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Motivation: Effective large scale behavior of random media

— description by statistics
— effective large scale behavior
~ stochastic homogenization

— qualitative theory

~~ well-established
~~ formula for effective properties

In practice: Evaluation of formula requires approximation
— only few results; non-optimal estimates for approximation error

— lack of understanding on very basic level
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Motivation: Effective large scale behavior of random media

— description by statistics
— effective large scale behavior
~ stochastic homogenization

— qualitative theory

~~ well-established
~~ formula for effective properties

In practice: Evaluation of formula requires approximation
— only few results; non-optimal estimates for approximation error

— lack of understanding on very basic level

Our motivation:
Quantitative methods leading to optimal estimates
...model problem: linear, elliptic, scalar, on VA
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Summary

Framework: discrete elliptic equation with random coefficients
Qualitative homogenization

Homogenization formula and corrector — periodic case
Corrector equation in probality space

Main results

A decay estimate for a diffusion semigroup
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Discrete elliptic equation with random coefficients

5 Via(z)Vu(z) = f(z)

Coefficient field
. 7d dxd
a:Z7%— Rdizg,x

0<A<alz)<1
(uniform ellipticity)
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Discrete elliptic equation with random coefficients

Zzzti

45 V*a(x)Vu(x) = f(z)
Coefficient field
a:7%— Rgiig’}\

0<A<alz)<1
(uniform ellipticity)

~ Lattice Z¢

sites z, y, coord. directions e, ...

Gradient V
Vu=(Viu,...,Vqau), Viu(r) = ulz+ e;) — u(xr)

(negative) Divergence V* (= {-adjoint of V)

V%g=Vigi+...+V3igs Vigi(z) = glz—e)—g(x).

Ied
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Discrete elliptic equation with random coefficients

Zzzti
4 N V*a(z)Vu(z) = f(z)
Coefficient field

. 7d dxd
a:7Z %Rdiag,?\

0<A<alz)<1
(uniform ellipticity)

a Random coefficients

- dxd y(z?
Q = (Egd;;g,A)( )
= space of coefficient fields

() = probability measure on Q

= "the ensemble”

Behavior in the large ~~ stochastic homogenization
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Simplest setting: {a(z)},cz. are independent and identically
distributed according to a random variable A

Most general setting: (-) is stationary and ergodic
Stationarity: Vz € Z%: a(-) and a(- + z) have same distribution

a a(;+z)
. Il shift by z I h
7% A

=

Ergodicity: If Vz € Z¢ F(a(-+ 2)) = F(a) then F = (F) a. s.
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Qualitative homogenization



Numerical simulation - 1d, Dirichlet problem

V*a(z)Vu(z) = 1, z€ (0,L)N7Z,

statistics of a

u(L) = 0

independent, identically, distributed
uniformly in (0.2, 1)

L>1
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Numerical simulation - 1d, Dirichlet problem

V*a(z)Vu(z) = 1, z € (0,L)NZ, L>1
w(0)=u(L) = 0

statistics of @ independent, identically, distributed
uniformly in (0.2, 1)

5/32



L =100

L =500

L =2000
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L =100

L =500

Qhom = <(1,71>71

-V ahomvu = L _ 2000

u(0)=wu(l) = 0
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Qualitative homogenization result

Kozlov ['79], Papanicolaou & Varadhan ['79]

Suppose (-) is stationary & ergodic. Then:
3 unique apom € ngflii such that:

Given fy(#) consider right-hand side fr,(z) = L™2fy(%), z € Z*

Solve discrete ' V*a(z)Vur, =f;, inze ([-0,L)NZ)?
Dirichlet problem { ur, =0 outside ([0, L) N Z)¢
Solve continuum ~V - apemVug =fy inzel0,1)?
Dirichlet problem ' { u =0 outside [0,1)?

Then lim o ur,(LZ) = ug(Z) almost surely.
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Motivation of this talk: approximation of ajom
...requires quantitative estimates for corrector problem
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Motivation of this talk: approximation of ayom,
...requires quantitative estimates for corrector problem

Related, but different:

— homogenization error, i.e. for |uy(L-) — uy(-)]
(Naddaf et al., Conlon et al., ...)

— correlation function in Euclidean field theory
(Naddaf/Spencer, Giacomin/Olla/Spohn,...)
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Formula for a;,,,



Formula for a;,,,

— the periodic case —

Let (-)1 be stationary and concentrated on L-periodic coefficients:
VzeZ al-+Lz)=a()a.s.



Formula for a;,,,

— the periodic case —

Let (-)1 be stationary and concentrated on L-periodic coefficients:
VzeZ al-+Lz)=a()a.s.

We may think about the L-periodic ensemble (-); as a periodic
approximation of the stationary and ergodic ensemble (-).



Definition of Qhom, — ahom,L(a)

Ve c RY : Qhom, €= L% 2 seon)d a(z)(e+ Vo(z))

where @(-) = @(a, ) is the L-periodic (mean-free) solution to

V*a(z)(e+Vo(z)) =0

ze€0,L)?
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Definition of Qhom,L = ahom,L(a)
Ve e RY : Qhom, €= L% Zze[O’L)d a(z)(e+ V()
where @(-) = @(a, ) is the L-periodic (mean-free) solution to

V*a(z)(e +Ve(z) =0 zel0, L)¢

@ is called the corrector associated with @ and e
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Definition of Qhom, — ahom,L(a)

Ve c RY : Qhom, €= L% 2 seon)d a(z)(e+ Vo(z))
where @(-) = @(a, ) is the L-periodic (mean-free) solution to

V*a(z)(e +Ve(z) =0 zel0, L)¢

@ is called the corrector associated with @ and e

» existence and uniqueness by Poincaré’s inequality:
er 0,L)d alo(x )|2 N L? er 0,L)4 iVo(r )|2
» stationarity: @(a(-+2),-) = @(a,-+ 2) for all z € Z¢ as.
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Intuition of a1 /
Given e € R? and associated @, /ah c
consider uy(z) := e-xz+ @(z). Then ; i
V*aVur, =0
average gradient = L™ ¢ Z Vur(z) =e

z€[0,L)¢

average flux = L—¢ Z a(z)Vur(z) = apom e
z€(0,L)4
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Formal passage L T oo yields:

Def. for stationary corrector @ = @(a, z) for (-) defined by

(i) corrector equation
V*a(z)(e+Veol(a,z)) =0 forallzeZ%ae acQ

(ii) sublinear growth on average

: —d —1 2 _
lim L Y| L ela, 2)|” =0.

(iii) stationarity
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Formal passage L T oo yields:

Def. for stationary corrector @ = @(a, z) for (-) defined by

(i) corrector equation
V*a(z)(e+Veol(a,z)) =0 forallzeZ%ae acQ

(ii) sublinear growth on average

: —d —1 2 _
lim L Y| L ela, 2)|” =0.

(iii) stationarity

Def. for homogenized coefficient matrix

ergodicity <

Ahom € = lim L_dZ[O L)d a(e+V(p) a(e+V(p)>
Ltoo '
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Can we directly get existence of stationary corrector for ()
from existence of periodic corrector by limit L 1 co 7
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Can we directly get existence of stationary corrector for ()
from existence of periodic corrector by limit L 1 co 7

No, since Poincaré’s inequality degenerates for L 1 co:

Y sciony @@ S LY scio.)e Ve(a)f
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Can we directly get existence of stationary corrector for ()
from existence of periodic corrector by limit L 1 co 7

No, since Poincaré’s inequality degenerates for L 1 co:

Y sciony @@ S LY scio.)e Ve(a)f

In fact, for d < 2 stationary correctors in general do not exist!
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The corrector equation in L%>
D*a(0)(e+ D) =0 .



From Z% to Q by stationarity

Def.: A random field f(a, z) is called stationary, if

Ve, z,a fla(-+2),z) = fla, z+2).

Def.: The stationary extension of a random variable F'(a) is defined by

F(a,z):= Fla(-+z)).

a .
. Il shift by z I h
VA VAl
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From Z% to Q by stationarity

Def.: A random field f(a, z) is called stationary, if

Ve, z,a fla(-+2),z) = fla, z+2).

Def.: The stationary extension of a random variable F'(a) is defined by

F(a,z):= Fla(-+z)).

a )
. Il shift by z I h
2 24 74
random variables <i> stationary random fields
physical space stationarity probability space
PUNN
(Vi, 2% (Di, Q)
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The horizontal derivative

(a(-+¢),2) — Fla,z) = DiF(a, z),

ViF(a,z) = Fl(a, z+e¢;)—F(a,z)
F
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The horizontal derivative

ViF(a,z) (@, a+e;) —

F
Fla(-+e),

z) —

Fl(a,

z)

F(a,

z) = D;F(a, 1),

Def: Horizontal derivative for F'(a)

D F(a)

Fla(-+e)) —
Fla(-—e)) —

1 'l:illlﬂa

d

A

Z
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Corrector problem in probability

D*a(0)(e+ D) =0
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Corrector problem in probability

D*a(0)(e + D) =0

Homogenization formula in probability

Qhom€ — (a,(())(e + D(b)>

€+ Ghom€ = inf <(€+DF)(L(O)(€+DF)>
Fel?(Q)
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Does there exists ¢ s.t. D*a(0)(e + Dp) =07

Yes if

dp>0VF

(F—(F))?) <

1
P

(IDF|?)

SG(p) for D*D
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Does there exists ¢ s.t. D*a(0)(e + D)

Yes if

This is the case for the periodic ensemble (-) ;.

Jo>0VF ((F—(F)?) < L(DFP)

SG(p) for D*D

However, SG(pz) for D*D in L7, degenerates for L 7 oo:

PL ~

1

1;2
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Does there exists ¢ s.t. D*a(0)(e + Dp) =07

Yesif(3p > 0VF ((F—(F))*) < ;(DFP?)| SG(p) for D*D

This is the case for the periodic ensemble (-) ;.
However, SG(pz) for D*D in L7, degenerates for L 7 oo:

1

PL”ﬁ

Too many variables {a(z)},c7¢ — too few derivatives Dy, ... Dy.
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Our main assumption (inspired by Naddaf & Spencer ['97]):

Instead of (SG) for D*D

§ .
((F M«Diﬂ2> J-_-_

i=1

assume (SG) for ) ;4 (%)2

- e; 2{(3)) S

Z

la(z)
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Def. vertical derivative
= F—(F [{a(y)lyps) ~ 555

...measure how sensitively F' depends on a(z).

Basic example

{a(2)lyeza i.i. d. = SG(p) for Y (L)?

T
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Statement of main result



Existence and higher moment bounds

Theorem A [GNO, GO]
i) Let d > 2, suppose SG(p) for Zﬂ%)? Then

Vg<oo ($21)21 < C(dAp,g)
ii) Let d = 2, consider (-);. Suppose SG(p) for ZI(%)? Then

(427 < O(d, A, p)luL
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Optimal variance estimate for periodic ensemble

Consider (-) 1, periodic ensemble and periodic proxy

apomr(a):i=L"" Y a(z)(e+ Dola, )
z€[0,L)4

Theorem B [GNO].
Let d > 2, suppose SG(p) for ZIG[U L)l 35+ Then

Var .y, [@hom,] < C(d,A, p)L™*
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Optimal variance estimate for periodic ensemble

Consider (-) 1, periodic ensemble and periodic proxy

apomr(a):i=L"" Y a(z)(e+ Dola, )
z€[0,L)4

Theorem B [GNO].
Let d > 2, suppose SG(p) for ZIG[U L)l 35+ Then

Var .y, [@hom,] < C(d,A, p)L™*

Remark: ayonm 1 is spatial average of correlated r.v.
In fact, for 1 —A <1 and {a(z)},c(g,1)a i i. d. have

Cov(y, | alz)(e+ Vo(a)), alz)(e + Vo(2) | ~ V2Gy(z — 2)

Cov(y, | @), 0(2) | ~ Gplo—2)

where Gy, is the L-periodic Green's function for V*V.
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Optimal estimate of systematic error

Let (-)o be i.i.d. with base measure {3, i.e.

(Floe= | Pla) T] Bldalz)

zeZd
Let (-); be L-periodic and i. i. d. with base measure {3, i.e.
(Fli= | Fla) [T Bldals
Qr z€[0,L)4

Theorem C [GNO] Let d > 2. Then

|<ah()Ill,L>L - ah()nl|2 < C(d: }\v p)L72d

(up to logarithmic corrections for d = 2)
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Optimal estimate of systematic error

Let (-)o be i.i.d. with base measure {3, i.e.

(Floe= | Pla) T] Bldalz)

zeZd
Let (-); be L-periodic and i. i. d. with base measure {3, i.e.
(Fli= | Fla) [T Bldals
Qr z€[0,L)4

Theorem C [GNO] Let d > 2. Then

|<ah()Ill,L>L - ah()nl|2 < C(d: }\v p)L72d

(up to logarithmic corrections for d = 2)

combine with (|@nom 1 — (@nom 1)) < C(d, A, p) L7 to get total
L?»L—error.
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Common analytic estimate of the proofs:

optimal decay estimate for the semigroup
exp(—D*a(0)D)



Semigroup representation of ¢
u(t) ;== exp(—tD"a(0)D)f, f=-D"a(0)e.
then formally ¢ := [;° u(t) dt solves

D*a(0)Dd = —D*a(0)e in L?-)
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Semigroup representation of ¢
u(t) ;== exp(—tD"a(0)D)f, f=-D"a(0)e.
then formally ¢ := [;° u(t) dt solves

D*a(0)Dd = —D*a(0)e in L<.>

This is rigorous as soon as fooo(lu(t)lqﬁ dt < oo
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Standard:

(SG) for D*D = exponential decay of exp(—D*a(0)D)

Our estimate:

(SG) for Z(%V = algebraic decay of exp(—D*a(0)D)

T

(with optimal rate!)
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Theorem 1 [GNO]: (optimal decay in t)
Let d > 2, suppose SG(p) for Z:I;(%)Q. Then for ¢ < oo have

(lexp (— tD*a(0)D) D" g%) %

d

1
< Clanpg (t+1)7 1T 2 Z<(a—;‘2)2‘1>2q
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We explain a much simpler situation:

— constant coefficient semigroup D* D instead of D*a(0)D
— initial data f instead of D*g

— linear exponent p = 2 instead 2¢q
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We explain a much simpler situation:
— constant coefficient semigroup D* D instead of D*a(0)D
— initial data f instead of D*g
— linear exponent p = 2 instead 2q

Theorem 2 [GNO]: (optimal decay in t)

Let d > 2, suppose SG(p) for ZI(%)Q. Then for f with (f) =
have

2

(|exp(— tD*D)f|2>% < 1 Z G*(t, z) Z <(%)2>%,
\/5 z€Z? z€Z?

where G(t, x) denotes the parabolic Green's function for (9,+V*V).

Y o) |~ i [ Y Vel | ~

A z€Z4

+3)
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Argument for Theorem 2:
Set u(t) := exp(—tD*D)f.

27/32



Argument for Theorem 2:
Set u(t) := exp(—tD*D)f.

Stationary extension % characterized by parabolic equation
(0t + V*V)u(t,z) =0,  wu(t=02)=f(z)
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Argument for Theorem 2:
Set u(t) := exp(—tD*D)f.

Stationary extension % characterized by parabolic equation
(0t + V*V)u(t,z) =0,  wu(t=02)=f(z)

Green's representation for u and

u(t) =3 ,eze G(t, 2)f(2), a—“( ) =Y sena Gt 2) 3L (2)

@

Spectral gap estimate

—
<
[
—
o~
—
~
Nl
N
M
<
m
N
u
—
—
|o.>
< |2
—
o~
—
-
[
~
——
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Nl

<Zyezd<<ZT€ZdG(t y— x)a_f(y $)>2>>

Nt :
<y (Zm?(t,yx)(ag;)(ym)

z€Zd \yezZd

1
G is deterministic, 2
stationarit:
= ) | Glhy— IR

z€Zd \yezZd

= (Z G?(t,yx)) >t

yeZ4
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Source of difficulty for exp(—tD*a(0)D) (Theorem 1)

Instead of representation g—Z(t) =2 ez G(t, z)g—z(z)

~» Duhamel’s formula for divergence form initial data D*g

ou(t)
oy

= Y V.G(ta02)- 9,
oy
z€74

t
. da(z) — .
-I-/O Z V,G(t—s,a,0, z2) - 5y V., (s, z) ds.

2€74
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Quantitative analysis requires estimates on
|V1G(tv a’v xl y)|p

where G(t, a, z, y) denotes parabolic, non-constant coefficient
Green's function on Z¢.
need...

— optimal decay in t ~ (¢t +1)—(2+3)p

— deterministic, i. e. uniform in a

— exponent p > 2

. can only expect

— averaged in space (with weight)

use: discrete elliptic & parabolic regularity theory
Caccioppoli estimate, Meyers' estimate, Nash-Aronson, ...
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Future directions

— from scalar to systems (elasticity)

scalar case relies on testing with nonlinear functions |u|P—2u

— from uniform ellipticity
to supercritical percolation

>

random geometry of percolation cluster

*—o

) > T . i

~ isoperimetric inequality

~~ Green's function estimate - e
+— ¢

have quantitative results for a toy problem

— application to homogenization error
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— A. Gloria & F. Otto. An optimal variance estimate in
stochastic homogenization of discrete elliptic
equations.

Ann. Probab. 2011

— A. Gloria & F. Otto. An optimal error estimate in
stochastic homogenization of discrete elliptic
equations.

Ann. Appl. Probab. 2012
— A. Gloria, S. N. & F. Otto. work in progress

* Quantification of ergodicity in stochastic
homogenization: optimal bounds via spectral gap
on Glauber dynamics.

* Approximation of effective coefficients by
periodization in stochastic homogenization.
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