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Burgers-like equation

Aim: Existence/Uniqueness for

du =
[
∂xxu + g(u)∂xu

]
dt + θ(u) dW (t).

→ u(t , x) where t ∈ [0,T ] time and x ∈ [0,1] one-dimensional

space,

→ u(t , x) ∈ Rn vector valued,

→ g, θ : Rn → Rn×n smooth, bounded,

→ dW space-time white noise,

→ periodic boundary conditions.

Case n = 1, g(u) = u Burgers equation.
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Linear case - Regularity

Linear case: g = 0 and θ = 1: Stochastic heat equation

dX = ∂xxX + dW

Regularity: u(x , t) is α-Hölder in x and α
2 Hölder in t for any

α < 1
2 but not for α ≥ 1

2 .

Spatial regularity is the same as regularity of Brownian motion.

Difficulty: How to interpret the nonlinear term g(u)∂xu?

p.3
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Classical approach

Gradient case: Assume DG = g.

u is a weak solution if for ϕ smooth, periodic

〈u(t), ϕ〉 − 〈u0, ϕ〉

=

∫ t

0

[
〈u(s), ∂xxϕ〉+ 〈g(u)∂xu, ϕ〉

]
ds +

∫ t

0
〈ϕθ

(
u(s)

)
, dWs〉.

→ Existence and Uniqueness OK (e.g. Gyöngy ’98).

→ If n = 1 primitive G always exists, if n ≥ 2 not.
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Unstable Approximations

Observation:(Hairer, Maas ’10; Hairer, Voss ’10) n=1

duε =
[
∂xxuε + g(uε)Dεuε

]
dt + dW

Dε = approximation of derivative, e.g.

Dεu(x) =
1
ε

(
u(x + ε)− u(x)

)
.

uε converges to solution of wrong equation:

dũ =
[
∂xx ũ + g(ũ) ∂x ũ + c g′(ũ)

]
dt + dW

Constant c depends on the approximation.
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Second look at nonlinearity

〈g(u)∂xu, ϕ〉 =

∫ 1

0
g
(
u(x)

)
ϕ(x) dxu(x)

u(x) same regularity as Brownian motion! Looks like a

stochastic integral!

Observations:

→ Extra term in the unstable approximation looks like Itô

-Stratonovich correction: g′(u) d[u] with "quadratic

variation" [u].

→ In gradient case Itô integral:∫ 1

0
DG(Bt ) dBt = G(B1)−G(B0)−

∫ 1

0
∆G(Bt ) dt

can be defined pathwise.
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Rough integrals

Use a stochastic integration theory to make sense of∫ 1

0
g
(
u(x)

)
ϕ(x) dxu(x)

in non-gradient case.

Problem: Itô theory: Convergence of
∑

i g(ui)ϕi
(
ui+1 − ui

)
requires that ui is adapted to a filtration.

In space integral no natural time direction.

Solution: "Pathwhise" approach using Lyons’ rough path

theory.
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Outline

Brief account of rough path theory à la Gubinelli

Concept of solution, main result

Construction of solutions
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Young integration

Aim: Define
∫ 1

0 Ys dXs for X ,Y ∈ Cα, α > 1
2 :

I0 = Y0
(
X1 − X0

)
I1 = Y0

(
X 1

2
− X0

)
+ Y 1

2

(
X1 − X 1

2

)
...

In =
2n−1∑
i=0

Ytn
i

(
Xtn

i+1
− Xtn

i

)
(tn

i = i · 2−n)

Theorem (Young ’36)

∣∣∣ ∫ 1

0

(
Yt − Y0

)
dXt

∣∣∣ ≤ 1
22α − 2

|X |α |Y |α.
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Xtn
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− Xtn

i

)
(tn

i = i · 2−n)

Convergence

∣∣In − In−1
∣∣ =

∣∣∣ 2n−1∑
i=0

i even

(
Ytn

i+1
− Ytn

i

)(
Xtn

i+2
− Xtn

i+1

)∣∣∣
≤ 1

2
2n |X |α2−nα |Y |α 2−nα

Theorem (Young ’36)
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Rough Paths

Idea: If α < 1
2 higher order approximation is necessary!

A rough paths (X ,X) consists of X ∈ Cα and X = Xs,t such that

→ Xt ,t = 0 vanishes on diagonal.

→ Regularity: ∣∣X∣∣2α = sup
s 6=t

Xs,t

|s − t |2α
<∞

→ Consistency:

Xs,t − Xs,u − Xu,t =
(
Xu − Xs

)(
Xt − Xu

)
Think of iterated integral:

Xs,t =

∫ t

s

(
Xu − Xs

)
dXu
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Controlled rough paths

(X ,X) ∈ Dα = {rough paths} fixed. Y ∈ Cα is controlled by X if

Yt − Ys = Y ′s
(
Xt − Xs

)
+ RY

s,t

→ Y ′ ∈ Cα "derivative" of Y w.r.t X .

→ RY remainder

∣∣RY ∣∣
2α = sup

s 6=t

∣∣RY
s,t
∣∣

|s − t |2α
<∞

Y ′ is uniquely determined if X is sufficiently rough.

Example: Yt = g
(
Xt
)

for g ∈ C2
b .
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Rough integrals 1

Aim: Define
∫ 1

0 Ys dXs for (X ,X) ∈ Dα, Y ∈ CαX :

I0 = Y0
(
X1 − X0

)
+ Y ′0 X0,1

...

In =
2n−1∑
i=0

Ytn
i

(
Xtn

i+1
− Xtn

i

)
+ Y ′tn

i
Xtn

i ,t
n
i+1

(tn
i = i · 2−n)

Convergence

∣∣In − In−1
∣∣ =

∣∣∣ 2n−1∑
i=0

i even

(
Y ′tn

i+1
− Y ′tn

i

)
Xtn

i+1,t
n
i+2

+ RY
tn
i ,t

n
i1

(
Xtn

i+2
− Xtn

i+1

)∣∣∣
≤ 1

2
2n
(
|Y ′|α 2−nα|X|2α2−2nα + |RY |2α2−2nα|X |α2−nα

)
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Rough integrals 2

Theorem (Gubinelli ’05)

(X ,X) ∈ Dα, Y ∈ CαX for 1
3 < α < 1

2 . Then

∣∣∣ ∫ 1

0

(
Yt−Y0

)
dXt−Y ′0 X0,1

∣∣∣ ≤ 1
23α − 2

(
|Y |α|X|2α+|RY |2α|X |α

)
.

Also possible to construct
∫

Y dZ for Y ,Z ∈ CαX with the same

strategy.

Agenda: Construction of
∫ 1

0 g
(
u(x)

)
du(x) separated into two

parts:

→ Construct for every t reference rough path (X (t),X(t)) and

show that u(t) is controlled by X (t).

→ Apply Gubinelli’s result to Y = g(u) and Z = u.
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show that u(t) is controlled by X (t).

→ Apply Gubinelli’s result to Y = g(u) and Z = u.
p.13



Reference rough path

Solution of linear stochastic heat equation

X (t , x) =

∫ t

0
S(t − s) dWs(x).

S(t) = heat semigroup on [0,1].

Existence results for Gaussian rough paths can be applied.

Theorem (Friz, Victoir ’05, Hairer ’10)

For fixed t there is a canonical definition for

X(t , x , y) =

∫ y

x

(
X (t , z)− X (t , x)

)
dzX (t , z).

Furthermore t 7→ X(t , ·) is a.s. continuous w.r.t | · |2α.
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Weak Solutions

du = ∂xxu + g(u)∂xu + θ(u) dW (1)

A weak solution to (1) is an adapted process taking values in

C([0,T ],C) ∩ L1([0,T ], CαX
)

such that for every smooth, periodic

test function ϕ

〈ϕu(t)〉 =〈ϕ,u0〉+

∫ t

0
〈ϕθ

(
u(s)

)
, dW (s)〉+

∫ t

0
〈∂xxϕ,u(s)〉ds

+

∫ t

0

( ∫ 1

0
ϕ(x)g

(
u(s, x)

)
dxu(s, x)

)
ds.

Non-linear term rough integral!
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Mild solutions

A mild solution to (1) is an adapted process u taking values in

C([0,T ],C) ∩ L1([0,T ], CαX
)

such that

u(x , t) = S(t)u0(x) +

∫ t

0
S(t − s) θ(u(s)) dW (s)(x)

+

∫ t

0

( ∫ 1

0
p̂t−s(x − y) g

(
u(s, x)

)
dyu(s, y)

)
ds.

p̂t = heat kernel on [0,1].

Every weak solution is a mild solution an vice versa.
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Main result

Existence/Uniqueness:

→ Initial data u0 ∈ Cβ for 1
3 < α < β < 1

2 .

→ g ∈ C3, θ ∈ C2 bounded derivatives.

Theorem

For every time interval [0,T ] there exists a unique weak/mild

solution to (1).

If uε is a solution to (1) with smoothened noise, then uε
converges to u in probability.

Extends the construction of Hairer ’10 to the multiplicative noise

case.

p.17
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Dependence on X

Different choices for X e.g. Itô -Stratonovich correction

X̃(t , x , y) = X(t , x , y) + c(y − x).

Then non-linear term becomes (for n = 1)∫̃ 1

0
ϕ(x) g

(
u(x)

)
dxu(x)

= lim
∑

i

ϕ(xi)g
(
u(xi)

)(
u(xi+1)− u(xi)

)
+ ϕ(xi) g′

(
u(xi)

)
θ
(
u(xi)

)2(X(xi , xi+1) + c(xi+1 − xi)
)

=

∫ 1

0
ϕ(x)g

(
u(x)

)
dxu(x) + c

∫ 1

0
ϕ(x)g′(u(x))θ

(
u(x)

)2dx .

Extra term c g′(u) θ(u)2 appears.
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We have the right solution

The rough path (X ,X) is geometric i.e.

Sym
(
X(x , y)

)
=

1
2

(
X(x , y) + X(x , y)T

)
=

1
2
δX (x , y)⊗ δX (x , y).

This implies that in the gradient case our solution coincides with

classical solution.

In the non-gradient case even different geometric rough paths

give rise to different solutions, e.g. for n = 2:

X̃(t , x , y) = X(t , x , y) + (y − x)

 0 1

−1 0

 and

g (x , y) =

 − sin(y) cos(y)

cos(x) sin(x)

 .
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Stochastic convolution 1

θ adapted L2[0,1]-valued process. Stochastic convolution:

Ψθ(t) =

∫ t

0
S(t − s) θ(s) dW (s).

Same space-time regularity as X (t , x) but not Gaussian!

Friz-Victoir results about Gaussian rough paths can not be

applied.

Ψθ is controlled by X with derivative process θ

Ψθ(t , y)−Ψθ(t , x) = θ(t , x)
(
X (t , y)− X (t , x)

)
+ Rθ(t , x , y).

p.20
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Stochastic convolution 2

Additional regularity for θ

‖θ‖p,α = E
[

sup
x 6=y ,s 6=t

|θ(t , x)− θ(s, y)|p(
|t − s|α/2 + |x − y |α

)p + sup
x ,t
|θ(t , x)|p

]1/p

.

By definition of Rθ:

Rθ(t , x , y) =

∫ t

0

∫ 1

0

(
p̂t−s(z − y)−p̂t−s(z − x)

)
(
θ(s, z)− θ(t , x)

)
W (ds, dz).

Then one has for p large and ϑ small:

E
[∥∥Rθ

∥∥p

Cϑ
(

[0,τ‖X‖α
K ];ΩC2α

)] ≤ C
(
1 + K p)‖θ‖pp,α.
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Nonlinearity/Regularisation trick

Consider

v = u −Ψθ.

Observation: v is more regular than u.

For fixed controlled rough path Ψ we can solve the fixed point

problem

v(t , x) =

∫ t

0
S(t − s)

[
g
(
v(s) + Ψ(s)

)
∂x
(
v(s)

)]
ds (x)

+

∫ t

0

[ ∫ 1

0
p̂t−s(x − y)g(v(s, y) + Ψ(s, y)) dy Ψ(y , s)

]
ds

in C([0,T ],C1[0,1]).

Fixed point vΨ depends continuously on Ψ.
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Outer fixed point

For T small enough mapping

u 7→ θ(u) 7→ Ψθ(u) + vΨθ(u)

is a contraction w.r.t.

‖u‖p,α = E
[

sup
x 6=y ,s 6=t

|u(t , x)− u(s, y)|p(
|t − s|α/2 + |x − y |α

)p + sup
x ,t
|u(t , x)|p

]1/p

.

⇒ Local existence!

Data is bounded⇒ Gronwall argument gives global existence!

Construction continuous in reference rough path (X ,X) +

Stability of Friz-Victoir construction⇒ Stability!
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Conclusion

→ Spatial rough integrals give a way to define solutions to

equations that are not well-posed classically .

→ Our construction gives an interpretation for extra terms that

appear even in well-posed equations.

→ It should also give a different method to prove such

approximation results.

→ Rough path machinery very convenient, as it allows to

separate the construction into a stochastic part and a

deterministic part.
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