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-1- Metastability and first hitting

Physical systems near a phase transition (e.g. ferromagnet or
saturated gas)

- trapped for an abnormal long time in a state —the metastable
phase— different from the eventual equilibrium state consistent
with the thermodynamical potentials;

- subsequently, undergoing a sudden transition at a random time
from the metastable to the stable state.

Statistical mechanics model:
- space state X , e.g. X = {−1,+1}Λ; interaction, e.g. Ising

hamiltonian;
- evolution: Markov chain on X , reversible w.r.t. Gibbs measure

e−βH

Z ;
- decay of the metastable state: convergence to equilibrium of the

chain, (equilibrium state), e.g. configuration of minimal energy in
the limit of small temperature β →∞.



An example to introduce the problem
Random walk on X = {1, ...,n} reversible w.r.t. the following
hamiltonians, i.e., with stationary measure π(x) = e−βH(x)

Z :

Let δ = H(x)− H(x − 1) for x = 2, ...,n − 1 and define



px := P(x , x+1) =
e−δβ

1 + e−δβ
, x = 1, ..,n−1, r1 := P(1,1) = 1−p1,

qx := P(x , x−1) = 1−px , x = 2, ..,n−1, qn =
e−β[H(n−1)−H(n)]

1 + eδβ
, rn = 1−qn

t/exp (!")

X t

n

1

For large β (similarly large n [Barrera,Bertoncini,Fernandez]): after
many unsuccessful attempts there is a fast transition to n.



Metastability is characterized by:

I Exit from a well (valley) of H with a motion against the drift:
large deviation regime.

I Many visits to the metastable state (bottom of the well, point 1 in
the ex.) before the transition to the stable one (n), large tunneling
time with exponential distribution if properly rescaled.

I The existence of critical configurations separating the
metastable state from the stable one, (n − 1 ), first hitting to rare
events.



Our goal

Metastability / first hitting to rare events is usually studied in the
literature for reversible Markov chain.

Our goal: prove asymptotic exponential behavior in a non reversible
context, when |X | → ∞.

Example:
deck of n cards, |X | = n!
Markov chain: top-in-at-random shuffling
invariant maesure = uniform distribution
first hitting to a particular configuration G.

I non reversible case
I entropic barrier



People:
The “first hitting” community:
[K] Keilson (1979) (FM)
[AB], [B] Aldous, Brown (1982-92)...

Day (1983), Galves, Schmitt (1990),
[IMcD] Iscoe, McDonald (1994),

Asselah, Dai Pra (1997), Abadi, Galves (2001)...
[FL] Fill, Lyzinski (2012)
...

The “metastable” community:
[LP] Lebowitz, Penrose (1966) (FM)
[FW] Freidlin, Wentzell (1984) (FM)
[CGOV] Cassandro, Galves, Olivieri, Vares (1984)
[it] Martinelli, Olivieri, S. (1989)...
[fr] Catoni, Cerf (1995)...
[B.et al] Bovier, Eckhoff, Gayrard, Klein (2001)...
[BL] Bertrand, Landim (2011/12)
[BG] Bianchi, Gaudillière (2012)
...

(FM) = founding member



-2- Known results and tools: first hitting community

The model: Xt ; t ≥ 0 irreducible, finite-state, reversible Markov chain
in continuous time, with transition rate matrix Q and stationary
distribution π, so that πQ = 0 and

DBC : πiQij = πjQji

P = 1 + Q

0 = λ0 < λ1 ≤ λ2 ≤ ... real eigenvalues of the matrix −Q,
R = 1/λ1: relaxation time of the chain.
If the set A is such that R/EπτA is small then is possible [AB] to obtain
estimate like :

|Pπ(τA/EπτA > t)− e−t | ≤ R/EπτA

1 + R/EπτA
∀t > 0 (1)

Pπ(τA > t) ≥ (1− R
EατA

) exp{− t
EατA

} (2)

Moreover in the regime R � t � EπτA bounds on the density
function are given [AB] in order to obtain a control on the distribution
of τA also on scale smaller than EπτA.



Results by metastability community

(X (n), n ≥ 1) sequence of finite state spaces, with |X (n)| = n(
X (n)

t

)
t∈R sequence of continuous time, irreducible, reversible Markov

chains on X (n)

Q(n) transition rate matrix generating the chain X (n)
t

(π(n), n ≥ 1) invariant measures
asymptotics n→∞.
starting at x ∈ X (n), and the hitting time to a set G(n) ⊂ X (n):

τ
(n),x
G(n) = inf

{
t ≥ 0 : X (n),x

t ∈ G(n)
}

(3)

x (n)
0 ∈ X (n) = metastable state

G(n) ⊂ X (n) = critical configurations (or stable state)

τ
x (n)

0
G(n)

Eτ
x (n)

0
G(n)

−→(d)
n→∞ Y ∼ Exp(1)



Hypotheses for metastability
i) pathwise approach: ([CGOV], [it], [fr])

recurrence to x (n)
0 in a time Rn � Eτ

(n),x (n)
0

G(n) with large probability.
ii) potential theoretical approach: ([B. et al], [BL])

Hp.A : lim
n→∞

nρA(n) = 0 (4)

Hp.B : lim
n→∞

ρB(n) = 0 (5)

ρA(n) := sup
z∈X (n)\{x (n)

0 ,G(n)}

P

(
τ̃

(n),x (n)
0

G(n) < τ̃
(n),x (n)

0

x (n)
0

)
P

(
τ̃

(n),z
{x (n)

0 ,G(n)}
< τ̃

(n),z
z

)

ρB(n) := sup
z∈X (n)\{x (n)

0 ,G(n)}

Eτ
(n),z
{x (n)

0 ,G(n)}

Eτ
(n),x (n)

0
G(n)

.

τ̃
(n),x
A := min

{
t > 0 : X (n),x

t ∈ A
}



Some tools (fh)
- collapsed chain technique: hitting to a single state A ≡ j

([K], [AB])
- For reversible chains for each j , by using spectral representation

and Laplace transform, τπj is a geometric convolution of suitable
i.i.d.r.v. Wi :

τπj =
N∑

i=1

Wi (6)

with N a geometric random variable of parameter πj ,
approximately exponential in the sup norm [B] when π(j) is small.

- [FL] generalize (6) to non reversible chains under additional
hypotheses.

- τπj is completely monotone [K]:

Pπ(τj > t) =
m∑

I=1

pi exp{−γi t} (7)

with pi ≥ 0 and 0 < γ1 < γ2 < ... < γm the distinct eigenvalues of
−Qj . Complete monotonicity is a powerful tool and exponential
behavior follows from it [AB].



- interlacing between eigenvalues of −Qj and −Q

0 = λ0 < γ1 ≤ λ1 ≤ γ2 ≤ λ2 ≤ ...

Canceling out common pairs of eigenvalues from the two spectra
and renumbering them we obtain

0 = λ0 < γ1 < λ1 < γ2 < λ2 < ... < γm < λm

again by Laplace transform [B]

τπj ∼
m∑

i−1

Yi

with

P(Yi > t) =
(

1− γi

λi

)
e−γi t , t > 0, i = 1, ...,m

Moreover(
1− γ1

λ1

)
e−γ1t ≤ Pπ(τj > t) ≤ (1− π(j))e−γ1t .

- [IMcD] exponential behavior in the non reversible case under
additional implicit hypotheses (related to auxiliary processes
involved in the proof) by studying the smallest real eigenvalue of
a suitable Dirichlet problem.



Some tools (m)

i) Different strategies in different regimes.
Freidlin Wentzell techniques, cycle decomposition, cycle paths...
In FW theory reversibility is not required, cycles and cycle path
are easily defined in the reversible case.

ii) Spectral characteristic of the generator, tools from potential
theory, variational principles,...

c(i , j) =
1

r(i , j)
= πiPij

r(i , j) = r(j , i) ⇐⇒ DBC

Extension to non reversible chains by Eckhoff (not published)
(??)
[BL] non reversible case under additional implicit hypotheses,
which are not easy to verify in the non reversible case.



-3-The non reversible case [FMNS1]
(X (n), n ≥ 1) sequence of finite state spaces, with |X (n)| = n(
X (n)

t

)
t∈R continuous time, irreducible Markov chains on X (n)

x (n)
0 = metastable state, G(n) = critical configurations (or stable state)

in the following sense:
Hp.G(Tn):
there exist sequences rn → 0 and Rn � Tn such that

sup
x∈X

P

(
τ

(n),x
{x (n)

0 ,G(n)}
> Rn

)
≤ rn .

asymptotic results: the following are equivalent

τ
x (n)

0
G(n)

Tn
−→(d)

n→∞ Y ∼ Exp(1)

∃ ` ≥ 1, ξ < 1 : P
(
τ

(n),x (n)
0

G(n) > `Tn

)
≤ ξ uniformly in n

quantitative results:

|Px (τG/Ex0τG > t)− e−t | ≤ f (
R

Ex0τG
, r)



Comparison of hypotheses

[FMNS]

T LT
n =

mean local time spent in x (n)
0 before reaching G(n) starting from x (n)

0

T Qξ

n := inf
{

t : P

(
τ

(n),x (n)
0

G(n) > t
)
≤ ξ
}

T E
n = E

(
τ

(n),x (n)
0

G(n)

)
The following implications hold:

Hp.A =⇒ Hp.G(T LT
n ) =⇒ Hp.G(T E

n ) ⇐⇒ Hp.(T Qξ

n ) ⇐⇒ Hp.B

for any ξ < 1. Furthermore, the missing implications are false.



-4-Recurrence as a robust tool

a) Factorization property:

If S > R with
sup
x∈X

P

(
τ x
{x0,G} > R

)
≤ r .

then for any t , s > R
S

P

(
τ x0

G > (t + s)S
) ≥ [

P

(
τ x0

G > tS + R
)
− r
]
P

(
τ x0

G > sS
)

≤
[
P

(
τ x0

G > tS − R
)

+ r
]
P

(
τ x0

G > sS
)
.

τ(tS) = inf{T > tS; XT ∈ {x0,G}}

P(τ(tS)− tS > R) ≤ r



b) Control on P(τ x0
G ≤ tS ± R)

Let S > R with
sup
x∈X

P

(
τ x
{x0,G} > R

)
≤ r .

then

P(τ x0
G ≤ S) ≤ P(τ x0

G ≤ S + R) ≤ P(τ x0
G ≤ S) [1 + a] (8)

P(τ x0
G ≤ S) ≥ P(τ x0

G ≤ S − R) ≥ P(τ x0
G ≤ S) [1− a] (9)

with

a =
P(τ x0

G ≤ 2R)

P(τ x0
G ≤ S)

+
r

P(τ x0
G ≤ S)

. (10)

This result is useful when P(τ x0
G ≤ 2R) and r are small w.r.t.

P(τ x0
G ≤ S). In this case we can conclude that a is small and so

we get a multiplicative error estimate.



c) Exponentian behavior

By iterating a) and b) we get the exponential law on a suitable
time scale in the interval (R,Eτ x0

G ).
Let T := Eτ x0

G and ε := R
T

b = P(τ x0
G ≤ 2R) + 2r . (11)

If ε+ r < 1
4 and S < T

(
1− 4(ε+ r)

)
. Then P(τ x0

G > S) > b and
for each positive integer k

P(τ x0
G > kS)

≤
[
P(τ x0

G > S) + b
]k

≥
[
P(τ x0

G > S)− b
]k

d) Generic starting point

By recurrence to {x0,G} we have for all x ∈ B(x0)

τ x
G ∼ τ

x0
G



Improvement of recurrence

These result are relevant only if r is small. It is possible to decrease
exponentially r by increasing linearly ε := R

T with T = Eτ x0
G .

Let R be such that

sup
x∈X

P

(
τ x
{x0,G} > R

)
≤ r .

and suppose ε = R
T small.

We can chose another return time R+ ∈ (R,T ) with Γ := R+

R < 1
ε .

Define ε+ := R+

T = εΓ < 1. The recurrerce property in time R+ is
immediately estimate by the following

sup
x∈X

P(τ x
{x0,G} > R+) ≤ r

R+

R = rΓ =: r+ (12)

This meas that with this new recurrence time R+ we have ε+ = εΓ
and r+ = rΓ.
From this we get a control on exponential behavior on small time
scales



Time scale for exponential behavior

With this improvement of recurrence, if

lim
n→∞

(rn)
R+

n
Rn

pn
= 0 .

with
pn := P

(
τ

(n),x (n)
0

G(n) < 3R+
n

)
→ 0

and if Sn is such that R+
n < Sn ≤ Tn, then

τ
(n),x (n)

0
G(n) has asymptotic exponential behaviour at scale Sn i.e., for

every integer k

lim
n→∞

P
(
τ

(n),x (n)
0

G(n) ∈ (kSn, (k + 1)Sn]
)

P(τ
(n),x (n)

0
G(n) > Sn)k P(τ

(n),x (n)
0

G(n) ≤ Sn)
= 1



Recurrence on a set instead of on a single state x0

[FMNS2]

Work in progress.

Back to the example: deck of n cards, top-in-at-random. First hitting
to a particular configuration G.

I mixing time of order Tmix = n log n =⇒ recurrence with large
probability to a suitable set B of configurations such that:

I B is “large” : π(B) > 1− on(1);
I τ x

G is controlled uniformely in B:

sup
x∈B

P(τ x
G < Tmix) ≤ fn → 0.

I recurrence in B =⇒ asymptotic exponential behavior.


