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Part I:
The deterministic case



Two examples of partial differential equations

Linear transport equation:

∂tu =

n∑
i=1

biDiu+ b0u in D × (0, T )

This is a first order PDE and models the evolution of the particle
density u, driven by the vector field b : D × [0, T ]→ Rn and with
initial condition u(0, x) = u0(x).



Two examples of partial differential equations

Heat equation:

∂tu = ∆u := div Du :=

n∑
i=1

DiDiu in D × (0, T )

This equation describes the distribution of temperature in the
given domain D ⊂ Rn over time, starting from the initial heat
distribution u(0, x) = u0(x). It is the prototype of the second
order parabolic PDE

∂tu = div
(
A(x, t)Du

)
with bounded, positive definite coefficients A : D× [0, T ]→ Rn2

.



Weak solutions

A classical solution usually refers to a function u for which all
derivatives occurring in the PDE exist in C0. This notion is in
general too strong to guarantee existence.

Definition
A map u ∈ L∞(0, T ; L2(D)) ∩ L2(0, T ; W1,2(D)) is called weak
solution to the parabolic system with initial values u0 ∈ L2(D) if

〈u(t)− u0, ϕ 〉L2(D) = −
∫ t

0
〈A(x, t)Du,Dϕ 〉L2(D)ds

for all ϕ ∈ C∞0 (D,RN ) and all t ∈ (0, T ).

(Similarly, again via integration by parts formula, one can define
also weak solutions for the transport equation).



Weak solutions

I Existence of weak solutions can be established easily by
compactness and monotonicity methods

I Weak solutions by definition are not a priori regular, but
rather have a certain degree of integrability and weak dif-
ferentiability.

Note:
w(x) = |x|α for 1 − n/p < α < 1 (with p ≥ 1) belongs to
W1,p(B1(0)), but is not differentiable in the classical sense!



Regularity theory

Aim in regularity theory:

Study regularity of weak solutions u : D × [0, T ]→ RN to
general parabolic systems

∂tu = div
(
A(x, t)Du

)
(P)

with measurable, elliptic, bounded coefficients A, in the sense
that

A(x, t)ξ · ξ ≥ λ0|ξ|2 and |A(x, t)| ≤ λ1
for some 0 < λ0 ≤ λ1 and all ξ ∈ RNn.



Classical regularity results

I The scalar case:
all scalar-valued weak solutions are of class C0

loc, without
any regularity of the coefficients A(x, t)
(Morrey, De Giorgi, Nash and Moser around the late 1950’s);

I The vectorial case:
Different regimes: there exists constants c1(n) ≥ c2(n) > 1
such that

whenever λ1/λ0 < c1(n) and x 7→ A(x, t) is Lipschitz or
whenever λ1/λ0 < c2(n), then all vector-valued weak solu-
tions are of class C0

loc

(“Cordes-type condition”, Koshelev 1993, Kalita 1994);
there exist coefficients A(x, t), with ellipticity constant λ0 and
upper bound λ1 with λ1/λ0 > c1(n), such that (P) admits a
discontinuous solution, starting from smooth initial data
(Stará-John 1995).
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Part II:
The stochastic case



Possible effects of random perturbations

Aim: Study the pathwise behavior of weak solutions with PDE
techniques (applicable in more general cases than semi-group
approaches). Possible scenarios:

I conservation of regularity?
I regularization by noise (in cases where the underlying de-

terministic system admits irregular solutions)?
I roughening effects of noise?

The answers will depend on the type of SPDE and of noise, but
the interplay between two facts might be crucial:

– the noise is irregular and might favor singularities;
+ development of coherent structures is prevented (in known

counterexamples coefficients and solution interact in a very
particular way!).
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Setting with stochastic perturbations

Setting:

Let (Ω,F , P ) be a complete probability space with a filtration
(Ft)t≥0, and let (Bt)t≥0 be a standard Brownian motion. We
now study SPDEs of the form

du = div
(
A(x, t)Du

)
dt+H(x, t,Du)dBt in D × (0, T ) , (N)

with H regular, u : D × (0, T )×Ω→ RN a random function, and
the stochastic integral understood in the Itô sense.



Weak solutions

Definition
An Ft-progressively measurable process u on [0, T ]×Ω is called
a weak solution to (N) with initial values u0 ∈ L2(D,RN ) if

(i) P -a. e. path satisfies u(·, ω) ∈ L∞(0, T ; L2)∩L2(0, T ; W1,2);
(ii) for all t ∈ [0, T ], we have P -a. s. the identity

〈u(t)− u0, ϕ 〉L2(D) = −
∫ t

0
〈A(·, s)Du,Dϕ 〉L2ds

+

∫ t

0
〈ϕ,H(·, s,Du)dBs 〉L2

for all ϕ ∈ C∞0 (D,RN ).



Conservation of regularity

Theorem (B.-Flandoli 2011)
Let u0 be regular, let H(x, t, z) be Lipschitz continuous in z with
small Lipschitz constant, and let the coefficients A satisfy the
Cordes-type condition (i. e. the underlying deterministic system
has only regular solutions).

Then every weak solution to the initial boundary value to (N) with
initial values u0 is of class C0

loc with probability 1.

Note:
I Full extension of Kalita’s result to the stochastic case;
I Includes additive and multiplicative noise;
I Holds for more general system equation with principle part

which is “close” to the Laplace system.
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“Toy”-tool

The proof of this theorem is based on a combination of the PDE-
techniques used by Kalita and stochastic methods, which finally
leads to the pathwise regularity result (but the implementation is
quite technical).

Toy case of a pathwise regularity criterion:

Kolmogorov’s criterion:

A process u has a Hölder continuous version if

E
[
|u(x1)− u(x2)|q

]
≤ c|x1 − x2|n+αq for all x1, x2 ∈ Rn .

Campanato’s criterion:
A function u is Hölder continuous if∫
Br(x0)

|u− (u)Br(x0)|
2 dx ≤ crn+2α for all x0 ∈ Rn, r ∈ (0, 1) .

A combination of the proofs shows that pathwise Hölder conti-
nuity of a process u is guaranteed if

E
[(
r−n

∫
Br(x0)

|u− (u)Br(x0)|
2 dx

)q]
≤ Crn+2qα .
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Regularization by noise

With F. Flandoli we have (partial) results in two directions.

Linear PDE with Stratonovich multiplicative noise:

In the setting of the Stara’-John counterexample, we can show
that the average solves a system with better parabolicity and is
hence regular.
Open question: Pathwise regularity?

Linear transport equation with Stratonovich multiplicative
noise:

Under the Ladyzhenskaya-Prodi-Serrin condition on the diffu-
sion coefficients we can show no blow-up of derivatives (not true
in the deterministic case).



Regularization by noise

With F. Flandoli we have (partial) results in two directions.

Linear PDE with Stratonovich multiplicative noise:

In the setting of the Stara’-John counterexample, we can show
that the average solves a system with better parabolicity and is
hence regular.
Open question: Pathwise regularity?

Linear transport equation with Stratonovich multiplicative
noise:

Under the Ladyzhenskaya-Prodi-Serrin condition on the diffu-
sion coefficients we can show no blow-up of derivatives (not true
in the deterministic case).



Thanks for your attention!!!


