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Cylindrical Q-Wiener process
H, separable Hilbert space (H = Lp(D), D C RY),
Q € L(H) self-adjoint and positive semi-definite covariance operator,
Uy = Q%(H), Hilbert space with (u, v)g = (Q_%u, Q_%V>H, u,v e Uy,
An operator I: Ly([0, T], Ug) — L2(R) is said to be an isonormal process
on a probability space (Q, F,P), if

> 1(¢) ~ N(O, 9l a0, 71, t0)), V9 € La([0, T], o),
> E[[()I(1)] = (&, V) o0, 71, t0), V0,9 € La([0, T, Uo).

W: [0, T] x Up — La(2) cylindrical Q-Wiener process:

(oo}

W(t)u = I(xj,q ® u) = Z(lh ui)oBi(t),

i=1

where (u;)ien C Up is an ON-basis and (8;);en are independent standard
Brownian motions.
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The H-valued Wiener integral

Wiener integral for simple integrands:

T

| xsa@honaw = (o~ wW(s)dohe L@)e H = L. H)
0

Extends directly to linear combinations.

Wiener's isometry:
T 5 T
€] [ oaw|) = [ lolgar
0 H 0 :

By density the integral extends to all of L»([0, T], £3). For stochastic
equations driven by additive noise this definition of the integral suffices.
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Let C;°(R") denote the space of all C*°-functions over R” with
polynomial growth. Define

S={X="1f(l(¢1),..-,1(¢n)): f € C°(R"),
¢1,.-.,0n € L2([0, T], Up), n > 1}

S(H):{F:zn:XkQ@hk:Xl,...,X,,eS, hi,... hy € H, nzl}.
k=1

We define the Malliavin derivative of F € S(H) as the process

DF =3 S 0l1(1). ... 1(60) ® (b 65(1))

k=1 i=1

and let, for v € U,

DYF = DeFv =" " 0ifi(I(¢1), .-, 1(#n)) @ (¢i(t), v)o @ hi

k=1 i=1
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Malliavin calculus: integration by parts
For all F € S(H) and ¢ € Ly([0, T], £3),

.
(DF,®) (0. 71x0.c9) = <F7/0 ¢(t)dW(t)>L2(Q7H)-

Let DY'P(H) be the closure of S(H) with respect to the norm

IFlosscn = (EUIFIE] + E[/OT ID:F IR ae])”

Let (6, D(6)) be the adjoint of D: Ly(Q, H) — Lx([0, T] x Q, £I).

(DF, ®) 1,10, 1x02,c9) = (F.0®) g -

D(0) C Ly([0, T] x 2, L£3) is large and contains in particular aII
predictable £9-valued processes. In this case J(® fo

W(t).

6
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The stochastic equation

There exist for every p > 2 a unique solution X € C([0, T], L,(£2, H))
satisfying the integral equation

X(t) = S(t)Xo + /tS(t —s)F(X(s))ds
0
+/t5(t—s)dW(s), telo, T].
0

Spatial regularity [Kruse, Larsson]:
X(t) € D(A?), as. forall t € (0, T].

Regularity in the Malliavin sense [Fuhrman, Tessitore]:

X(t) € DYP(H) for almost all t € [0, T] and p < ﬁ



Approximation by the finite element method

A discretized equation:

dXp(t) + [AnXn(t) — PrF(Xu(t))] dt = P, dW (1), t e (0, T]
Xp(0) = PpXo.

Finite element spaces (Vi)he(o,1) of continuous piecewise linear functions
corresponding to a quasi-uniform family of triangulations of D.

Ap is the discrete Laplacian satisfying
<Ahw’X>H = <V1/)7VX>H7 V¢7X S Vh-

Prn: H — V), orthogonal projection w.r.t. (-, )y.
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Mild solution of spatially discretized equation

Let (Sh(t))e>0 be the analytic semigroup generated by —Ap,.

For every h € (0, 1] 3! solution X, € C([0, T], L2(€, Sp)) to the mild
equation

Xh(t) = Sh(t)PhXO + /Ot Sh(t — S)PhF(Xh(S))dS
+ /tSh(t — )Py dW(s), te(0,T]
0
Error estimate for Ep(t) = S(t) — Sp(t)Ph:

IEA(E)AR o < Ce 5 h, 0<0<2,0<p<1, o+0<2.

Strong convergence:

IX(T) = Xa(T)lle,@.m) < CHP7°, neN.
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Weak convergence: Results

Theorem
For every v € [0, B) the following weak convergence holds:

[E[(X(T) = o(Xa(T))]| < CH*7, he(0,1).

under either of the following assumptions:

» Additive noise, 3 € [0,1] and ¢ € C3(H,R) (FEM) [A., Larsson,
2012], on ArXiv.
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Kruse, Larsson, 2013], soon on Arxiv.

> Linear multiplicative noise, 3 € [0,3) and ¢ € C3(H,R) (FEM) [A.,
Larsson, 2012], on ArXiv.

» Linear multiplicative noise, B =1 and ¢ € C3(H,R) (Spectral) [A.,
Jentzen, Larsson, Schwab, 2014], writing in progress.

» Linear multiplicative noise, 3 =1 and ¢ = || - ||> (FEM + Spectral)
[A., Kruse, Larsson], theoretical development i progress.

Open question: Is the rate of weak convergence the same for all
G € C3(H, L3)?
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Weak convergence: Techniques of proof

We know of three methods to prove weak convergence:

» By a use of 1td's formula and the Kolmogorov equation.
» By duality and backward stochastic evolution equations.

» By strong error estimates in a dual Watanabe-Sobolev norm.

Here | present the third method!



Proof: Important spaces

Let p > 2. We define the space
MBP(H) = DYP(H) N Lyp(Q, H),
with norm

[ XImrecry = max([| X[overys (1 X Lop(@.H))-
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Proof: Important spaces

Let p > 2. We define the space
MBP(H) = DYP(H) N Lyp(Q, H),

with norm

1 X[ mroHy = max([| X [loveays 1X |, 0,H))-

The dual space MYP(H)* is equipped with the norm

||X||M1~P(H)* = SUP<T7X>L2(Q,H)7
TeB

where B denote the unit ball in M*P(H).

13 /22
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Proof: Bound of the weak error
Linearization: By a first order Taylor expansion

E[o(X(T)) — o(X(T))] = EG/(X(T)). Xa(T) — X(T))
+ / (1— )" (X(T) + MXa(T) = X(T))) - (X(T) = Xo(T)) do

For p < = /3 = [l¢"(X(T))lImro(hy < 00

Therefore
[E[e(X(T) = o(Xa(T))]| < RIE(RT(X(T)), Xa(T) = X(T))|
+ [l" (X( ))||L2§Z£[2]HR))HX( T) = Xo MLya.m)
SRgtéPBEW’Xn(T) )|+ CIX(T) = Xal DT, 01)-

Thus,

[E[@(X(T)) — @(Xa(T))]
S IXa(T) = X(T)lImuoqrys + 1IX(T) = Xa(TIIZ, (.1)-



Proof: Key Lemma

Lemma
Let p,p’ € (1,00) satisfy - + 2 = 1.

(i) For random variables Z: Q0 — H, we have

1 ZlImeectys < 121l La(0,H)-

(ii) Iffor ®: [0, T] x Q = L the map T +— ®(t)*T is bounded in
MYP(H) uniformly in t, then under mild assumptions on v

| /OTq)(t"b(t))dJ(t)dt‘

MLA(H)* —

(i) If & € Ly([0, T] x Q, L3) is predictable, then

MLo(H)* < ClI®lL,, 0, 1. £9)-

H /OTdJ(t)dW(t)’

)
<R / 1008 ooy L.
0

15 /22



Proof: Strong convergence in the M?(H)*-norm

After a first order Taylor expansion the difference satisfy the equation:
X(T) = Xn(T)
T
= Ex(t)Xo +/ En(T —s)F(X(t))dt

/sh — )PLF (X (D) (X(E) — Xn(2))) dt

+/ Sh(T—tP/.,
0

1
X / (1= ) F"(X(t) + o(Xn(t) = X (1)) - (X(t) = Xn(£))* dedt

0

T
+/O Ep(T —t)dW(t).



Proof: Strong convergence in the M?(H)*-norm
By the Key Lemma (i) and (iii)

[ X(T) = Xn(T)lImre(hy

!
< || En(t)Xol +/ [EW(T = $)F(X(0)] 0.1 At

*H/ Sh(T — £)PaF'(X())(X(t) = Xn(t)) dt

/HX — X (OB
/||Eh )% de)”

dt

1"’(H)*



Proof: Strong convergence in the M?(H)*-norm
By the Key Lemma (i) and (iii)

[ X(T) = Xn(T)lImre(hy

< ||Eh(t)X0H+/O [EW(T = $)F(X()] 0.1

+| /OT SH(T = )PAF (X(D)(X(£) = Xa()) |

o
4 / 1X(t) = Xa(O). )

T / L/
_ )P B
([ 1T = oy ac)

To apply Key Lemma (ii) we need to check that

T F'(X(£))*Sa(T — t)P,yT, bounded in M"P(H).

MZ.p(H)*
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Proof: Strong convergence in the M?(H)*-norm
Clearly (F/(X(t)))"Sa(T — t)T € Lop(, H).
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Proof: Strong convergence in the M?(H)*-norm
Clearly (F/(X(t)))"Sa(T — t)T € Lop(, H).

Remains to prove

[(FOXCED) ST = T [y S I1(FX@))"SHT = )T,

+/0 | (F/(X(£)))"Sh(T — t)D ’Y‘HL(Q £o) ds

/ E|( X I (Fexenoex(e)’ sh(T—t)THz)%}ds

keN

< 1F By g (1712 g + /0 105712 5,19 )

T I
P | E(X I02X(01) P ds

kEN
S IPUBo ey + ITIZ, 2.0 Sup IX()[Br.20(14) < 0.

(QH)



Proof: Strong convergence in the M?(H)*-norm
Using Key Lemma (ii) we get

[X(T) = Xo(T)lImrecry- < [[En(t)Xoll

;
+/0 HE,,(TfS)F(X(t))HLZ(Q,H)dt
T 1

)
[ 1XO = Xl g e+ ([ 1ET =z ae)”

.
4 [ 1) = X0 - .
0

If we fix v € [0,3) and let p =2/(1 — ), then one can show that

IX(T) = X(T) Imroay- < (£77 +1)0*

)
4 [ IX) = X0 - .
0
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Proof: Strong convergence in the M?(H)*-norm
Using Key Lemma (ii) we get

[X(T) = Xo(T)lImrecry- < [[En(t)Xoll

;
+/0 HE,,(TfS)F(X(t))HLZ(Q,H)dt
T 1

)
[ 1XO = Xl g e+ ([ 1ET =z ae)”

.
4 [ 1) = X0 - .
0

If we fix v € [0,3) and let p =2/(1 — ), then one can show that

IXT) = XDl < (677 + )4
)
4 [ IX) = X0 - .
0

Gronwall’s Lemma applies and we are done!
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Path dependent test functions
Let u be a Borel measure on [0, T] satisfying

-
/ t77du(t) < oo, Vy€[0,p).
0
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Path dependent test functions
Let u be a Borel measure on [0, T] satisfying

-
/ t77du(t) < oo, Vy€[0,p).
0

Then, for ¢ € C3(H,R) we compute

}E[ /T - /Tx,, t) dpu(t)

/ X(s)dp(s / X(t) — Xn(t) dp( t) +remainder

s/ (o (/O X(s) du(s )),xm— Xi(t )>‘du()+h2”

5/T sup E(T, X(t) — Xn(t)) du(t) + h*
0

TeB

-
< h / £ du(t) + h* < h.
0
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(joint work with Kovacs and Larsson)
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» More general multiplicative noise.

» Boundary control for SPDEs.



Future work:

v

Stochastic semilinear Volterra equation (non-Markovian),
(joint work with Kovacs and Larsson)

v

More general multiplicative noise.
Boundary control for SPDEs.

v

v

Non-Gaussian noise.
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Thank you for your attention!
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