-stabilizing process

くロン 人間 とくほとく ほとう

æ.

The purpose Preliminaries

Free energy

$$\begin{split} \Upsilon_{\epsilon}(\mu) &:= \int_{\mathbb{R}} \left\{ \frac{\epsilon}{2} \ln(\mu(x)) + V(x) + \frac{1}{2} F * \mu(x) \right\} \mu(x) dx \\ \text{and} \quad \mathcal{D}_{\epsilon}(\mu)(x) &:= \frac{\epsilon}{2} \mu'(x) + \left[V'(x) + F' * \mu(x) \right] \mu(x) \,. \end{split}$$

The energy is decreasing, BCCP (1998)

Under simple conditions, we have:

$$\frac{d}{dt}\Upsilon_{\varepsilon}\left(u_{t}^{\varepsilon}\right)=-\int_{\mathbb{R}}\left(\mathcal{D}_{\varepsilon}(u_{t}^{\varepsilon})(x)\right)^{2}\left(u_{t}^{\varepsilon}(x)\right)^{-1}dx\leq0\,.$$

The purpose Preliminaries

Stationary measures

Integrated form

The eventual stationary measures can be written in this way :

$$u_{\varepsilon}(x) = Z_{\varepsilon}^{-1} e^{-\frac{2}{\varepsilon}(V(x) + F * u_{\varepsilon}(x))}$$

With our two potentials V and F:

$$u_{\epsilon}^{m}(x) = \frac{\exp\left[-\frac{2}{\epsilon}\left(\frac{x^{4}}{4} - \frac{x^{2}}{2} + \frac{\alpha}{2}(x-m)^{2}\right)\right]}{\int_{\mathbb{R}} \exp\left[-\frac{2}{\epsilon}\left(\frac{y^{4}}{4} - \frac{y^{2}}{2} + \frac{\alpha}{2}(y-m)^{2}\right)\right] dy}.$$
 (2)

イロト 不得 とくほ とくほ とう

ъ

Symmetrical stationary measure(s) Asymmetrical stationary measure(s)

Uniqueness and thirdness
 Symmetrical stationary measure(s)
 Asymmetrical stationary measure(s)

ヘロト ヘアト ヘリト

-

Symmetrical stationary measure(s) Asymmetrical stationary measure(s)

Implicit solution

Let us introduce the two following functions:

$$\Psi_{\epsilon}(m) := \int_{\mathbb{R}} (x-m) e^{-rac{2}{\epsilon} \left(rac{x^4}{4} - rac{x^2}{2} + rac{lpha}{2} (x-m)^2
ight)} dx$$

and $Z_{\epsilon}(m) := \int_{\mathbb{R}} e^{-rac{2}{\epsilon} \left(rac{x^4}{4} - rac{x^2}{2} + rac{lpha}{2} (x-m)^2
ight)} dx$.

Symmetrical stationary measure(s) Asymmetrical stationary measure(s)

Implicit solution

Let us introduce the two following functions:

$$\begin{split} \Psi_{\varepsilon}(m) &:= \int_{\mathbb{R}} \left(x - m \right) e^{-\frac{2}{\varepsilon} \left(\frac{x^4}{4} - \frac{x^2}{2} + \frac{\alpha}{2} (x - m)^2 \right)} dx \\ \text{and} \quad Z_{\varepsilon}(m) &:= \int_{\mathbb{R}} e^{-\frac{2}{\varepsilon} \left(\frac{x^4}{4} - \frac{x^2}{2} + \frac{\alpha}{2} (x - m)^2 \right)} dx \,. \end{split}$$

For each *m* such that $\Psi_{\epsilon}(m) = 0$, there exists a unique stationary measure u_{ϵ}^{m} whose the first moment is *m*.

Symmetrical stationary measure(s) Asymmetrical stationary measure(s)

Implicit solution

Let us introduce the two following functions:

$$\begin{split} \Psi_{\varepsilon}(m) &:= \int_{\mathbb{R}} \left(x - m \right) e^{-\frac{2}{\varepsilon} \left(\frac{x^4}{4} - \frac{x^2}{2} + \frac{\alpha}{2} (x - m)^2 \right)} dx \\ \text{and} \quad Z_{\varepsilon}(m) &:= \int_{\mathbb{R}} e^{-\frac{2}{\varepsilon} \left(\frac{x^4}{4} - \frac{x^2}{2} + \frac{\alpha}{2} (x - m)^2 \right)} dx \,. \end{split}$$

For each *m* such that $\Psi_{\epsilon}(m) = 0$, there exists a unique stationary measure u_{ϵ}^{m} whose the first moment is *m*. We can remark: $\frac{d}{dm}Z_{\epsilon}(m) = \frac{2\alpha}{\epsilon}\Psi_{\epsilon}(m)$.

◆□▶ ◆◎▶ ◆注▶ ◆注▶

Symmetrical stationary measure(s) Asymmetrical stationary measure(s)

Link with the free-energy

A computation provides

$$\Upsilon_{\epsilon}(u_{\epsilon}^{m}) = -\frac{\epsilon}{2}\log\left[Z_{\epsilon}(m)\right] - \frac{\alpha}{2}\left(\frac{\Psi_{\epsilon}(m)}{Z_{\epsilon}(m)}\right)^{2}$$

Consequently:

Link with the derivative of the free-energy

$$\frac{d}{dm}\Upsilon_{\epsilon}\left(u_{\epsilon}^{m}\right)=-\alpha\frac{\operatorname{Var}\left(u_{\epsilon}^{m}\right)}{Z_{\epsilon}(m)}\,\Psi_{\epsilon}(m)\,.$$

Symmetrical stationary measure(s) Asymmetrical stationary measure(s)

Existence and uniqueness

By taking (2) with m = 0, we have immediately:

$$u_{\epsilon}^{0}(x) = \frac{\exp\left[-\frac{2}{\epsilon}\left(\frac{1}{4}x^{4} + \frac{\alpha-1}{2}x^{2}\right)\right]}{\int_{\mathbb{R}}\exp\left[-\frac{2}{\epsilon}\left(\frac{1}{4}y^{4} + \frac{\alpha-1}{2}y^{2}\right)\right]dy}.$$

Consequently, we have the existence and the uniqueness of the symmetrical stationary measure. We call it u_{ϵ}^{0} .

Symmetrical stationary measure(s) Asymmetrical stationary measure(s)

.

.

ヘロト 人間 ト 人 ヨ ト 人 ヨ ト

Behavior for small ϵ

An asymptotic computation provides the following weak convergence:

$$\lim_{\epsilon \to 0} u_{\epsilon}^{0} = \begin{cases} \frac{1}{2} \delta_{\sqrt{1-\alpha}} + \frac{1}{2} \delta_{-\sqrt{1-\alpha}} & \text{if } \alpha \leq 1\\ \delta_{0} & \text{if } \alpha \geq 1 \end{cases}$$

Moreover:

$$\lim_{\epsilon \to 0} \Upsilon_{\epsilon} \left(u_{\epsilon}^{0} \right) = \Upsilon_{0}^{0} := \begin{cases} \frac{-(1-\alpha)^{2}}{4} & \text{if } \alpha \leq 1 \\ 0 & \text{if } \alpha \geq 1 \end{cases}$$

Symmetrical stationary measure(s) Asymmetrical stationary measure(s)

Study of Ψ_{ϵ} - I

By proceeding a series expansion of
$$m \mapsto \exp\left[\frac{2\alpha m}{\epsilon}\right]$$
:
 $e^{\frac{\alpha}{\epsilon}m^2}\Psi_{\epsilon}(m) = 2\sum_{n=0}^{\infty}\frac{l_{\epsilon}(2n)}{(2n)!}\left(\frac{2\alpha m}{\epsilon}\right)^{2n+1}\left[\underbrace{\frac{l_{\epsilon}(2n+2)}{(2n+1)l_{\epsilon}(2n)} - \frac{\epsilon}{2\alpha}}_{\text{(m)}}\right]$
with $l_{\epsilon}(x) := \int_{\mathbb{R}_+} t^x \exp\left[-\frac{2}{\epsilon}\left(\frac{t^4}{4} + \frac{\alpha - 1}{2}t^2\right)\right]dt$.

Julian Tugaut Convergence of a self-stabilizing process

ヘロト 人間 とくき とくきとう

ъ

Symmetrical stationary measure(s) Asymmetrical stationary measure(s)

Study of Ψ_{ϵ} - II

• $\forall \epsilon > 0$, an integration by parts provides

$$\gamma_{\epsilon}(n) = \frac{\epsilon}{2} \left(\frac{I_{\epsilon}(2n+4)}{I_{\epsilon}(2n+2)} + (\alpha-1) \right)^{-1} - \frac{\epsilon}{2\alpha} \, .$$

イロト 不得 とくほ とくほ とう

ъ

Symmetrical stationary measure(s) Asymmetrical stationary measure(s)

Study of Ψ_{ϵ} - II

• $\forall \epsilon > 0$, an integration by parts provides

$$\gamma_{\epsilon}(n) = \frac{\epsilon}{2} \left(\frac{l_{\epsilon}(2n+4)}{l_{\epsilon}(2n+2)} + (\alpha-1) \right)^{-1} - \frac{\epsilon}{2\alpha} \, .$$

• The derivation of the functions $x \mapsto \frac{l_{\epsilon}(x+2)}{l_{\epsilon}(x)}$ and $x \mapsto \frac{l'_{\epsilon}(x)}{l_{\epsilon}(x)}$ and finally the Cauchy-Schwarz's inequality tell us that the sequence $(\gamma_{\epsilon}(n))_{n \in \mathbb{N}}$ is decreasing.

イロト 不得 トイヨト イヨト

Symmetrical stationary measure(s) Asymmetrical stationary measure(s)

Study of Ψ_{ϵ} - II

• $\forall \epsilon > 0$, an integration by parts provides

$$\gamma_{\epsilon}(n) = \frac{\epsilon}{2} \left(\frac{l_{\epsilon}(2n+4)}{l_{\epsilon}(2n+2)} + (\alpha-1) \right)^{-1} - \frac{\epsilon}{2\alpha} \, .$$

- The derivation of the functions $x \mapsto \frac{l_{\epsilon}(x+2)}{l_{\epsilon}(x)}$ and $x \mapsto \frac{l'_{\epsilon}(x)}{l_{\epsilon}(x)}$ and finally the Cauchy-Schwarz's inequality tell us that the sequence $(\gamma_{\epsilon}(n))_{n \in \mathbb{N}}$ is decreasing.
- However, Ψ_ε(1) < 0. We deduce the existence of n_ε ≥ 0 such that Ψ_ε^(2k+1)(0) > 0 if and only if k < n_ε.

・ロ と く 厚 と く 思 と く 思 と

Existence of a boundary $\epsilon_c(\alpha)$

$$\implies \Psi_{\varepsilon}(m) = e^{-\frac{\alpha}{\varepsilon}m^2} \left\{ \sum_{n=0}^{n_{\varepsilon}-1} C_n m^{2n+1} - \sum_{n=n_{\varepsilon}}^{\infty} C_n m^{2n+1} \right\} \text{ with } C_n \ge 0.$$

By considering $m \mapsto m^{-(2n_{\epsilon}+1)}e^{\frac{\alpha}{\epsilon}m^2}\Psi_{\epsilon}(m)$, we deduce Ψ_{ϵ} vanishes 0 or 1 time on \mathbb{R}_+ . Moreover, the *sine qua none* condition for having such a solution is $\Psi'_{\epsilon}(0) > 0$.

Existence of a boundary $\epsilon_c(\alpha)$

$$\implies \Psi_{\varepsilon}(m) = e^{-\frac{\alpha}{\varepsilon}m^2} \left\{ \sum_{n=0}^{n_{\varepsilon}-1} C_n m^{2n+1} - \sum_{n=n_{\varepsilon}}^{\infty} C_n m^{2n+1} \right\} \text{ with } C_n \ge 0.$$

By considering $m \mapsto m^{-(2n_{\epsilon}+1)}e^{\frac{\alpha}{\epsilon}m^2}\Psi_{\epsilon}(m)$, we deduce Ψ_{ϵ} vanishes 0 or 1 time on \mathbb{R}_+ . Moreover, the *sine qua none* condition for having such a solution is $\Psi'_{\epsilon}(0) > 0$.

Boundary betweeen Uniqueness and Thirdness

There exists a threshold ϵ_c such that over we have the uniqueness: u_{ϵ}^0 ; and under we have the thirdness: u_{ϵ}^0 , u_{ϵ}^+ and u_{ϵ}^- with $\pm \int_{\mathbb{R}} x u_{\epsilon}^{\pm}(x) > 0$. Moreover, ϵ_c is the unique solution of

$$\int_{\mathbb{R}} \left(2\alpha y^2 - 1 \right) \exp\left[\left(1 - \alpha \right) y^2 - \frac{\epsilon}{2} y^4 \right] dy = 0 \,.$$

Symmetrical stationary measure(s) Asymmetrical stationary measure(s)

Boundary $\epsilon_c(\alpha)$

Julian Tugaut Convergence of a self-stabilizing process

イロト イ押ト イヨト イヨト

ъ

Over the critical value Jnder the critical value

Plan

- 2 Uniqueness and thirdness
- Convergence of the process
 - Over the critical value
 - Under the critical value
 - Global convergence
 - Local convergences

→ Ξ → → Ξ

Over the critical value Under the critical value

Global convergence over $\epsilon_c(\alpha)$

Global convergence

Let a measure u_0 such that $du_0(x) = u_0(x)dx$ and $\sup \{\Upsilon_{\epsilon}(u_0); \int x^{32}u_0(x)dx\} < \infty$. Then u_t^{ϵ} converges weakly towards the unique stationary measure u_{ϵ}^0 .

Over the critical value Under the critical value

Global convergence over $\epsilon_c(\alpha)$

Global convergence

Let a measure u_0 such that $du_0(x) = u_0(x)dx$ and $\sup \{\Upsilon_{\epsilon}(u_0); \int x^{32}u_0(x)dx\} < \infty$. Then u_t^{ϵ} converges weakly towards the unique stationary measure u_{ϵ}^0 .

Idea of the proof :

 There exists a sequence (t_k)_k s.t. u^ε_{t_k} converges weakly towards a stationary measure that implies towards u⁰_ε.

Over the critical value Under the critical value

Global convergence over $\epsilon_c(\alpha)$

Global convergence

Let a measure u_0 such that $du_0(x) = u_0(x)dx$ and $\sup \{\Upsilon_{\epsilon}(u_0); \int x^{32}u_0(x)dx\} < \infty$. Then u_t^{ϵ} converges weakly towards the unique stationary measure u_{ϵ}^0 .

Idea of the proof :

 There exists a sequence (t_k)_k s.t. u^ε_{t_k} converges weakly towards a stationary measure that implies towards u⁰_ε.

•
$$\Upsilon_{\epsilon}(u_t^{\epsilon}) \longrightarrow \Upsilon_{\epsilon}(u_{\epsilon}^0)$$
 for $t \longrightarrow +\infty$.

Over the critical value Under the critical value

Global convergence over $\epsilon_c(\alpha)$

Global convergence

Let a measure u_0 such that $du_0(x) = u_0(x)dx$ and $\sup \{\Upsilon_{\epsilon}(u_0); \int x^{32}u_0(x)dx\} < \infty$. Then u_t^{ϵ} converges weakly towards the unique stationary measure u_{ϵ}^0 .

Idea of the proof :

 There exists a sequence (t_k)_k s.t. u^ε_{t_k} converges weakly towards a stationary measure that implies towards u⁰_ε.

•
$$\Upsilon_{\epsilon}(u_t^{\epsilon}) \longrightarrow \Upsilon_{\epsilon}(u_{\epsilon}^0)$$
 for $t \longrightarrow +\infty$.

• The free energy is decreasing so u_{ϵ}^{0} is its unique minimizer.

・ロト ・ 雪 ト ・ ヨ ト・

Over the critical value Under the critical value

Global convergence over $\epsilon_c(\alpha)$

Global convergence

Let a measure u_0 such that $du_0(x) = u_0(x)dx$ and $\sup \{\Upsilon_{\epsilon}(u_0); \int x^{32}u_0(x)dx\} < \infty$. Then u_t^{ϵ} converges weakly towards the unique stationary measure u_{ϵ}^0 .

Idea of the proof :

 There exists a sequence (t_k)_k s.t. u^ε_{t_k} converges weakly towards a stationary measure that implies towards u⁰_ε.

•
$$\Upsilon_{\epsilon}(u_t^{\epsilon}) \longrightarrow \Upsilon_{\epsilon}(u_{\epsilon}^{0})$$
 for $t \longrightarrow +\infty$.

- The free energy is decreasing so u_{ϵ}^{0} is its unique minimizer.
- We conclude by using the Prohorov's theorem because the family $\{u_t^e; t \in \mathbb{R}_+\}$ is tight.

・ロト ・ 雪 ト ・ ヨ ト・

Over the critical value Under the critical value

Global convergence under the critical value

Global convergence theorem

Let a measure u_0 such that $du_0(x) = u_0(x)dx$ and $\sup \left\{ \Upsilon_{\epsilon}(u_0); \int x^{32}u_0(x)dx \right\} < \infty$. Then u_t^{ϵ} converges weakly towards a stationary measure $u_{\infty}^{\epsilon} \in \left\{ u_{\epsilon}^0; u_{\epsilon}^+; u_{\epsilon}^- \right\}$.

ヘロト 人間 ト 人 ヨ ト 人 ヨ ト

Over the critical value Under the critical value

Global convergence under the critical value

Global convergence theorem

Let a measure u_0 such that $du_0(x) = u_0(x)dx$ and $\sup \{\Upsilon_{\epsilon}(u_0); \int x^{32}u_0(x)dx\} < \infty$. Then u_t^{ϵ} converges weakly towards a stationary measure $u_{\infty}^{\epsilon} \in \{u_{\epsilon}^{0}; u_{\epsilon}^{+}; u_{\epsilon}^{-}\}$.

Idea of the proof:

• First, we admit that $\int x^n u_0(x) dx < \infty$ for all $n \in \mathbb{N}$.

ヘロト ヘ帰 ト ヘヨト ヘヨト

Global convergence under the critical value

Global convergence theorem

Let a measure u_0 such that $du_0(x) = u_0(x)dx$ and $\sup \{\Upsilon_{\epsilon}(u_0); \int x^{32}u_0(x)dx\} < \infty$. Then u_t^{ϵ} converges weakly towards a stationary measure $u_{\infty}^{\epsilon} \in \{u_{\epsilon}^{0}; u_{\epsilon}^{+}; u_{\epsilon}^{-}\}$.

Idea of the proof:

- First, we admit that $\int x^n u_0(x) dx < \infty$ for all $n \in \mathbb{N}$.
- If ε < ε_c, Υ_ε(u[±]_ε) < Υ_ε(u) for all u ≠ u[±]_ε. If u⁺_ε (or u⁻_ε) is an adherence value, it is unique so u^ε_t converges weakly towards u⁺_ε (or u⁻_ε).

・ロト ・ 同ト ・ ヨト ・ ヨト

Over the critical value Under the critical value

Global convergence II

• Let's assume u_{ϵ}^{0} is an adherence value but u_{ϵ}^{\pm} are not.

Over the critical value Under the critical value

Global convergence II

- Let's assume u_{ϵ}^{0} is an adherence value but u_{ϵ}^{\pm} are not.
- We assume there exists an other adherence value $v_{\infty}^{\epsilon} \neq u_{\epsilon}^{0}$.

Over the critical value Under the critical value

Global convergence II

- Let's assume u_{ϵ}^0 is an adherence value but u_{ϵ}^{\pm} are not.
- We assume there exists an other adherence value $v_{\infty}^{\epsilon} \neq u_{\epsilon}^{0}$.
- There exists a polynomial function φ such that $0 = \int_{\mathbb{R}} \varphi(x) u_{\varepsilon}^{0}(x) dx < \int_{\mathbb{R}} \varphi(x) v_{\infty}^{\varepsilon}(x) dx =: 3\rho.$

・ 同 ト ・ ヨ ト ・ ヨ ト

Over the critical value Under the critical value

Global convergence II

- Let's assume u_{ϵ}^0 is an adherence value but u_{ϵ}^{\pm} are not.
- We assume there exists an other adherence value $v_{\infty}^{\epsilon} \neq u_{\epsilon}^{0}$.
- There exists a polynomial function φ such that $0 = \int_{\mathbb{R}} \varphi(x) u_{\varepsilon}^{0}(x) dx < \int_{\mathbb{R}} \varphi(x) v_{\infty}^{\varepsilon}(x) dx =: 3\rho.$
- We deduce there exist two sequences (r_k)_k and (s_k)_k which go to ∞ such that for all r_k ≤ t ≤ s_k and for all k ∈ ℕ:
 ρ = ∫_ℝ φu^ε_{tk} ≤ ∫_ℝ φu^ε_t ≤ ∫_ℝ φu^ε_{sk} = 2ρ.

ヘロト 人間 ト 人 ヨ ト 人 ヨ ト

Over the critical value Under the critical value

Global convergence III

• By using the Cauchy-Schwarz's inequality, we prove $s_k - r_k \longrightarrow \infty$ so we obtain a sequence $(q_k)_{k \in \mathbb{N}}$ such that $u_{q_k}^{\epsilon}$ converges weakly towards a stationary measure $\widetilde{u_{\infty}^{\epsilon}}$ which verifies $\int_{\mathbb{R}} \varphi(x) \widetilde{u_{\infty}^{\epsilon}}(x) dx \in [\rho; 2\rho]$.

Over the critical value Under the critical value

Global convergence III

- By using the Cauchy-Schwarz's inequality, we prove $s_k r_k \longrightarrow \infty$ so we obtain a sequence $(q_k)_{k \in \mathbb{N}}$ such that $u_{q_k}^{\epsilon}$ converges weakly towards a stationary measure $\widetilde{u_{\infty}^{\epsilon}}$ which verifies $\int_{\mathbb{R}} \varphi(x) \widetilde{u_{\infty}^{\epsilon}}(x) dx \in [\rho; 2\rho]$.
- *u*^ε_∞ ≠ u[±]_ε because u[±]_ε are not adherence values. *u*^e_∞ ≠ u⁰_ε
 because ∫_ℝ φu⁰_ε ∉ [ρ; 2ρ].

ヘロト ヘ帰 ト ヘヨト ヘヨト

Over the critical value Under the critical value

Global convergence III

- By using the Cauchy-Schwarz's inequality, we prove $s_k r_k \longrightarrow \infty$ so we obtain a sequence $(q_k)_{k \in \mathbb{N}}$ such that $u_{q_k}^{\epsilon}$ converges weakly towards a stationary measure $\widetilde{u_{\infty}^{\epsilon}}$ which verifies $\int_{\mathbb{R}} \varphi(x) \widetilde{u_{\infty}^{\epsilon}}(x) dx \in [\rho; 2\rho]$.
- *u*^ε_∞ ≠ u[±]_ε because u[±]_ε are not adherence values. *u*^ε_∞ ≠ u⁰_ε
 because ∫_ℝ φu⁰_ε ∉ [ρ; 2ρ].
- This is impossible.

ヘロト ヘ帰 ト ヘヨト ヘヨト

Over the critical value Under the critical value

Global convergence III

- By using the Cauchy-Schwarz's inequality, we prove $s_k r_k \longrightarrow \infty$ so we obtain a sequence $(q_k)_{k \in \mathbb{N}}$ such that $u_{q_k}^{\epsilon}$ converges weakly towards a stationary measure $\widetilde{u_{\infty}^{\epsilon}}$ which verifies $\int_{\mathbb{R}} \varphi(x) \widetilde{u_{\infty}^{\epsilon}}(x) dx \in [\rho; 2\rho]$.
- *u*^ε_∞ ≠ u[±]_ε because u[±]_ε are not adherence values. *u*^ε_∞ ≠ u⁰_ε
 because ∫_ℝ φu⁰_ε ∉ [ρ; 2ρ].
- This is impossible.
- For all t > 0 and all $n \in \mathbb{N}$, $\int_{\mathbb{R}} x^n u_t(x) dx < \infty$.

・ロト ・ 同ト ・ ヨト ・ ヨト

Over the critical value Under the critical value

Weak convergence of the process if $\epsilon < \epsilon_c(\alpha)$ Symmetrical case

Symmetrical local convergence

Let a **symmetrical** measure u_0 such that $du_0(x) = u_0(x)dx$ and $\sup \{\Upsilon_{\epsilon}(u_0); \int x^{32}u_0(x)dx\} < \infty$. Then u_t^{ϵ} converges weakly towards the unique **symmetrical** stationary measure u_{ϵ}^0 .

ヘロト ヘ帰 ト ヘヨト ヘヨト

Over the critical value Under the critical value

Weak convergence of the process if $\epsilon < \epsilon_c(\alpha)$ Symmetrical case

Symmetrical local convergence

Let a **symmetrical** measure u_0 such that $du_0(x) = u_0(x)dx$ and $\sup \{\Upsilon_{\epsilon}(u_0); \int x^{32}u_0(x)dx\} < \infty$. Then u_t^{ϵ} converges weakly towards the unique **symmetrical** stationary measure u_{ϵ}^0 .

We apply directly the global convergence theorem.

ヘロト ヘ帰 ト ヘヨト ヘヨト

Over the critical value Under the critical value

Weak convergence of the process if $\epsilon < \epsilon_c(\alpha)$ Symmetrical case

Symmetrical local convergence

Let a **symmetrical** measure u_0 such that $du_0(x) = u_0(x)dx$ and $\sup \{\Upsilon_{\epsilon}(u_0); \int x^{32}u_0(x)dx\} < \infty$. Then u_t^{ϵ} converges weakly towards the unique **symmetrical** stationary measure u_{ϵ}^0 .

We apply directly the global convergence theorem.

Here, the equation is just $dX_t^{\epsilon} = \sqrt{\epsilon} dB_t - (X_t^3 + (\alpha - 1)X_t) dt$. So, there is not self-stabilizing term.

・ロト ・ 同ト ・ ヨト ・ ヨト

Over the critical value Under the critical value

Weak convergence of the process if $\epsilon < \epsilon_c(\alpha)$ Asymmetrical case

Asymmetrical local convergence

Let an **asymmetrical** measure u_0 such that $du_0(x) = u_0(x)dx$ and sup $\{\Upsilon_{\epsilon}(u_0); \int x^{32}u_0(x)dx\} < \infty$. Moreover, we assume

$$\frac{1}{4}\mathbb{E}\left[X_0^4\right] - \frac{1}{2}\mathbb{E}\left[X_0^2\right] + \frac{\alpha}{2}\operatorname{Var}(X_0) < \Upsilon_0^0 \quad \text{and} \quad \mathbb{E}\left[X_0\right] > 0.$$

Then, for ϵ small enough, u_t^{ϵ} converges weakly towards u_{ϵ}^+ .

ヘロト ヘ帰 ト ヘヨト ヘヨト

Over the critical value Under the critical value

Weak convergence of the process if $\epsilon < \epsilon_c(\alpha)$ Asymmetrical case

Asymmetrical local convergence

Let an **asymmetrical** measure u_0 such that $du_0(x) = u_0(x)dx$ and sup $\{\Upsilon_{\epsilon}(u_0); \int x^{32}u_0(x)dx\} < \infty$. Moreover, we assume

$$\frac{1}{4}\mathbb{E}\left[X_0^4\right] - \frac{1}{2}\mathbb{E}\left[X_0^2\right] + \frac{\alpha}{2}\operatorname{Var}(X_0) < \Upsilon_0^0 \quad \text{and} \quad \mathbb{E}\left[X_0\right] > 0.$$

Then, for ϵ small enough, u_t^{ϵ} converges weakly towards u_{ϵ}^+ .

The key-idea is the existence of $\epsilon_0 > 0$ such that

$$\Upsilon_{\epsilon}(u_0) < \min_{\mathbb{E}[\mu]=0} \Upsilon_{\epsilon}(\mu) \quad \text{for all} \quad \epsilon < \epsilon_0$$

Bibliography

- Random Perturbations of Dynamical Systems. Freidlin, Wentzell.
- Large deviations techniques and applications. Dembo, Zeitouni.
- Metastability in Interacting Nonlinear Stochastic Differential Equations: I. From Weak Coupling to Synchronization. *Nonlinearity*. Berglund, Fernandez, Gentz. 2007
- Metastability in interacting nonlinear stochastic differential equations II: Large-N behaviour. Nonlinearity. Berglund, Fernandez, Gentz. 2007
- Increasing Propagation of Chaos for Mean Field Models. Annales de l'Institut Henri Poincare (B) Probability and Statistics. Ben Arous, Zeitouni. 1999
- Asymptotic behaviour of some interacting particle systems: McKean-Vlasov and Boltzmann models. Probabilistic Models for Nonlinear Partial Differential Equations. Méléard. 1996
- Propagation of chaos for a class of non-linear parabolic equations. Lecture Series in Differential Equations. McKean. 1967
- Topics in propagation of chaos. Course given at the Saint-Flour Probability Summer School, 1989. Sznitman.
- Nonlinear self-stabilizing processes I Existence, invariant probability, propagation of chaos. Stochastic Processes and their Applications. Benachour, Roynette, Talay, Vallois. 1998

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Bibliography II

- Large deviations and a Kramers' type law for self-stabilizing diffusions. Annals of Applied Probability. Herrmann, Imkeller, Peithmann. 2008
- Uniform estimates for metastable transition times in a coupled bistable system. Electronic Journal of Probability. Barret, Bovier, Méléard. 2010
- A certain class of diffusion processes associated with nonlinear parabolic equations. Probability Theory and Related Fields. Funaki. 1984
- On Asymptotic Behaviors of the Solution of a Nonlinear Diffusion Equation. Journal of the Faculty of Science, the University of Tokyo. Tamura. 1984
- Convergence to equilibrium for granular media equations and their Euler schemes. Annals of Applied Probability. Malrieu. 2003
- Nonlinear self-stabilizing processes II: Convergence to invariant probability. Stochastic processes and their applications. Benachour, Roynette, Vallois. 1998
- Probabilistic approach for granular media equations in the non uniformly convex case. Probability Theory and Related Fields. Cattiaux, Guillin, Malrieu. 2008
- A non-Maxwellian steady distribution for one-dimensional granular media. J. Statist. Phys. Benedetto, Caglioti, Carrillo, Pulvirenti. 1998
- Kinetic equilibration rates for granular media and related equations: entropy dissipation and mass transportation estimates. *Rev. Mat. Iberoamericana*. Carrillo, McCann, Villani. 2003

Bibliography III

- Non-uniqueness of stationary measures for self-stabilizing processes. Stochastic Processes and their Applications. Herrmann, Tugaut. 2010
- Stationary measures for self-stabilizing processes: asymptotic analysis in the small noise limit. *To appear in Electronic Journal of Probability.* Herrmann, Tugaut.
- Self-stabilizing processes: uniqueness problem for stationary measures and convergence rate in the small noise limit. *Preprint.* Herrmann, Tugaut.
- Self-stabilizing processes in a multi-well landscape. *PhD thesis.* Tugaut.
- Bifurcations in symmetrical and asymmetrical McKean-Vlasov equation. Work in progress. Tugaut.
- Convergence to the equilibria for self-stabilizing processes. *Draft.* Tugaut.
- Exit time and size of mean-field systems. Work in progress. Tugaut.