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Stochastic Allen-Cahn equation

∂tu(t , x) = ∂2
x u(t , x)− V ′

(
u(t , x)

)
+
√

2ε Ẇ (t , x)

x ∈ [−L,L] one-dimensional.

V symmetric double-well potential.

−1 1

V

Ẇ space-time white noise.
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Stochastic Allen-Cahn equation

∂tu(t , x) = ∂2
x u(t , x)− V ′

(
u(t , x)

)
+
√

2ε Ẇ (t , x)

Parameters:

ε� 1 noise strength.

O(1) typical lengths of an interface.

system size: L� 1.
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Stochastic Allen-Cahn equation

∂tu(t , x) = ∂2
x u(t , x)− V ′

(
u(t , x)

)
+
√

2ε Ẇ (t , x)

Questions:

Depending on L, ε

Do we see nucleation (noise induced creation of new

interfaces)?

What is the influence of the boundary conditions

u(±L) = u±?
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Invariant measures for (SAC)

Dirichlet boundary conditions: u(±L) = u±

Auxiliary measure:

Wu−,u+

ε,(−L,L) Brownian bridge from(−L,u−) to (L,u+). Variance ε.

u−

u+

−L L

Question: How does the behaviour depend on ε and L (and

u±)?
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Invariant measures for (SAC)

Dirichlet boundary conditions: u(±L) = u±

Invariant measure:

µ(du) =
1
Z

exp
(
− 1
ε

∫ L

−L
V
(
u(x)

)
dx
)
W(du)

−1

+1

−L L
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Gibbs measure

Energy functional:

E(u) :=

∫ L

−L

1
2
(
∂xu(x)

)2
+ V

(
u(x)

)
dx

Formally:

µ ∼ exp
(
− 1
ε

E(u)
)

“du(−L,L)”

Gibbs measure with respect to energy E .

Invariant measure of stochastic Allen-Cahn equation

u̇(t , x) = ∂2
x u(t , x)− V ′

(
u(t , x)

)
+
√

2εẆ (t , x)

=−∇L2E(u) +
√

2εẆ (t , x).
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Energy functional on the full line

E(u) :=

∫ ∞
−∞

1
2
(
∂xu(x)

)2
+ V

(
u(x)

)
dx

Optimal profiles constant ±1.

Modica-Mortola trick: Cost of transitions u(±∞) = ±1

E(u) =

∫ ∞
−∞

1
2

(
∂xu(x)±

√
2V
(
u(x)

))2

∓ ∂xu(x)
√

2V
(
u(x)

)
≥
∫ 1

−1

√
2V (ũ) dũ =: c0.

Optimal profiles Translation invariantM =
{
mξ : ξ ∈ R

}
.

mξ

ξ
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Order one systems

System L ≈ 1 fixed, noise strength ε� 1: Large deviation

estimates!

Concentration around E minimiser with given boundary

conditions.

u−
u+

−L L

Extra transitions are exponentially unlikely

µ−1,1
ε,(L,L)

(
2 transitions

)
∼ exp

(
− 1
ε

(2c0 ± γ)
)
.
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Large systems:

What happens when ε� 1 and L� 1?

Heuristic: Cut (−L,L) into N ∼ L boxes of size ` = O(1).

xi xi+1
−L L

Entropic term:

µ−1,1
ε,(−L,L)

(
2n + 1 transitions

)
∼ L2n exp

(
− 1
ε

2nc0

)
.
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Probability of transitions

Transition Layer: u has a transition layer on (x−, x+) if

u(x±) = ±1 or ∓ 1 and |u(x)| < 1 for all x ∈ (x−, x+).

Theorem

Boundary conditions: u± = ±1.

System size: 1� L� exp
(c′0
ε

)
for a c′0 < c0,

Then

µ−L,L
ε,(−1,1)

(
(2n + 1) transition layers

)
≈ L2n exp

(
− 1
ε

(2nc0±γ)
)
.

Similar result for different boundary conditions (e.g. periodic,

homogeneuous,...).
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Location of jump

Theorem

Boundary conditions: u± = ±1.

System size: | log ε| � L� exp
(c′0
ε

)
for a c′0 < c0,

Consider intervals of the type

Jx := [x − d , x + d ],

for d � | log ε|.

Then

sup
x

∣∣∣µ−1,1
ε,(−L,L)

(
transition in Ix

)L
d
− 1

∣∣∣� 1.
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Related results

Bertini, Brassesco, Buttà ’08: Same system L = 1
4 | log(ε)|:

→ Concentration aroundM.

→ Due to influence of the boundary the interface stays

localized. In the limit interface location

ξ ∼ exp
(
− A(cosh(αz)− 1)

)
dz.

W. ’10: Same system for L = ε−γ , γ < 2
3 :

→ Concentration near energy minimisers.
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Strategies

[BBB’08] use approach: u can be realized as

du(x) = aε
(
u(x)

)
dx +

√
εdw(x)

u(−L) =− 1 conditioned on u(L) = 1.

Difficulty:

→ aε is not known explicitly.

→ Conditioning on final condition.

[W’10] use approach: Discretized measure

µN,ε =
1
ZN,ε exp

(
− 1
ε

E(u)
)
dLN .

Use explicit bounds on the energy landscape of E .

Difficulty:

→ Error terms to large for L > ε−γ .
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Ingredients of proof

Two sided strong Markov property:

→ Left/right stopping points x− ≤ χ− < χ+ ≤ x+.

→ Φ nice test function

Eµε
(

Φ
∣∣∣F[x−,χ−] ∨ F[χ+,x+]

)
= Eµε,u(χ−,χ+)

(
Φ
)
.

(Uniform) Large deviation bounds:

→ A (“nice”) set of functions.

→ ∆E(A) := infu∈A E(u)− infb.c. E(u)

µ
u−,u+

ε,(x−,x+)(A) ∼ exp
(
− 1
ε

(
∆E(A)± γ

))
.
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Freidlin-Wentzel argument does not work directly!

−L L
xi xi+1

µε
(
transition in [xi , xi+1]

)
=

∫
νxi−1,xi+2(dui−1,dui+2)µ

ui−1,ui+2
ε

(
transition in [xi , xi+1]

)
.

Large deviation estimate gives information on µui−1,ui+2
ε .

But information about transition is contained in νxi−1,xi+2 .
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Symmetry helps
Idea: Transform the event into something we can estimate!

−L L

R R

xi xi+1

χ2i−1 χ2i χ2i+1 χ2i+2

Reflection operator R preserves the measure!

µε
(
transition in intervals Ii

)
= µε

(
wasted excursions in intervals Ii

)
=

∫
νxi−1,xi+2(dui−1,dui+2)µ

ui−1,ui+2
ε

(
wast. exc. in[xi , xi+1]

)
.
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Uniform distribution

Idea: Use symmetry again!

x

Jy

Jy ,− Jz,+

Jz

χ+χ−

χ± hitting points of ±1 in auxilary intervals Jy ,− and Jz,+.

Point reflection operator

Ru(x) :=

{
u(x) for x ≤ χ−,

−u(χ− + χ+ − x) for χ− < x < χ+,

u(x) for x ≥ χ+,

leaves µε invariant and moves the transition in Jy close to Jz .
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Choice of auxiliary intervals

Jy :=
{
u : u has a δ−up layer in Jy (+ extra conditions)

}
.

Lemma (“Hitting Lemma")

Auxiliary intervals |J−y |, |J+
z | ≈ K̄ | log(ε)|.

Then

µ−1,1
ε,(−L,L)

(
u ∈ Jy : no hitting of − 1 in Jy ,−

)
≤ E1(ε)µ−1,1

ε,(−L,L)

(
Jy
)
.

Error term

E1(ε) ≤ λK̄ + L exp
(
− c0 − γ

ε

)
+ 2 exp

(
− c1

2ε

)
.

Same for Jz,+.
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Crucial step for “Hitting Lemma”

Lemma (“Close to 1”)

For ε ≤ ε0, small.

Kε ∼ log
(√

ε0
ε

)
and `ε := (2Kε + 1)`0.

Then and all u± ∈ [1/2,3/2], we have

µ
u−,u+

ε,(−`ε,`ε)

(
sup

x∈[−`0,`0]
|u(x)− 1| ≥

√
ε

ε0

∣∣∣∣
|u(±(2k − 1)`0)− 1| ≤ 1

2
, k = 1,2, . . . ,Kε

)
≤ 4 exp

(
− 1

Cε0

)
.
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Proof of “Close to 1" Lemma

u−
u+

√
ε/ε0

1

1/2

xK−1 xK `εx−K x−(K−1)−`ε −`0 `0

Rescaling: û(x) = (u(x)− 1) + 1.

Rescaled energy

1
ε

Ê(û) =
1
ε

∫ 1
2
∣∣∂x û

∣∣2 + V ((û − 1) + 1) dx .
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4
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)
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Ê(û) =
1
4ε

∫ 1
2
∣∣∂x û
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Rescaling: û(x) = 2(u(x)− 1) + 1.

Rescaled energy
1
ε
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(û − 1) + 1
)

dx .

p.18



Proof of “Close to 1" Lemma

u−
u+

√
ε/ε0

1

1/2

xK−1 xK `εx−K x−(K−1)−`ε −`0 `0

µ
u−,u+

ε,(x−(K +1),xK +1)

(
sup

x∈[−`0,`0]
|u(x)− 1| ≥ 1

2Kε

∣∣∣∣u ∈ Âk

)
≤ 2

(
− 1

C4Kεε

)
.

Rescaling: û(x) = (u(x)− 1) + 1.

Rescaled energy
1
ε

Ê(û) =
1
ε

∫ 1
2
∣∣∂x û

∣∣2 + V ((û − 1) + 1) dx .

p.18



Along the way: Tails of the one point distribution

Lemma (“One point distribution”)

M large, ε small (depending on M).

µ−1,1
ε,(−L,L)

(
|u(x0)| ≥ M

)
≤ exp

(
− M
εC

)
.

Comment:

True decay rate exp
(
−Mp/2+1

εC

)
, where up growth of V at∞.

Closely related to decay of the ground state of the

Schrödinger operator

ε∂2
x + V

in semiclassical limit.
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≤ exp
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.
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Argument for “one point distribution” Lemma

x−1 1

4M

3M
x3M
− x3M

+

2M
x2M
− x2M

+

(a) Case 1: Treated with

another reflection argument.

x−1 1

4M

3M
x3M
− x3M

+

(b) Case 2: Treated with Large

deviation estimates.

p.20



Outlook

Alternative arguments for “close to 1” Lemma and “One point

distribution” Lemma based on tricks from Statistical Mechanics

(FKG inequality, Brascamp Lieb inequality).

Slightly more tricky reflection argument allows to cover

situations where u takes values in a higher dimensional space.

Case of asymmetric V appears to be completely different.

Relation to diffusion bridges (in higher dimensional asymmetric

potentials)?
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Conclusion

Study the invariant measure of stochastic Allen-Cahn equation

in with small noise on large systems.

Obtain matching upper and lower bound for the probabilities of

extra transitions.

If system grows more quickly than logarithmically the jump is

uniformly distributed in the system.

Key ideas of proof: Local large deviation bounds, global

symmetries, detailed properties of energy landscape.
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