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(
W i

t

)
t
y

(
W j

t

)
t
∀i , j. We consider this dynamical system:

dX i
t =
√
ǫdW i

t − V ′(X i
t ) dt − 1

N

N∑

j=1

F ′(X i
t − X j

t ) dt

Propagation of chaos

∃
(
Xt

)
t

such that dXt =
√
ǫdBt −

(
V ′ + F ′ ∗ L

(
Xt

)) (
Xt

)
dt and

CT which verifies:

sup
t∈[0;T ]

E

{∣∣∣X1
t − Xt

∣∣∣2
}
≤ CT

N
.
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Non-linear equation


Xt = X0 +

√
ǫBt −

∫ t

0
(V ′ + F ′ ∗ us) (Xs) ds

L (Xs) = dus(x)

(1)
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Non-linear equation


Xt = X0 +

√
ǫBt −

∫ t

0
(V ′ + F ′ ∗ us) (Xs) ds

L (Xs) = dus(x)

(1)

with V(x) := x4

4 −
x2

2 and F(x) := α
2 x2, α > 0.

Julian Tugaut Convergence of a self-stabilizing process



Introduction
Uniqueness and thirdness

Convergence of the process

The purpose
Preliminaries

Non-linear equation


Xt = X0 +

√
ǫBt −

∫ t

0
(V ′ + F ′ ∗ us) (Xs) ds

L (Xs) = dus(x)

(1)

with V(x) := x4

4 −
x2

2 and F(x) := α
2 x2, α > 0.

The equation (1) can be rewritten in this way:

Xt = X0 +
√
ǫBt −

∫ t

0

(
X3

s + (α − 1) Xs − αE [Xs]
)
ds .
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Non-linear equation


Xt = X0 +

√
ǫBt −

∫ t

0
(V ′ + F ′ ∗ us) (Xs) ds

L (Xs) = dus(x)

(1)

with V(x) := x4

4 −
x2

2 and F(x) := α
2 x2, α > 0.

The equation (1) can be rewritten in this way:

Xt = X0 +
√
ǫBt −

∫ t

0

(
X3

s + (α − 1) Xs − αE [Xs]
)
ds .

What is the exit time of this process?
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Well-known results

Existence+uniqueness of the process BRTV, HIP.
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Well-known results

Existence+uniqueness of the process BRTV, HIP.

Existence+uniqueness of the stationary measure BRTV, CMV.

Convergence towards the stationary measure BRV, CGM.

Exit time of the process FW, DZ, HIP.
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Well-known results

Existence+uniqueness of the process BRTV, HIP.

Existence+uniqueness of the stationary measure BRTV, CMV.

Convergence towards the stationary measure BRV, CGM.

Exit time of the process FW, DZ, HIP.

Non-uniqueness of the stationary measures

Herrmann and Tugaut. Non-uniqueness of stationary measures
for self-stabilizing processes. Stochastic Processes and their
Applications, (2010).
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Non-linear PDE

Set (Xt)t∈R+
the strong solution of the SDE. Then:
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Non-linear PDE

Set (Xt)t∈R+
the strong solution of the SDE. Then:

The Parabolic equation

dP [Xt = x] = ut(x)dx for all t > 0. Moreover:

∂

∂t
ut =

∂

∂x

{
ǫ

2
∂

∂x
ut + ut

(
V ′ + F ′ ∗ ut

)}

for all t > 0 and u0(dx) = P (X0 ∈ dx).
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Free energy

Υǫ(µ) :=

∫

R

{
ǫ

2
ln(µ(x)) + V(x) +

1
2

F ∗ µ(x)
}
µ(x)dx

and Dǫ(µ)(x) :=
ǫ

2
µ′(x) +

[
V ′(x) + F ′ ∗ µ(x)

]
µ(x) .
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Free energy

Υǫ(µ) :=

∫

R

{
ǫ

2
ln(µ(x)) + V(x) +

1
2

F ∗ µ(x)
}
µ(x)dx

and Dǫ(µ)(x) :=
ǫ

2
µ′(x) +

[
V ′(x) + F ′ ∗ µ(x)

]
µ(x) .

The energy is decreasing, BCCP (1998)

Under simple conditions, we have:

d
dt

Υǫ
(
uǫt

)
= −

∫

R

(
Dǫ(uǫt )(x)

)2 (
uǫt (x)

)−1
dx ≤ 0 .
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Stationary measures

Integrated form

The eventual stationary measures can be written in this way :

uǫ(x) = Z−1
ǫ e−

2
ǫ (V(x)+F∗uǫ(x)).

With our two potentials V and F :

um
ǫ (x) =

exp

[
−2
ǫ

(
x4

4
− x2

2
+
α

2
(x −m)2

)]

∫

R

exp

[
−2
ǫ

(
y4

4
− y2

2
+
α

2
(y −m)2

)]
dy

. (2)
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Implicit solution

Let us introduce the two following functions:

Ψǫ(m) :=

∫

R

(x −m) e
− 2
ǫ

(
x4
4 −

x2
2 + α2 (x−m)2

)

dx

and Zǫ(m) :=

∫

R

e
− 2
ǫ

(
x4
4 −

x2
2 + α2 (x−m)2

)

dx .
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Implicit solution

Let us introduce the two following functions:

Ψǫ(m) :=

∫

R

(x −m) e
− 2
ǫ

(
x4
4 −

x2
2 + α2 (x−m)2

)

dx

and Zǫ(m) :=

∫

R

e
− 2
ǫ

(
x4
4 −

x2
2 + α2 (x−m)2

)

dx .

For each m such that Ψǫ(m) = 0, there exists a unique
stationary measure um

ǫ whose the first moment is m.
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Implicit solution

Let us introduce the two following functions:

Ψǫ(m) :=

∫

R

(x −m) e
− 2
ǫ

(
x4
4 −

x2
2 + α2 (x−m)2

)

dx

and Zǫ(m) :=

∫

R

e
− 2
ǫ

(
x4
4 −

x2
2 + α2 (x−m)2

)

dx .

For each m such that Ψǫ(m) = 0, there exists a unique
stationary measure um

ǫ whose the first moment is m.

We can remark: d
dm Zǫ(m) = 2α

ǫ Ψǫ(m).
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Link with the free-energy

A computation provides

Υǫ (um
ǫ ) = − ǫ

2
log [Zǫ(m)] − α

2

(
Ψǫ(m)

Zǫ(m)

)2

.

Consequently:

Link with the derivative of the free-energy

d
dm

Υǫ (um
ǫ ) = −α

Var (um
ǫ )

Zǫ(m)
Ψǫ(m) .
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Existence and uniqueness

By taking (2) with m = 0, we have immediately:

u0
ǫ (x) =

exp
[
−2
ǫ

(
1
4x4 + α−1

2 x2
)]

∫
R

exp
[
−2
ǫ

(
1
4y4 + α−1

2 y2
)]

dy
.

Consequently, we have the existence and the uniqueness of
the symmetrical stationary measure. We call it u0

ǫ .

Julian Tugaut Convergence of a self-stabilizing process



Introduction
Uniqueness and thirdness

Convergence of the process

Symmetrical stationary measure(s)
Asymmetrical stationary measure(s)

Behavior for small ǫ

An asymptotic computation provides the following weak
convergence:

lim
ǫ−→0

u0
ǫ =

{
1
2δ
√

1−α + 1
2δ−

√
1−α if α ≤ 1

δ0 if α ≥ 1
.

Moreover:

lim
ǫ−→0

Υǫ
(
u0
ǫ

)
= Υ0

0 :=

{ −(1−α)2

4 if α ≤ 1
0 if α ≥ 1

.
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Study of Ψǫ - I

By proceeding a series expansion of m 7→ exp
[

2αm
ǫ

]
:

e
α
ǫm2

Ψǫ(m) = 2
∞∑

n=0

Iǫ(2n)

(2n)!

(2αm
ǫ

)2n+1

γǫ(n)
︷                       ︸︸                       ︷[

Iǫ(2n + 2)

(2n + 1)Iǫ(2n)
− ǫ

2α

]

with Iǫ(x) :=

∫

R+

tx exp

[
−2
ǫ

(
t4

4
+
α − 1

2
t2

)]
dt .
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Study of Ψǫ - II

∀ǫ > 0, an integration by parts provides

γǫ(n) =
ǫ

2

(
Iǫ(2n + 4)

Iǫ(2n + 2)
+ (α − 1)

)−1

− ǫ
2α
.
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Study of Ψǫ - II

∀ǫ > 0, an integration by parts provides

γǫ(n) =
ǫ

2

(
Iǫ(2n + 4)

Iǫ(2n + 2)
+ (α − 1)

)−1

− ǫ
2α
.

The derivation of the functions x 7→ Iǫ(x+2)
Iǫ(x)

and x 7→ I′ǫ(x)
Iǫ(x)

and finally the Cauchy-Schwarz’s inequality tell us that the
sequence (γǫ(n))n∈N is decreasing.
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Study of Ψǫ - II

∀ǫ > 0, an integration by parts provides

γǫ(n) =
ǫ

2

(
Iǫ(2n + 4)

Iǫ(2n + 2)
+ (α − 1)

)−1

− ǫ
2α
.

The derivation of the functions x 7→ Iǫ(x+2)
Iǫ(x)

and x 7→ I′ǫ(x)
Iǫ(x)

and finally the Cauchy-Schwarz’s inequality tell us that the
sequence (γǫ(n))n∈N is decreasing.

However, Ψǫ(1) < 0. We deduce the existence of nǫ ≥ 0
such that Ψ

(2k+1)
ǫ (0) > 0 if and only if k < nǫ.
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Existence of a boundary ǫc(α)

=⇒ Ψǫ(m) = e−
α
ǫm2

{∑nǫ−1
n=0 Cnm2n+1 −

∑∞
n=nǫ Cnm2n+1

}
with

Cn ≥ 0.

By considering m 7→ m−(2nǫ+1)e
α
ǫm2

Ψǫ(m), we deduce Ψǫ
vanishes 0 or 1 time on R+. Moreover, the sine qua none
condition for having such a solution is Ψ′ǫ(0) > 0.
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Existence of a boundary ǫc(α)

=⇒ Ψǫ(m) = e−
α
ǫm2

{∑nǫ−1
n=0 Cnm2n+1 −

∑∞
n=nǫ Cnm2n+1

}
with

Cn ≥ 0.

By considering m 7→ m−(2nǫ+1)e
α
ǫm2

Ψǫ(m), we deduce Ψǫ
vanishes 0 or 1 time on R+. Moreover, the sine qua none
condition for having such a solution is Ψ′ǫ(0) > 0.

Boundary betweeen Uniqueness and Thirdness

There exists a threshold ǫc such that over we have the
uniqueness: u0

ǫ ; and under we have the thirdness: u0
ǫ , u+

ǫ and
u−ǫ with ±

∫
R

xu±ǫ (x) > 0. Moreover, ǫc is the unique solution of

∫

R

(
2αy2 − 1

)
exp

[
(1 − α) y2 − ǫ

2
y4

]
dy = 0 .
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Boundary ǫc(α)
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0.8
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Figure: ǫc (α)
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Global convergence over ǫc(α)

Global convergence

Let a measure u0 such that du0(x) = u0(x)dx and
sup

{
Υǫ(u0) ;

∫
x32u0(x)dx

}
< ∞. Then uǫt converges weakly

towards the unique stationary measure u0
ǫ .
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Global convergence over ǫc(α)

Global convergence

Let a measure u0 such that du0(x) = u0(x)dx and
sup

{
Υǫ(u0) ;

∫
x32u0(x)dx

}
< ∞. Then uǫt converges weakly

towards the unique stationary measure u0
ǫ .

Idea of the proof :

There exists a sequence (tk )k s.t. uǫtk converges weakly

towards a stationary measure that implies towards u0
ǫ .
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Global convergence over ǫc(α)

Global convergence

Let a measure u0 such that du0(x) = u0(x)dx and
sup

{
Υǫ(u0) ;

∫
x32u0(x)dx

}
< ∞. Then uǫt converges weakly

towards the unique stationary measure u0
ǫ .

Idea of the proof :

There exists a sequence (tk )k s.t. uǫtk converges weakly

towards a stationary measure that implies towards u0
ǫ .

Υǫ(uǫt ) −→ Υǫ(u0
ǫ ) for t −→ +∞.
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Global convergence over ǫc(α)

Global convergence

Let a measure u0 such that du0(x) = u0(x)dx and
sup

{
Υǫ(u0) ;

∫
x32u0(x)dx

}
< ∞. Then uǫt converges weakly

towards the unique stationary measure u0
ǫ .

Idea of the proof :

There exists a sequence (tk )k s.t. uǫtk converges weakly

towards a stationary measure that implies towards u0
ǫ .

Υǫ(uǫt ) −→ Υǫ(u0
ǫ ) for t −→ +∞.

The free energy is decreasing so u0
ǫ is its unique minimizer.
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Convergence of the process

Over the critical value
Under the critical value

Global convergence over ǫc(α)

Global convergence

Let a measure u0 such that du0(x) = u0(x)dx and
sup

{
Υǫ(u0) ;

∫
x32u0(x)dx

}
< ∞. Then uǫt converges weakly

towards the unique stationary measure u0
ǫ .

Idea of the proof :

There exists a sequence (tk )k s.t. uǫtk converges weakly

towards a stationary measure that implies towards u0
ǫ .

Υǫ(uǫt ) −→ Υǫ(u0
ǫ ) for t −→ +∞.

The free energy is decreasing so u0
ǫ is its unique minimizer.

We conclude by using the Prohorov’s theorem because the
family

{
uǫt ; t ∈ R+

}
is tight.
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Under the critical value

Global convergence under the critical value

Global convergence theorem

Let a measure u0 such that du0(x) = u0(x)dx and
sup

{
Υǫ(u0) ;

∫
x32u0(x)dx

}
< ∞. Then uǫt converges weakly

towards a stationary measure uǫ∞ ∈
{
u0
ǫ ; u+

ǫ ; u−ǫ
}
.
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Convergence of the process

Over the critical value
Under the critical value

Global convergence under the critical value

Global convergence theorem

Let a measure u0 such that du0(x) = u0(x)dx and
sup

{
Υǫ(u0) ;

∫
x32u0(x)dx

}
< ∞. Then uǫt converges weakly

towards a stationary measure uǫ∞ ∈
{
u0
ǫ ; u+

ǫ ; u−ǫ
}
.

Idea of the proof:

First, we admit that
∫

xnu0(x)dx < ∞ for all n ∈N.
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Convergence of the process

Over the critical value
Under the critical value

Global convergence under the critical value

Global convergence theorem

Let a measure u0 such that du0(x) = u0(x)dx and
sup

{
Υǫ(u0) ;

∫
x32u0(x)dx

}
< ∞. Then uǫt converges weakly

towards a stationary measure uǫ∞ ∈
{
u0
ǫ ; u+

ǫ ; u−ǫ
}
.

Idea of the proof:

First, we admit that
∫

xnu0(x)dx < ∞ for all n ∈N.

If ǫ < ǫc , Υǫ(u±ǫ ) < Υǫ(u) for all u , u±ǫ . If u+
ǫ (or u−ǫ ) is an

adherence value, it is unique so uǫt converges weakly
towards u+

ǫ (or u−ǫ ).
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Under the critical value

Global convergence II

Let’s assume u0
ǫ is an adherence value but u±ǫ are not.
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Convergence of the process

Over the critical value
Under the critical value

Global convergence II

Let’s assume u0
ǫ is an adherence value but u±ǫ are not.

We assume there exists an other adherence value vǫ∞ , u0
ǫ .
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Convergence of the process

Over the critical value
Under the critical value

Global convergence II

Let’s assume u0
ǫ is an adherence value but u±ǫ are not.

We assume there exists an other adherence value vǫ∞ , u0
ǫ .

There exists a polynomial function ϕ such that
0 =

∫
R
ϕ(x)u0

ǫ (x)dx <
∫
R
ϕ(x)vǫ∞(x)dx =: 3ρ.

Julian Tugaut Convergence of a self-stabilizing process



Introduction
Uniqueness and thirdness

Convergence of the process

Over the critical value
Under the critical value

Global convergence II

Let’s assume u0
ǫ is an adherence value but u±ǫ are not.

We assume there exists an other adherence value vǫ∞ , u0
ǫ .

There exists a polynomial function ϕ such that
0 =

∫
R
ϕ(x)u0

ǫ (x)dx <
∫
R
ϕ(x)vǫ∞(x)dx =: 3ρ.

We deduce there exist two sequences (rk )k and (sk )k

which go to ∞ such that for all rk ≤ t ≤ sk and for all k ∈N:
ρ =

∫
R
ϕuǫrk

≤
∫
R
ϕuǫt ≤

∫
R
ϕuǫsk

= 2ρ.
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Convergence of the process

Over the critical value
Under the critical value

Global convergence III

By using the Cauchy-Schwarz’s inequality, we prove
sk − rk −→ ∞ so we obtain a sequence (qk )k∈N such that
uǫqk

converges weakly towards a stationary measure ũǫ∞
which verifies

∫
R
ϕ(x)ũǫ∞(x)dx ∈ [ρ; 2ρ].

Julian Tugaut Convergence of a self-stabilizing process



Introduction
Uniqueness and thirdness

Convergence of the process

Over the critical value
Under the critical value

Global convergence III

By using the Cauchy-Schwarz’s inequality, we prove
sk − rk −→ ∞ so we obtain a sequence (qk )k∈N such that
uǫqk

converges weakly towards a stationary measure ũǫ∞
which verifies

∫
R
ϕ(x)ũǫ∞(x)dx ∈ [ρ; 2ρ].

ũǫ∞ , u±ǫ because u±ǫ are not adherence values. ũǫ∞ , u0
ǫ

because
∫
R
ϕu0
ǫ < [ρ; 2ρ].
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Convergence of the process

Over the critical value
Under the critical value

Global convergence III

By using the Cauchy-Schwarz’s inequality, we prove
sk − rk −→ ∞ so we obtain a sequence (qk )k∈N such that
uǫqk

converges weakly towards a stationary measure ũǫ∞
which verifies

∫
R
ϕ(x)ũǫ∞(x)dx ∈ [ρ; 2ρ].

ũǫ∞ , u±ǫ because u±ǫ are not adherence values. ũǫ∞ , u0
ǫ

because
∫
R
ϕu0
ǫ < [ρ; 2ρ].

This is impossible.
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Convergence of the process

Over the critical value
Under the critical value

Global convergence III

By using the Cauchy-Schwarz’s inequality, we prove
sk − rk −→ ∞ so we obtain a sequence (qk )k∈N such that
uǫqk

converges weakly towards a stationary measure ũǫ∞
which verifies

∫
R
ϕ(x)ũǫ∞(x)dx ∈ [ρ; 2ρ].

ũǫ∞ , u±ǫ because u±ǫ are not adherence values. ũǫ∞ , u0
ǫ

because
∫
R
ϕu0
ǫ < [ρ; 2ρ].

This is impossible.

For all t > 0 and all n ∈N,
∫
R

xnut(x)dx < ∞.
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Convergence of the process

Over the critical value
Under the critical value

Weak convergence of the process if ǫ < ǫc(α)
Symmetrical case

Symmetrical local convergence

Let a symmetrical measure u0 such that du0(x) = u0(x)dx and
sup

{
Υǫ(u0) ;

∫
x32u0(x)dx

}
< ∞. Then uǫt converges weakly

towards the unique symmetrical stationary measure u0
ǫ .
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Convergence of the process

Over the critical value
Under the critical value

Weak convergence of the process if ǫ < ǫc(α)
Symmetrical case

Symmetrical local convergence

Let a symmetrical measure u0 such that du0(x) = u0(x)dx and
sup

{
Υǫ(u0) ;

∫
x32u0(x)dx

}
< ∞. Then uǫt converges weakly

towards the unique symmetrical stationary measure u0
ǫ .

We apply directly the global convergence theorem.
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Convergence of the process

Over the critical value
Under the critical value

Weak convergence of the process if ǫ < ǫc(α)
Symmetrical case

Symmetrical local convergence

Let a symmetrical measure u0 such that du0(x) = u0(x)dx and
sup

{
Υǫ(u0) ;

∫
x32u0(x)dx

}
< ∞. Then uǫt converges weakly

towards the unique symmetrical stationary measure u0
ǫ .

We apply directly the global convergence theorem.

Here, the equation is just dXǫt =
√
ǫdBt −

(
X3

t + (α − 1)Xt

)
dt .

So, there is not self-stabilizing term.
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Convergence of the process

Over the critical value
Under the critical value

Weak convergence of the process if ǫ < ǫc(α)
Asymmetrical case

Asymmetrical local convergence

Let an asymmetrical measure u0 such that du0(x) = u0(x)dx
and sup

{
Υǫ(u0) ;

∫
x32u0(x)dx

}
< ∞. Moreover, we assume

1
4
E

[
X4

0

]
− 1

2
E

[
X2

0

]
+
α

2
Var(X0) < Υ0

0 and E [X0] > 0 .

Then, for ǫ small enough, uǫt converges weakly towards u+
ǫ .
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Convergence of the process

Over the critical value
Under the critical value

Weak convergence of the process if ǫ < ǫc(α)
Asymmetrical case

Asymmetrical local convergence

Let an asymmetrical measure u0 such that du0(x) = u0(x)dx
and sup

{
Υǫ(u0) ;

∫
x32u0(x)dx

}
< ∞. Moreover, we assume

1
4
E

[
X4

0

]
− 1

2
E

[
X2

0

]
+
α

2
Var(X0) < Υ0

0 and E [X0] > 0 .

Then, for ǫ small enough, uǫt converges weakly towards u+
ǫ .

The key-idea is the existence of ǫ0 > 0 such that

Υǫ(u0) < min
E[µ]=0

Υǫ(µ) for all ǫ < ǫ0 .
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