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Methods used for high dimensional data assimilation
problems (for example in weather forecasting)

Widely applied, but not that well studied
in the nonlinear, stochastic & infinite dimensional setting.

Basic Idea of Filtering

m estimate time-evolution of a trajectory based on
partial observation & knowledge of the model

m use model to predict next step
m use data to correct prediction

Problem:
only partial and noisy observations/data
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As starting point simple 3DVAR-filter
(in this talk: not many details about filter)

Example for the underlying dynamical system:
deterministic 2D-Navier-Stokes equation

Limit of high frequency noisy observations yields
stochastic PDE (continuous time filters/noisy observer)

Study Accuracy & Stability = Stochastic Dyn. Syst.
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Introduction
Trajectories from observer converge towards each other \

= It does not matter where to initiate the filter

Trajectories from observer get close to the true trajectory
(on the order of observational noise)

= Filter gives the true answer
(recover unknown solution from partial noisy observations)
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Navier-Stokes

Let u : R — H be any bounded solution of

Numerics

Ou = —0Au+ B(u,u) + f
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For simplicity:
In this talk only an ODE instead of 2D Navier Stokes.
Thus H = R", n > 1 very large.

Let u : R — H be any bounded solution of

Ou = —0Au+ B(u,u) + f

m A diagonal operator, A > 1, 0 >0,
m B:H xH — H — symmetric bilinear map

m f deterministic forcing (could be time dependent)
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For simplicity:
In this talk only an ODE instead of 2D Navier Stokes.
Introduction
S Thus H = R”, n > 1 very large.
Navier-Stokes
Let u : R — H be any bounded solution of
Numerics
Ou = —0Au+ B(u,u) + f
Forward
Pull-back m A diagonal operator, A > 1, 0 >0,

m B:H xH — H — symmetric bilinear map

m f deterministic forcing (could be time dependent)
Outlook

trajectory u is the unknown we want to observe
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For 2D-Navier-Stokes see [Temam 95, 97], [Robinson 01].
Navier- Stokes

Suppose (B(u,u),u) <0 and f is bounded.

Then for all initial conditions u(0) there exists a global
solution in C*([0,00), H).

Furthermore there is a global attractor in Br(0) C H
containing all bounded solutions.
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R m P — projection
m m; — estimation
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Consider

m Sj, — one step in the model (of time i > 0)

uj = u(jh) = Sp(uj—1) — unknown true trajectory
y; = Pu; + N(0,T') — observation (noisy & partial)

P — projection

m; — estimation
Prediction: mji1 = Sp(m;)

wjlys -y ~ N, ©)

Assume Gaussianity: Wiraly1 ...y ~ N(mjy1,O)
j <Yy 7 )

Kalman mean update (Bayes’ rule + some work)

Mjr1 =mjr1 + CP(T + PCP)~!(yj41 — Pmyy1)
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Limit (h | 0) of high frequency noisy observations for
3DVAR yields for sufficiently large observational noise a
stochastic equation (noisy observer/continuous time filter)

The discrete time filter can be written as
an Euler-Maruyama discretization of the observer

The formal limit is true in a much more general setting
and for several filter (no rigorous result yet)

Discrete time case for 2D-Navier Stokes: [Law, Stuart, et. al. 11]
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i = —6 A+ B(i, ) + f+wA 2 Py[u — i + 0 AP, W] |

m P\ — proj. onto the observed low modes
(for 2D Navier-Stokes approximately A\? many)

m Assume: [' = %J2A*25P)\ covariance of the (given)
observational noise (think of § =0)
m C = wo? A28 how to weight data or the model

m W — standard cylindrical Wiener process
(space-time white noise)

A and w are free parameters of the filter (also C' and «)
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Stochastic Dynamical System: (not all details)

S(t, s, W)ry solution of observer
m at time ¢ > 0

m given path {W(t)}+>s
noisy observer

m given initial condition m(s) = Mg

Flow Property: S(t,r,W)S(r,s, W) = S(t,s,W)

\,

Theorem: (by standard methods, details later)

The noisy observer generates a SDS in H.

Remark: No Random Dynamical System is generated as
the observer is non-autonomous due to u and possibly f.
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Oy = —6 A+ B(m, m) + f + wA 2 Py\[u — 4+ o A~ PO, W] J

Introduction

Set-Up

A large a=1/2
Parameter: B=0
umerics = 1
" w =100 o = 0.005

Forward Splt Step method

Pseudospectral method for Navier Stokes equation,
using higher order method in time

Pull-back

Euler-Maruyama discretization for the OU-process

Outlook (linear equation with noise)
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Relative error of an ensemble of trajectories.
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Only in mean square — no almost sure results expected

Elu(t)

— () =

O(noise-strength?)

for t — oo
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Only in mean square — no almost sure results expected

E|u(t) — 1(t)|* = O(noise-strength?) for t — oo

Conjectures:

liminf P(rh(t) € B) > 0

t—o00

and
P(3t>0:m(t) € B) =1

for all open B C H

Well known for stochastic Navier-Stokes [Hairer, Mattingly 06].
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Assumption on 7:

v|h? < 20| A=*Pyh|?> + 6|AY2R]? Y h.

Theorem [BLSZ12]
Suppose ¥ = KR6~! + g for some v > 0,

where K is a constant defined by B and the bound on w.
Then

accuracy

Elriu(t)—u(t)|* < e i (0)—u(0)|*+w?o? L tr (AT By).

v,

Consequence: lim sup;_, o E|f(t) — u(t)]? = O(c?).
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Assumption on :

v|h? < 20| A=*Pyh|?> + 6|AY2R]? Y h.

Theorem [BLSZ12]
Suppose ¥ = KR6~! + g for some v > 0,

where K is a constant defined by B and the bound on w.
Then

accuracy

Elriu(t)—u(t)|* < e i (0)—u(0)|*+w?o? L tr (AT By).

v,

Consequence: lim sup;_, o E|f(t) — u(t)]? = O(c?).

Proof based on Ito-formula — SPDE for the error e = v —m
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Assume R’ = sup,cg |f +wA 2 *Pyul3,_; < o0

and define R = JKQR’ + %w202tr(¢4_4°‘_2513>\) < 00

Theorem [BLSZ12]

m; trajectories of observer; initial condition m(0) = 1m;(0).

Suppose v = R” + v for some vy > 0.

stability

Then for all n € (0, o)

[ (t) — 1ha(t)|e” — 0 in probability as t — oo.

Key: P(; fo |l7(s)||?ds < R") — 1 for t — oo .
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sending initial time to —oo

almost sure and pathwise results
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Define for ® > 0 and W = wo A~ 208 p, W

0
Zo(W) = / eS(BAT) ()

The stationary OU-process

t
Zt) = Ze(0: W) :/ e(t—s)(—5A+¢>)dW(8)

—00

transformation

with measure preserving ergodic shift
IW =W (t+-)—W(t)
solving dZ = (-0 A+ ®)Z dt + dWV
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Define v(t) = S(t, s, W)y — Z(t), which solves

v = —0Av+B(v,v)+ f
+2B(v,Z) + B(Z, Z) + wA™**(u —v — Z) — ¢Z

|

Existence & Uniqueness of solutions is standard using
pathwise PDE-results (needed for generation of SDS)

Bounds on v using
standard energy type methods & Gronwalls inequality



°
Birkhoft’s ergodic theorem lN k e

University

3DVAR for
2D-NS
Introduction For bounds on v we need bounds on integrals over
Set-Up Z(t) = Zg(9:W) inside exponentials.
Numerics
Forward 1 t
7 / ||Z<I>(T9TW)H2dT — EHZ<1>||2 as s — —oo0
— S
Pull-back S

Birkhoff

where E||Zg||? — 0 for ® — oo

Outlook
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Assume K6 Y (17E||Z4||? + 16R) < v . (not optimal
¢

Theorem (Pull-Back Accuracy) [BLSZ12]

There is a random radius (W) > 0 such that for all 1y

limsup |S(¢, s, W)rng — u(t) — Zy(9W)|* < r(9;W) .

S——00

with an almost surely finite constant
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Assume K0~ H(17E| Z4||> + 16R) < v . (not optimal)

Theorem (Pull-Back Accuracy) [BLSZ12]

There is a random radius (W) > 0 such that for all 1y

limsup |S(¢, s, W)rng — u(t) — Zy(9W)|* < r(9;W) .

S—>—00
with an almost surely finite constant (due to Birkhoff)
4 [° ¢ -1 2 2
r(W) = 5 exp( (16K6(|IZ|I* + R) — 'y)d77>7' dr ,

where T := K||Z||(| Z|| + 2RY?) + ¢|Z| + w| A~ P, Z|.

Idea of Proof: Bounds on v — u using the PDEs.
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As r(W) = O(||Z]?) = O(0?):

S(t,s, W)mg —u(t) = v(t) —u(t) + Zy(W)
= O(|Z|]*) + Zy(9: W)

= 0O(o)

Thus we verified accuracy for the observer.
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For stability we assume:
~ > 0 is sufficiently large that for some n > 0
1 g 1) 2 v —2n
li — S(r,s, W)n dr < ——96..
msup s — | 1S(7, s, Wng " [|°dr < — =
Not proved. Should be possible, by varying ® = ®&(W)
[Stannat, Es-Sahir 11], [Flandoli, Gatarek 95]
Also method in [Chueshov, Duan, Schmalfuss 03] might work.
stabilty Technical Problem:

(W) does not satisfy Birkhoff-theorem (Er = oo)
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Theorem (Pull-Back Accuracy) [BLSZ12]
Assume one initial condition fn(()l) € H satisfies
Birkhoff-bounds.
Let m, (2) € H be any other initial condition.
Then
lim |S(t, s, W) — S(t, s, W)mP| - ent=) = .
S——00

stability
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Theorem (Pull-Back Accuracy) [BLSZ12]
Assume one initial condition fn(()l) € H satisfies
Birkhoff-bounds.
Let m, (2) € H be any other initial condition.
Then
lim |S(t, s, W) — S(t, s, W)mP| - ent=) = .
S——00
stabiliy Idea of proof: random PDE for e = (! — (2

energy type estimates — Gronwall’s Lemma — Birkhoff
bounds for integrals on Z and m™) in the exponential....



3DVAR for
2D-NS

Introduction

Set-Up

Numerics

Forward

Pull-back

Outlook
other filter

°
Generalized Observer 1 lN k it

University

Other filter lead in the limit of high frequency observations
to

Oy = —8Ain + B(in, ) + CPT P (u — i) + CPT 29,W
oC = LC +CL*—CPI'PC

m I operator determined by observational noise
m linear operators L determined as part of the filter
m P projects onto the observed modes

m C is a covariance operator (symmetric, trace-class)
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University

Other filter lead in the limit of high frequency observations
to

Oy = —8Ain + B(in, ) + CPT P (u — i) + CPT 29,W
oC = LC +CL*—CPI'PC

m I operator determined by observational noise

m linear operators L determined as part of the filter

m P projects onto the observed modes

m (' is a covariance operator (symmetric, trace-class)
Observation: If the Ricatti-type equation has an

attracting stable steady state for C, then this algorithm
simply converges to 3DVAR algorithm.
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O = —8 A + B(in, ) + CPT P (u — 1) + CPT ™29, W
C = LC +CL*—CPI'PC

Problem:
For filters like the extended Kalman Filter we have
L=-0A+2B(m,-)

and thus coupled equations.
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Proof of the high frequency limit?

Convergence of the Euler-Maruyama scheme!?

General solutions u, non-autonomous f?

We only needs boundedness of u for t — oo (or s — —00)
Other types of equations/models?

Proofs use only local and one-sided Lipschitz conditions.
Birkhoff bounds 777

stability & accuracy for generalized observer 777
only partial ideas — work in progress
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m Study Filter in the high frequency limit

m Stability & Accuracy via continuous time
filter /observer

m 2D Navier-Stokes & 3DVAR as first example
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Summary l.N k Emversx::t
niversl

m Study Filter in the high frequency limit

m Stability & Accuracy via continuous time
filter /observer

m 2D Navier-Stokes & 3DVAR as first example

Thank you very much for you attention!
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