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Outline

1. Introduction

• Metastable systems.
• Markovian models.
• Metastable state: restricted ensemble and quasi stationary measure

2. Exit time: law and sharp average estimates

• Exponential law of the exit time.
• Sharp estimates on average exit time and relaxation time.
• Example: Curie-Weiss model.

3. Escape from metastability

• Soft measures as generalization of quasi-stationary measures.
• Transition times and mixing time asymptotics.
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Metastable systems

Metastable systems

Metastability is a common dynamical phenomenon related to first order phase transition.

gas

T

P

liquid

If the parameters of the system change along the line of the first order phase transition,
the system moves from one metastable state to the new equilibrium.

Main features: This transition takes a long time, while the system stays in an apparent

equilibrium.
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Metastable systems

Rigorous description

Due to the work of Lebowitz & Penrose (J. Stat. Phys., 3, 1971):

”We shall characterize metastable thermodynamic states by the following

properties:

(a) only one thermodynamic phase is present,

(b) a system that starts in this state is likely to take a long time to get out,
(c) once the system has gotten out, it is unlikely to return. ”
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Metastable systems

Rigorous description

Due to the work of Lebowitz & Penrose (J. Stat. Phys., 3, 1971):

”We shall characterize metastable thermodynamic states by the following

properties:

(a) only one thermodynamic phase is present,

(b) a system that starts in this state is likely to take a long time to get out,
(c) once the system has gotten out, it is unlikely to return. ”

one phase of metastable state −→ region R ⊂ X of the phase space

metastable state −→ µR = µ(·|R), the restricted ensemble.

Main question: Show properties (b) and (c) by analyzing the exit time from R: TRc.

Fifth Workshop on Random Dynamical Systems, University of Bielefeld, 4-5 October 2012 3



Metastable systems

Metastability in stochastic dynamics

Previous results and techniques

A simple example: Let Xt ∈ R solution of dXt = −V ′(Xt) +
√
2ε dWt
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Metastable systems

• Large deviations techniques [Freidlin, Wentzell (’84)]:

(1) lim
ε→0

ε log ExTy = ∆ (2) lim
ε→0

Px

( Ty
ExTy

> t

)

= e
−t

• Pathwise approach[Cassandro, Galves, Olivieri, Vares (’84)]:
It focuses on typical trajectories and exponential law of the exit time.
By LD techniques, it provides (1)-(2). Developed and generalized in many ways:

[Neves, Schonmann (’92)], [Ben Arous, Cerf (’96)], [Schonmann, Shlosman (’98)],
[Gaudillière, Olivieri, Scoppola (’05)].

• Potential theoretic approach [Bovier, Eckhoff, Gayrard, Klein (’01-’04)]:
It focuses on relation between exit time and capacities, (and spectrum of the generator),
providing sharp results (T finite): [Bovier, Manzo (’02)] [B., Bovier, Ioffe, ’09], [Bovier,

Den Hollander, Spitoni (’10)], [Beltrán, Landim (’10)].
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Metastable systems

• Large deviations techniques [Freidlin, Wentzell (’70)]:

(1) lim
ε→0

ε log ExTy = ∆ (2) lim
ε→0

Px

( Ty
ExTy

> t

)

= e
−t

• Pathwise approach[Cassandro, Galves, Olivieri, Vares (’84)]:
It focuses on typical trajectories and exponential law of the exit time.
By LD techniques, it provides (1)-(2). Developed and generalized in many ways:

[Neves, Schonmann (’92)], [Ben Arous, Cerf (’96)], [Schonmann, Shlosman (’98)],
[Gaudillière, Olivieri, Scoppola (’05)].

• Potential theoretic approach [Bovier, Eckhoff, Gayrard, Klein (’01-’04)]:
It focuses on relation between exit time and capacities, (and spectrum of the generator),
providing sharp results (T finite): [Bovier, Manzo (’02)] [B., Bovier, Ioffe, ’09], [Bovier,

Den Hollander, Spitoni (’10)], [Beltrán, Landim (’10)].

Our main goal: Give a different description of metastable state and find simple hypotheses

to get sharp estimates on the average exit time and prove its exponential law.
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Markovian models

Markovian Models

Markov process X = (Xt)t∈R on a finite set X with generator

Lf(x) =
∑

y∈X
p(x, y)(f(y)− f(x))

For R ⊂ X metastable set, let XR (XRc) be the reflected process on R (Rc).
Assume:

1) X irreducible and reversible w.r.t µ;
2) XR, XRc irreducible −→ reversible w.r.t. µR and µRc.
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Markovian models

Markovian Models

Markov process X = (Xt)t∈R on a finite set X with generator

Lf(x) =
∑

y∈X
p(x, y)(f(y)− f(x))

For R ⊂ X metastable set, let XR (XRc) be the reflected process on R (Rc).
Assume:

1) X irreducible and reversible w.r.t µ;
2) XR, XRc irreducible −→ reversible w.r.t. µR and µRc.

• Consider the sub-Markovian kernel on R

r∗(x, y) = p(x, y), for all x, y ∈ R

and let eR(x) =
∑

y 6∈R p(x, y) (escape probability from R).
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Quasi-stationary measure

Quasi-stationary measure

From Perron-Frobenius Theorem and Darroch & Seneta(’62):

• ∃ a measure µ∗R on R, called quasi stationary measure defined as

µ∗R(y) = lim
t→∞

Px(X(t) = y|TRc > t) Yaglom limit

• Moreover ∃φ∗ > 0 s.t.

1. µ∗Rr
∗ = (1− φ∗)µ∗R −→ left eigenvector

2. Pµ∗R
(TRc > t) = e−φ

∗t −→ exponential law

3. Eµ∗R
(TRc)−1 = φ∗ = µ∗R(eR) −→ exponential rate .
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Quasi-stationary measure

Quasi-stationary measure

From Perron-Frobenius Theorem and Darroch & Seneta(’62):

• ∃ a measure µ∗R on R, called quasi stationary measure defined as

µ∗R(y) = lim
t→∞

Px(X(t) = y|TRc > t) Yaglom limit

• Moreover ∃φ∗ > 0 s.t.

1. µ∗Rr
∗ = (1− φ∗)µ∗R −→ left eigenvector

2. Pµ∗R
(TRc > t) = e−φ

∗t −→ exponential law

3. Eµ∗R
(TRc)−1 = φ∗ = µ∗R(eR) −→ exponential rate .

• Choose µ∗R instead of µR in order to describe the metastable state.
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Quasi-stationary measure

Advantages and disadvantages.

• µ∗R immediately provides the exponential law of TR, that in general is hard to deduce.

• µ∗R is not explicitly given, then preventing from getting quantitative estimates.

Question: Are µ∗R and µR very different?
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Quasi-stationary measure

Advantages and disadvantages.

• µ∗R immediately provides the exponential law of TR, that in general is hard to deduce.

• µ∗R is not explicitly given, then preventing from getting quantitative estimates.

Question: Are µ∗R and µR very different?

Let γR be the spectral gap of XR and define εR := φ∗

γR
.

Proposition 1. If εR < 1, then

∥

∥

∥

∥

µ∗R
µR
− 1

∥

∥

∥

∥

2

R,2

≤ εR
1− εR
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Quasi-stationary measure

Advantages and disadvantages.

• µ∗R immediately provides the exponential law of TR, that in general is hard to deduce.

• µ∗R is not explicitly given, then preventing from getting quantitative estimates.

Question: Are µ∗R and µR very different?

Let γR be the spectral gap of XR and define εR := φ∗

γR
.

Proposition 1. If εR < 1, then

∥

∥

∥

∥

µ∗R
µR
− 1

∥

∥

∥

∥

2

R,2

≤ εR

1− εR

Remark. Note that εR = γ−1R /Eµ∗R
(TRc).

For metastable systems, we expect εR ≪ 1 with some parameter of the system
(e.g. size of the system→∞, T → 0 )
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Exit time: law and sharp average estimates

Exponential law of the exit time

Assume that εR → 0 and let SR := 1
γ∗R

ln 2
δ(1−δ)ζR

(local mixing time),

with ζR := minx∈R{µ∗R
2
(x)/µR(x)}, γ∗R the spectral gap of r∗, and δ = O(εR).

THM 1. [Exponential law] If SR · φ∗ = o(1) as εR → 0, then

1) EµR(TRc) = φ∗−1(1 + o(1))

2) PµR(TRc > t · φ∗−1) = e−t(1 + o(1))

Remark. In fact we can prove much more. We can consider general initial measure ν,
and get exact corrective terms which are matching in the regime SR · φ∗ = o(1).
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Exit time: law and sharp average estimates

Sharp average estimates
Recall that:
If A,B ⊂ X , A ∩ B = ∅ =⇒ cap(A,B) =

∑

a∈A
µ(a)Pa(τ

+
A > τ+

B).

As shown in a series of papers by Bovier, Eckhoff, Gayrard & Klein (’01-’04),
capacities enter in the computation of the average exit time from A to B.

Main advantage of capacities, is that they satisfy a two-sided variational principle

Fifth Workshop on Random Dynamical Systems, University of Bielefeld, 4-5 October 2012 10



Exit time: law and sharp average estimates

Sharp average estimates
Recall that:
If A,B ⊂ X , A ∩ B = ∅ =⇒ cap(A,B) =

∑

a∈A
µ(a)Pa(τ

+
A > τ+

B).

As shown in a series of papers by Bovier, Eckhoff, Gayrard & Klein (’01-’04),
capacities enter in the computation of the average exit time from A to B.

Main advantage of capacities, is that they satisfy a two-sided variational principle

Generalized capacities

For k, λ > 0, define an extended system X ′ = X ∪ A′ ∪B′, A′, B′ copies of A,B..

A B

A′ B′
c′(a, a′) = kµ(a)

c′(b, b′) = λµ(b)

c′(x, y) = c(x, y) = µ(x)p(x, y)
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Exit time: law and sharp average estimates

Definition (k, λ-capacities): capλk(A,B) = cap(A′, B′) .

When λ = +∞ −→ B = B′ and cap∞k (A,B) = capk(A,B).

In particular cap∞∞(A,B) = cap(A,B).
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Exit time: law and sharp average estimates

Definition (k, λ-capacities): capλk(A,B) = cap(A′, B′) .

When λ = +∞ −→ B = B′ and cap∞k (A,B) = capk(A,B).

In particular cap∞∞(A,B) = cap(A,B).

THM 2. [Mean exit time] If SR ·φ∗ = o(1) as εR → 0, and choosing φ∗ ≪ k ≪ γR,

φ∗−1 =
µ(R)

capk(R,Rc)
(1 + o(1))
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Exit time: law and sharp average estimates

Definition (k, λ-capacities): capλk(A,B) = cap(A′, B′) .

When λ = +∞ −→ B = B′ and cap∞k (A,B) = capk(A,B).
In particular cap∞∞(A,B) = cap(A,B).

THM 2. [Mean exit time] If SR ·φ∗ = o(1) as εR → 0, and choosing φ∗≪k≪γR,

φ∗−1 =
µ(R)

capk(R,Rc)
(1 + o(1))

THM 3. [relaxation time] If SR ·φ∗ = o(1) and SRc ·φc∗ = o(1) with εR, εRc → 0,

and choosing φ∗ ≪ k ≪ γR and φc∗ ≪ λ≪ γRc, then

Trel ≡
1

γ
=

µ(R)µ(Rc)

capλk(R,Rc)
(1 + o(1))
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Example: Curie-Weiss model

A simple example: the Curie-Weiss model

Let m ∈ Γ = {−1,−1 + 2
N , . . . , 1} (magnetization) a 1D-parameter

Let µ(m) ∝ e−βNFN (m) the Gibbs measure on Γ and consider a dynamics reversible

w.r.t. µ with transition rates p(m,m±) ∝ e−βN∇±FN .

For some values of the parameters

Let R = {σ ∈ X : mN(σ) ≤ m0}.
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Example: Curie-Weiss model

Questions:

1. Law and average of TRc w.r.t. µR?
2. Relaxation time?

Studied by [COGV(’84)], [MP(’98)], [BEGK(’01)],[BBI(’09)].
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Example: Curie-Weiss model

Questions:

1. Law and average of TRc w.r.t. µR?
2. Relaxation time?

Studied by [COGV(’84)], [MP(’98)], [BEGK(’01)],[BBI(’09)].

First step: verify the hypotheses

We want to show that εR, εRc −→
N→∞

0 and SR · φ∗ = o(1), SRc · φc∗ = o(1).
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Example: Curie-Weiss model

Questions:

1. Law and average of TRc w.r.t. µR?
2. Relaxation time?

Studied by [COGV(’84)], [MP(’98)], [BEGK(’01)],[BBI(’09)].

First step: verify the hypotheses

We want to show that εR, εRc −→
N→∞

0 and SR · φ∗ = o(1), SRc · φc∗ = o(1).

1. φ∗ = µ∗R(eR) ≤ µR(eR) = µ(∂R) ≤ e−βNΓ1 .

and similarly φc∗ ≤ e−βNΓ2, with Γ1 < Γ2.
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Example: Curie-Weiss model

Questions:

1. Law and average of TRc w.r.t. µR?
2. Relaxation time?

Studied by [COGV(’84)], [MP(’98)], [BEGK(’01)],[BBI(’09)].

First step: verify the hypotheses

We want to show that εR, εRc −→
N→∞

0 and SR · φ∗ = o(1), SRc · φc∗ = o(1).

1. φ∗ = µ∗R(eR) ≤ µR(eR) = µ(∂R) ≤ e−βNΓ1 .

and similarly φc∗ ≤ e−βNΓ2, with Γ1 < Γ2.

2. γR
−1 ≤ T Rmix ≤ c(β)N 3/2 ←− argument used in [Levin,Luczak, Peres (’10)] .

and similarly γRc
−1 ≤ c(β)N 3/2.
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Example: Curie-Weiss model

Questions:

1. Law and average of TRc w.r.t. µR?
2. Relaxation time?

Studied by [COGV(’84)], [MP(’98)], [BEGK(’01)],[BBI(’09)].

First step: verify the hypotheses

We want to show that εR, εRc −→
N→∞

0 and SR · φ∗ = o(1), SRc · φc∗ = o(1).

1. φ∗ = µ∗R(eR) ≤ µR(eR) = µ(∂R) ≤ e−βNΓ1 .

and similarly φc∗ ≤ e−βNΓ2, with Γ1 < Γ2.

2. γR
−1 ≤ T Rmix ≤ c(β)N 3/2 (argument used in Levin,Luczak& Peres paper).

and similarly γRc
−1 ≤ c(β)N 3/2.

3. With the above estimates we get easily SR, SRc ≤ c(β)N 3.

−→ Then the required hypotheses follow.
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Example: Curie-Weiss model

Second step: compute the capacities

We make use of the two-side variational principle over the capacities.
Test functions and flows are provided by the 1D process over the magnetizations, where

capacities can be computed explicitly.

Then, for all φ∗R ≪ k ≪ γR and φ∗Rc ≪ λ≪ γRc

1. capk(R,Rc) = 1
ZN
· 1√

πN
c(m0)e

−βNfN (m0)(1 + o(1)),

2. capλk(R,Rc) = 1
ZN
· 1

2
√
πN

c(m0)e
−βNfN (m0)(1 + o(1)),

where c(m0) =
√

(1−m0
2)|f ′′N(m0)|.
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Example: Curie-Weiss model

The result

From Theorems 1.,2. and 3., it holds

(i) TRc has asymptotic exponential law w.r.t. µR with mean

EµR(TRc) =
πN

βc(m0)c(m−)
e
βNΓ1(1 + o(1))

(ii) The relaxation time γ−1 is given by

γ−1 =
2πN

βc(m0)c(m−)
eβNΓ1(1 + o(1))
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Soft measure and escape from metastability

Soft measure and escape from metastability

Recall property (c) of Lebowitz & Penrose:

”once the system has gotten out, it is unlikely to return ”

What does it mean ”to get out” from R? Exit from R?
When the system just exited R, the probabilities to go back to R or proceed in RC are
equal, and (c) fails.
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Recall property (c) of Lebowitz & Penrose:

”once the system has gotten out, it is unlikely to return ”

What does it mean ”to get out” from R? Exit from R?
When the system just exited R, the probabilities to go back to R or proceed in RC are
equal, and (c) fails.

−→ look for a definition of ”true escape”
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Soft measure and escape from metastability

Soft measure and escape from metastability

Recall property (c) of Lebowitz & Penrose:

”once the system has gotten out, it is unlikely to return ”

What does it mean ”to get out” from R? Exit from R?
When the system just exited R, the probabilities to go back to R or proceed in RC are
equal, and (c) fails.

−→ look for a definition of ”true escape”

Main Idea
If the dynamics spends in Rc a time ≥ SRc (local mixing in Rc) then it is close to µ∗Rc.

=⇒

Define the ”true escape from R” as the first time that the ”dynamics on R” makes an
excursion in Rc of order ≥ SRc.
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Soft measure and escape from metastability

Formally:

• For any λ > 0 and σλ ∼ exp(λ) indep. of X, sub-Markovian kernel on R:

r∗
λ(x, y) = Px(X(τ+

R) = y, LRc(τ+
R) ≤ σλ)

where LA = local time in A ⊂ X and GA its right-continuous inverse.
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Soft measure and escape from metastability

Formally:

• For any λ > 0 and σλ ∼ exp(λ) indep. of X, sub-Markovian kernel on R:

r∗
λ(x, y) = Px(X(τ+

R) = y, LRc(τ+
R) ≤ σλ)

where LA = local time in A ⊂ X and GA its right-continuous inverse.

• Define the transition time: TRc,λ = LR(GRc(σλ))
.

R

Rc
X

σλ = length of blue-path

GRc(σλ) = length of black-path

TRc,λ = length of red-path
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Soft measure and escape from metastability

By similar arguments to those used for the analysis of r∗, we define
the soft measure µ∗

R,λ on R as

µ∗R,λ(y) = lim
t→∞

Px(X(GR(t)) = y|TRc,λ > t)

It turns out that ∃φ∗λ > 0 s.t.

1. µ∗R,λr
∗
λ = (1− φ∗λ)µ

∗
R,λ −→ left eigenvector

2. Pµ∗R,λ
(TRc,λ > t) = e−φ

∗
λt −→ exponential law

3. Eµ∗R,λ
(TRc,λ)

−1 = φ∗λ = µ∗R,λ(eR,λ) −→ average time

Remark 1. µ∗R,λ is continuous interpolation between µR = µ∗R,0 and µ∗R = µ∗R,∞.

Remark 2. The same construction can be done for the dynamics on Rc: For k > 0 and
taking a time (R)-excursion bound of σk ∼ exp(k), we construct µ∗Rc,k.
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Transition time and mixing time

Transition time and mixing time

THM 4. All the results proved for TRc and φ∗, hold for TRc,λ and φ∗λ under analogous

hypotheses (εR ≪ 1 and SR,λ · φ∗λ = o(1) as εR → 0).
In particular:

1. TRc,λ has asymptotic exponential law w.r.t. µR, with rate φ∗λ

2. φ∗λ satisfied sharp asymptotics expressed in term of capacity
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Transition time and mixing time

Transition time and mixing time

THM 4. All the results proved for TRc and φ∗, hold for TRc,λ and φ∗λ under analogous

hypotheses (εR ≪ 1 and SR,λ · φ∗λ = o(1) as εR → 0).
In particular:

1. TRc,λ has asymptotic exponential law w.r.t. µR, with rate φ∗λ

2. φ∗λ satisfied sharp asymptotics expressed in term of capacity

From 1. and 2.

EµR(TRc,λ) = φ∗λ
−1

(1 + o(1)) =
µ(R)

capλk(R,Rc)
(1 + o(1))
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Transition time and mixing time

Moreover, the truly escape from R is given by the time GRc(σλ), (first excursion ∼ σλ)
for λ = O(S−1Rc,0). Indeed it holds, for all x ∈ X ,







‖Px(X(GRc(σλ)) = · )− µRc‖TV ≤ λSRc,0 + o(1)

‖Px(X(GRc(σλ)) = · )− µ‖TV ≤ µ(R) + λSRc,0 + o(1)
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Transition time and mixing time

Moreover, the truly escape from R is given by the time GRc(σλ), (first excursion ∼ σλ)
for λ = O(S−1Rc,0). Indeed it holds, for all x ∈ X ,







‖Px(X(GRc(σλ)) = · )− µRc‖TV ≤ λSRc,0 + o(1)

‖Px(X(GRc(σλ)) = · )− µ‖TV ≤ µ(R) + λSRc,0 + o(1)

THM 5. [mixing time] If SR · φ∗ = o(1) and SRc · φc∗ = o(1) as εR, εRc → 0,

and taking λ = O(S−1Rc,0),

Tmix ≤
4

γ

(

1− µ(R)

1− 2µ(R)

)

(1 + o(1))
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Transition time and mixing time

Transition and mixing time of the Curie-Weiss model:

Recall that we get:

• TRc has exponential law w.r.t. µR;

• EµR(TRc) = πN
βc(m0)c(m−)

eβNΓ1(1 + o(1)) ;

• γ−1 = 2πN
βc(m0)c(m−) e

βNΓ1(1 + o(1)) .

By Theorem 6., with no need of further computations, it holds:

(i) TRc,λ has exponential law w.r.t. µR, with mean

EµR(TRc,λ) =
2πN

βc(m0)c(m−)
eβNΓ1(1 + o(1))

(ii) The mixing time Tmix is bounded as

γ
−1 ≤ Tmix ≤

8πN

βc(m0)c(m−)
e
βNΓ1(1 + o(1)) = 4γ

−1
(1 + o(1))
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Thank you for your attention!


