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Burgers-like equation
Aim: Existence/Uniqueness for

du = [OxxU + g(u)oxuldt + 6(u) dW(t).

— u(t,x) where t € [0, T] time and x € [0, 1] one-dimensional
space,

— u(t, x) € R" vector valued,

— g,0: R" — R"™" smooth, bounded,

— dW space-time white noise,

— periodic boundary conditions.

Case n=1, g(u) = u Burgers equation.
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Linear case - Regularity

Linear case: g = 0 and ¢ = 1: Stochastic heat equation

dX = 0 X +dW
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Linear case - Regularity

Linear case: g = 0 and ¢ = 1: Stochastic heat equation

dX = 0 X +dW

Regularity: u(x, 1) is a-Holder in x and § Holder in ¢ for any
a < % but not for a > .

Spatial regularity is the same as regularity of Brownian motion.
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Linear case - Regularity

Linear case: g = 0 and ¢ = 1: Stochastic heat equation

dX = 0 X +dW

Regularity: u(x, 1) is a-Holder in x and § Holder in ¢ for any

a < % but not for a > .
Spatial regularity is the same as regularity of Brownian motion.

Difficulty: How to interpret the nonlinear term g(u)oxu?
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Classical approach

Gradient case: Assume DG = g.

u is a weak solution if for ¢ smooth, periodic

(u(t), ) — (U, )
t

- /(;f {(u(s), Ixxp) + (g(u)oxu, @} ds + /O (0 0(u(s)), dWe).
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Classical approach

Gradient case: Assume DG = g.

u is a weak solution if for ¢ smooth, periodic

{u(t), ) = (o, )

" .
— /O Bu(s), Iy — (G(u), 0Xgp>]ds + /O (0 0(u(s)),dWs).

— Existence and Uniqueness OK (e.g. Gybéngy '98).
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Classical approach

Gradient case: Assume DG = g.

u is a weak solution if for ¢ smooth, periodic

{u(t), ) = (o, )

= ./; Ru(s),axx@ - <G(u),0X<,9>}ds+ /Olt<<,09(u(s)),dWs>,

— Existence and Uniqueness OK (e.g. Gybéngy '98).

— If n=1 primitive G always exists, if n > 2 not.
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Unstable Approximations

Observation:(Hairer, Maas '10; Hairer, Voss ’10) n=1

du. = [OxxU: + g(ug)Dgug}dt +dW

D. = approximation of derivative, e.g.

D.u(x) = 1

£
c

(u(x +¢) — u(x)).
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Unstable Approximations

Observation:(Hairer, Maas '10; Hairer, Voss ’10) n=1

du. = [OxxU: + g(ug)Dgug}dt +dW

D. = approximation of derivative, e.g.

D.u(x) = ;(u(x +¢e) —u(x)).

u- converges to solution of wrong equation:
dli = [Oxxli + g(T) Ox U + Cg/(El)]dt AW

Constant ¢ depends on the approximation. ]
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Second look at nonlinearity

|

(). ) = [ g(u(x)) () dyu(x)
u(x) same regularity as Brownian motion! Looks like a
stochastic integral!
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Second look at nonlinearity

|

(). ) = [ g(u(x)) () dyu(x)
u(x) same regularity as Brownian motion! Looks like a
stochastic integral!

Observations:
— Extra term in the unstable approximation looks like 16
-Stratonovich correction: g’(u) d[u] with "quadratic
variation" [u].

— In gradient case It6 integral:
1 g
/ DG(B;)dB; = G(By) — G(Bo)—/ AG(By) dt
JO 0

can be defined pathwise.
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Rough integrals

Use a stochastic integration theory to make sense of

1
/O g(u(x)) ¢(x) dxt(x)

in non-gradient case.
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Rough integrals

Use a stochastic integration theory to make sense of
1
| 9u0) () deu)
in non-gradient case.

Problem: 1t6 theory: Convergence of >, g(u;)pi(Ujr1 — Uj)
requires that u; is adapted to a filtration.

In space integral no natural time direction.

Solution: "Pathwhise" approach using Lyons’ rough path
theory.
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Outline

m Brief account of rough path theory a la Gubinelli
m Concept of solution, main result

m Construction of solutions
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Young integration
Aim: Define [, YsdXsfor X,Y € C*, a > 1

b = Yo(Xi — Xo)
h = Yo(Xy = Xo) + Y1 (% — Xy)

2

2n_1
=YX, —Xp) ('=1i-27")
i=0
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Young integration

Aim: Define [, YsdXsfor X,Y € C*, a > 1
b = Yo(Xi — Xo)
b= Yo(X, — Xo) + Y3 (Xi — X,)

2

271
b= Ye(Xe, — Xi) (tf=i-27")
i=0
Convergence

2" —1
’ln_ nf1| - ‘ ZO (Ytinﬂ N thn)(thiz _th’jﬂ)

| even

1

< on ‘X|a27na ‘ Y’a o—na

N
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Young integration

Aim: Define [, YsdXsfor X,Y € C*, a > 1

b = Yo(Xi — Xo)
h = Yo(Xy = Xo) + Y1 (% — Xy)

2

2n_1
=YX, —Xp) ('=1i-27")
i=0

Theorem (Young ’36)

Sl 1
|| (Y= ¥o) 4| < g Xla Yl
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Rough Paths
Idea: If o < % higher order approximation is necessary!

A rough paths (X, X) consists of X € C* and X = X;; such that
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Rough Paths
Idea: If o < % higher order approximation is necessary!

A rough paths (X, X) consists of X € C* and X = X;; such that

— Xt = 0 vanishes on diagonal.
— Regularity:

— Consistency:
Xs,t - Xs,u - Xu,t - (Xu - Xs) (Xt - Xu)

Think of iterated integral:

-t
X37t - / (XU - Xs) dXU
J S
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Controlled rough paths

(X, X) € D* = {rough paths} fixed. Y € C* is controlled by X if

Yi— Ys = Y{(Xi — Xs) + R,
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Controlled rough paths

(X, X) € D* = {rough paths} fixed. Y € C* is controlled by X if

Yi— Ys = Y{(Xi — Xs) + R,

— Y’ € C® "derivative" of Y w.r.t X.

— RY remainder

\RY|2Q = sup

Y’ is uniquely determined if X is sufficiently rough.

Example: Y; = g(X;) for g € C2.
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Rough integrals 1

Aim: Define [] YsdX; for (X,X) € D, Y € C% :

lo = Yo(X1 — Xp) + Yy Xo.1

2n1
I, = Z Yin (Xrﬁ1 - Xt,”) + Yf/,” Xt/”frzu
i=0

(tin = i'2in)
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Rough integrals 1
Aim: Define [] YsdX; for (X,X) € D, Y € C% :

/O - YO(X1 - XO) + Yé X0’1

2n_1
h=> Yio (X, — Xip) + Ytlin Xintr (th=i-27")
i=0
Convergence
204
y
=l = | > (Yo, = Yi)Xy i, + Ringg (X, — X
o
1
< 52" (1027 X|ao2 21 4 [RY 20221 X]12 ™)
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Rough integrals 2

Theorem (Gubinelli *05)

(X,X) €D, YecCgfort <a<3. Then

|Y]alXl2a+IR" [20]X]a)-

1 , 1
‘/0 (Yi—Y0) dXi— Y Xo1 | < 5o (
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Rough integrals 2

Theorem (Gubinelli *05)

(X,X) €D, YecCgfort <a<3. Then

|Y]alXl2a+IR" [20]X]a)-

1 , 1
‘/0 (Yi—Yo) dXi— Vg Xo1 | < 55— (

Also possible to construct [ Y'dZ for Y, Z € C§ with the same

strategy.

Agenda: Construction of ‘]’01 g(u(x))du(x) separated into two
parts:
— Construct for every t reference rough path (X(t), X(t)) and
show that u(t) is controlled by X(t).
— Apply Gubinelli's resultto Y = g(uv) and Z = u.

p.13



Reference rough path

Solution of linear stochastic heat equation

X(1,x) = /Ot S(t — ) dWs(x).

S(t) = heat semigroup on [0, 1].

Existence results for Gaussian rough paths can be applied.
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Reference rough path

Solution of linear stochastic heat equation

X(1,x) = /Ot S(t — ) dWs(x).

S(t) = heat semigroup on [0, 1].
Existence results for Gaussian rough paths can be applied.

Theorem (Friz, Victoir ’05, Hairer ’10)

For fixed t there is a canonical definition for

y
X(t, X, y) :/ (X(t.2) — X(t,x))dzX(1, 2).

JX

Furthermore t — X(t,-) is a.s. continuous w.r.t |- |z,.
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du = Oxxu + g(u)oxu + 6(u) dW (1)
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Weak Solutions

du = OxxU + g(u)oxu + 6(u)dW (1)

A weak solution to (1) is an adapted process taking values in
C([0, T],C) n L'([0, T],C§) such that for every smooth, periodic
test function ¢

-t -t
(pu(t) =(o. o) + [ (o0 u(s)>,dW<s>>+,/0 (Brcp. u(s)ds
)

+//<p X)) dxu(s,

Non-linear term rough integral!

ds.
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Mild solutions

A mild solution to (1) is an adapted process u taking values in
C([0, T],C) n L'([0, T],C%) such that

u(x, t) = S(t)uo(x +/ts t— 8)0(u(s)) dW(s)(x)

+/ /Pt s(x —y)g(u(s, ))dyu(s,y)>ds

p: = heat kernel on [0, 1].

Every weak solution is a mild solution an vice versa.

p.16



Main result

Existence/Uniqueness:

— Initial data up € C” for } < a < 8 < 3.

— g € C3,6 € C? bounded derivatives.
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Existence/Uniqueness:
— Initial data up € C” for } < a < 8 < 3.

— g € C3,6 € C? bounded derivatives.

Theorem

For every time interval [0, T| there exists a unique weak/mild
solution to (1).

If u. is a solution to (1) with smoothened noise, then u.
converges to u in probability.
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Main result

Existence/Uniqueness:
— Initial data up € C” for } < a < 8 < 3.

— g € C3,6 € C? bounded derivatives.

Theorem

For every time interval [0, T| there exists a unique weak/mild
solution to (1).

If u. is a solution to (1) with smoothened noise, then u.
converges to u in probability.

Extends the construction of Hairer ’10 to the multiplicative noise
case.
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Dependence on X

Different choices for X e.g. 1t6 -Stratonovich correction

X(t,x,y) =X(t,x,y) + c(y — x).
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Dependence on X

Different choices for X e.g. 1t6 -Stratonovich correction

X(t, x,y) = X(t, x,y) + c(y — x).

Then non-linear term becomes (for n = 1)

[ o) 9(u00)) st

= lim Z o(xi)g ) (u(Xiy1) — u(xy))

+o(x) g <u(x,->>9<u(x/)>2

/N

X(Xi, Xit1) + ¢(Xip1 — Xi))
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Dependence on X

Different choices for X e.g. 1t6 -Stratonovich correction

X(t, x,y) = X(t, x,y) + c(y — x).

Then non-linear term becomes (for n = 1)

[ o) 9(u00)) st

= lim Z o(xi)g ) (u(Xiy1) — u(xy))

+e(x) g (U(Xi))9(U(Xi))2(X(Xi> Xii1) + C(Xis1 = X))

.l / 5
- / Daeu(x) + ¢ | p(0)g (u(x))8(u(x))*ax.

Extra term ¢ g'(u) 6(u)? appears.
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We have the right solution

The rough path (X, X) is geometric i.e.
1 1
Sym (X(x, y)) = g(X(x,y) +X(x,y)7) = 50X(X,y) ®X(x, y).

This implies that in the gradient case our solution coincides with
classical solution.
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We have the right solution

The rough path (X, X) is geometric i.e.
1 1
Sym (X(x,¥)) = 5 (X(x.y) + X(x.9)T) = 50X (x,y) @ 6X(x.y).

This implies that in the gradient case our solution coincides with
classical solution.

In the non-gradient case even different geometric rough paths
give rise to different solutions, e.g. for n = 2:

X(t,x,y) = X(t, x,y) + (y — x) ( _01 :) ) and

gxy) = ( —sin(y) cos(y) ) |

cos(x)  sin(x)



Stochastic convolution 1

¢ adapted L2[0, 1]-valued process. Stochastic convolution:

W (1) = /t S(t— s)6(s) dW(s)
O |

Same space-time regularity as X(t, x) but not Gaussian!
Friz-Victoir results about Gaussian rough paths can not be
applied.
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Stochastic convolution 1

6 adapted L?[0, 1]-valued process. Stochastic convolution:

W (1) = /t S(t— s)6(s) dW(s)
O |

Same space-time regularity as X(t, x) but not Gaussian!
Friz-Victoir results about Gaussian rough paths can not be
applied.

w7 is controlled by X with derivative process ¢

WO(t,y) = W0t x) = 0(t,X) (X(t,y) = X(1,%)) + R(t, x, ).
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Stochastic convolution 2

Additional regularity for ¢

0lpa = E[ sup —IUEX) 0P
’ xty.szt (|t — 8]%/2 4+ |x — y|2)

p +suplo(t, x)|
xt

1/p
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Stochastic convolution 2

Additional regularity for ¢

16)pa = E{ sup N0tX) —6(s.y)P
8 xry.s#t (|t =872 4 |x — y|o)P

1/p
+sup6(t, )P
X,t
By definition of R’:

(t,x,y) = // (Br-s(z = y)=Pr-s(z = X))
(6(s. 2) - 01, x)) W(ds, dz).
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Stochastic convolution 2

Additional regularity for ¢

16)pa = E{ sup N0tX) —6(s.y)P
8 xry.s#t (|t =872 4 |x — y|o)P

1/p
1 sup w(t,x>|ﬂ
X,t

By definition of R’:

(t,x,y) = // (Br-s(z = y)=Pr-s(z = X))
(6(s. 2) - 01, x)) W(ds, dz).

Then one has for p large and ¥ small:

E|I7], i X.a]wa)} < C(1 +KP) 0|3
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Nonlinearity/Regularisation trick

Consider
v=u—w’

Observation: v is more regular than u.
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Nonlinearity/Regularisation trick

Consider
v=u-—Vv’

Observation: v is more regular than u.
For fixed controlled rough path W we can solve the fixed point
problem

v(tx) = [ S(t-9)[g(v(s) + w()an(u(s)] ds (x)

.
+,/0 Uo Pr—s(x = ¥)g(v(s,y) + V(s,y)) dy¥(y, )| ds

in C([0, T], C'[0, 1]).
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Nonlinearity/Regularisation trick
Consider
v=u—Vv’

Observation: v is more regular than u.
For fixed controlled rough path W we can solve the fixed point
problem

v(t,x) = '/;‘ S(t—s) [g(v(s) + W(S))&X(v(s))} ds (x)
, 1
+,/ot Uo Pr—s(x — y)g(v(s.y) + V(s,y)) dyV(y,s)| ds

in C([0, T], C'[0, 1]).
Fixed point v depends continuously on V.
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Outer fixed point

For T small enough mapping

U Q(U) AN w@(u) + v\uﬁ(u)

is a contraction w.r.t.

u(t,x) — u(s, y)P 1/p
lullpo = E| sup jutt, ) = u(s, y) 5 +sup |u(t, x)[P

xzy,s4t (|t — §|*/2 + |x — y|?) Xt
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Outer fixed point

For T small enough mapping

U H(U) N w@(u) + V\UG(U)

is a contraction w.r.t.

u(t,x) — u(s, y)P 1/p
lullpo = E| sup jutt, ) = u(s, y) 5 +sup |u(t, x)[P

XAy, 574t (‘l‘ — S‘(’“/‘? +|x — y\a) Xt

= Local existence!
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lullpo = E| sup jutt, ) = u(s, y) 5 +sup |u(t, x)[P
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= Local existence!

Data is bounded = Gronwall argument gives global existence!
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Outer fixed point

For T small enough mapping

U Q(U) AN w@(u) + v\uﬁ(u)

is a contraction w.r.t.

u(t, x) — u(s, y)|P 1/p
lullpw = E[ sup UEX ZUSII® g e xp
sy szt (|t —8[2 4+ |x —y|*)"  xt

= Local existence!
Data is bounded = Gronwall argument gives global existence!

Construction continuous in reference rough path (X, X) +
Stability of Friz-Victoir construction = Stability!
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Conclusion

— Spatial rough integrals give a way to define solutions to
equations that are not well-posed classically .
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Conclusion

— Spatial rough integrals give a way to define solutions to
equations that are not well-posed classically .

— Our construction gives an interpretation for extra terms that
appear even in well-posed equations.

— It should also give a different method to prove such

approximation results.

— Rough path machinery very convenient, as it allows to
separate the construction into a stochastic part and a
deterministic part.

p.24



