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Filtering

Methods used for high dimensional data assimilation
problems (for example in weather forecasting)

Widely applied, but not that well studied
in the nonlinear, stochastic & infinite dimensional setting.

Basic Idea of Filtering

estimate time-evolution of a trajectory based on
partial observation & knowledge of the model

use model to predict next step

use data to correct prediction

Problem:
only partial and noisy observations/data
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Our Approach:

As starting point simple 3DVAR-filter
(in this talk: not many details about filter)

Example for the underlying dynamical system:

deterministic 2D-Navier-Stokes equation

Limit of high frequency noisy observations yields
stochastic PDE (continuous time filters/noisy observer)

Study Accuracy & Stability =⇒ Stochastic Dyn. Syst.
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Accuracy & Stability

Stability

Trajectories from observer converge towards each other

⇒ It does not matter where to initiate the filter

Accuracy

Trajectories from observer get close to the true trajectory
(on the order of observational noise)

⇒ Filter gives the true answer
(recover unknown solution from partial noisy observations)
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The Model

For simplicity:
In this talk only an ODE instead of 2D Navier Stokes.

Thus H = Rn, n� 1 very large.

Let u : R 7→ H be any bounded solution of

∂tu = −δAu+ B(u, u) + f

A diagonal operator, A ≥ 1, δ > 0,

B : H×H → H – symmetric bilinear map

f deterministic forcing (could be time dependent)

trajectory u is the unknown we want to observe
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Existence & Uniqueness
(well known)

For 2D-Navier-Stokes see [Temam 95, 97], [Robinson 01].

Theorem

Suppose 〈B(u, u), u〉 ≤ 0 and f is bounded.

Then for all initial conditions u(0) there exists a global
solution in C1([0,∞),H).

Furthermore there is a global attractor in BR(0) ⊂ H
containing all bounded solutions.
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Very brief description of 3DVAR
[Harvey 91, .... ]

Consider

Sh – one step in the model (of time h > 0)

uj = u(jh) = Sh(uj−1) – unknown true trajectory

yj = Puj +N (0,Γ) – observation (noisy & partial)

P – projection

m̂j – estimation

Prediction: mj+1 = Sh(m̂j)

Assume Gaussianity:
uj |y1 . . . yj ∼ N (m̂j , C)
uj+1|y1 . . . yj ∼ N (mj+1, C)

Kalman mean update (Bayes’ rule + some work)

m̂j+1 = mj+1 + CP (Γ + PCP )−1(yj+1 − Pmj+1)
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High Frequency
Observation Limit

Limit (h ↓ 0) of high frequency noisy observations for
3DVAR yields for sufficiently large observational noise a
stochastic equation (noisy observer/continuous time filter)

Key Point:

The discrete time filter can be written as
an Euler-Maruyama discretization of the observer

The formal limit is true in a much more general setting
and for several filter (no rigorous result yet)

Discrete time case for 2D-Navier Stokes: [Law, Stuart, et. al. 11]
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Noisy observer

∂tm̂ = −δAm̂+B(m̂, m̂) +f+ωA−2αPλ[u− m̂+ σA−β∂tW ]

Pλ – proj. onto the observed low modes
(for 2D Navier-Stokes approximately λ2 many)

Assume: Γ = 1
hσ

2A−2βPλ covariance of the (given)

observational noise (think of β = 0)

C = ωσ2A−2(α+β) how to weight data or the model

W – standard cylindrical Wiener process
(space-time white noise)

λ and ω are free parameters of the filter (also C and α)
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Generation of SDS

Stochastic Dynamical System: (not all details)

S(t, s,W )m̂0 solution of observer

at time t > 0

given path {W (t)}t≥s
given initial condition m̂(s) = m̂0

Flow Property: S(t, r,W )S(r, s,W ) = S(t, s,W )

Theorem: (by standard methods, details later)

The noisy observer generates a SDS in H.

Remark: No Random Dynamical System is generated as
the observer is non-autonomous due to u and possibly f .
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Numerical Results

∂tm̂ = −δAm̂+B(m̂, m̂) +f +ωA−2αPλ[u− m̂+σA−β∂tW ]

Parameter:
λ large

ω = 100

α = 1/2

β = 0

σ = 0.005

Spit step method

Pseudospectral method for Navier Stokes equation,
using higher order method in time

Euler-Maruyama discretization for the OU-process
(linear equation with noise)
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Attractivity of the observer
3 Fourier modes & relative error
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Stability of the observer
3 Fourier modes & relative error
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Stability of the observer
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Accuracy & Stability

Results forward in time
mean square & in probability
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Forward Accuracy

Only in mean square – no almost sure results expected

E|u(t)− m̂(t)|2 = O(noise-strength2) for t→∞

Conjectures:

lim inf
t→∞

P
(
m̂(t) ∈ B

)
> 0

and
P
(
∃ t > 0 : m̂(t) ∈ B

)
= 1

for all open B ⊂ H

Well known for stochastic Navier-Stokes [Hairer, Mattingly 06].



3DVAR for
2D-NS

Dirk Blömker

Introduction

Set-Up

Navier-Stokes

3DVAR

noisy observer

Numerics

attractivity

stability

Forward

accuracy

stability

Pull-back

transformation

Birkhoff

accuracy

stability

Outlook

other filter

todo

summary

Forward Accuracy

Only in mean square – no almost sure results expected

E|u(t)− m̂(t)|2 = O(noise-strength2) for t→∞

Conjectures:

lim inf
t→∞

P
(
m̂(t) ∈ B

)
> 0

and
P
(
∃ t > 0 : m̂(t) ∈ B

)
= 1

for all open B ⊂ H

Well known for stochastic Navier-Stokes [Hairer, Mattingly 06].



3DVAR for
2D-NS

Dirk Blömker

Introduction

Set-Up

Navier-Stokes

3DVAR

noisy observer

Numerics

attractivity

stability

Forward

accuracy

stability

Pull-back

transformation

Birkhoff

accuracy

stability

Outlook

other filter

todo

summary

Forward Accuracy

Assumption on γ:
γ|h|2 ≤ 2ω|A−αPλh|2 + δ|A1/2h|2 ∀ h.

Theorem [BLSZ12]

Suppose γ = KRδ−1 + γ0 for some γ0 > 0,

where K is a constant defined by B and the bound on u.

Then

E|m̂(t)−u(t)|2 ≤ e−γ0t|m̂(0)−u(0)|2+ω2σ2 1
γ0
·tr
(
A−4α−2βPλ

)
.

Consequence: lim supt→∞ E|m̂(t)− u(t)|2 = O(σ2).

Proof based on Itô-formula – SPDE for the error e = u− m̂
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Forward Stability

Assume R′ = supt∈R |f + ωA−2αPλu|2H−1 <∞

and define R′′ = K
δ2
R′ + K

δ ω
2σ2tr

(
A−4α−2βPλ

)
<∞

Theorem [BLSZ12]

m̂i trajectories of observer; initial condition m̂(0) = m̂i(0).

Suppose γ = R′′ + γ0 for some γ0 > 0.

Then for all η ∈ (0, γ0)

|m̂1(t)− m̂2(t)|eηt → 0 in probability as t→∞.

Key: P(1
t

∫ t
0 ‖m̂i(s)‖2ds ≤ R′′)→ 1 for t→∞ .
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Pull-Back Convergence

sending initial time to −∞

almost sure and pathwise results
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Transformation to a random PDE

Define for Φ > 0 and W = ωσA−2α−βPλW

ZΦ(W ) =

∫ 0

−∞
es(−δA+Φ)dW(s) .

The stationary OU-process

Z(t) = ZΦ(ϑtW ) =

∫ t

−∞
e(t−s)(−δA+Φ)dW(s)

with measure preserving ergodic shift

ϑtW = W (t+ ·)−W (t)

solving dZ = (−δA+ Φ)Z dt+ dW
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Transformation to a random PDE
e.g. [Crauel, Debussche, Flandoli, 97]

Define v(t) = S(t, s,W )m̂0 − Z(t), which solves

∂tv = −δAv + B(v, v) + f

+2B(v, Z) + B(Z,Z) + ωA−2α(u− v − Z)− φZ

Existence & Uniqueness of solutions is standard using
pathwise PDE-results (needed for generation of SDS)

Bounds on v using
standard energy type methods & Gronwalls inequality
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Birkhoff’s ergodic theorem

For bounds on v we need bounds on integrals over
Z(t) = ZΦ(ϑtW ) inside exponentials.

Theorem

1

t− s

∫ t

s
‖ZΦ(ϑτW )‖2dτ → E‖ZΦ‖2 as s→ −∞

where E‖ZΦ‖2 → 0 for Φ→∞
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Accuracy

Assume Kδ−1(17E‖Zφ‖2 + 16R) < γ . (not optimal)

Theorem (Pull-Back Accuracy) [BLSZ12]

There is a random radius r(W ) > 0 such that for all m̂0

lim sup
s→−∞

|S(t, s,W )m̂0 − u(t)− Zφ(ϑtW )|2 ≤ r(ϑtW ) .

with an almost surely finite constant

(due to Birkhoff)

r(W ) =
4

δ

∫ 0

−∞
exp
(∫ 0

τ

(
16Kδ−1(‖Z‖2 +R)− γ

)
dη
)
T 2dτ ,

where T := K‖Z‖(‖Z‖+ 2R1/2) + φ|Z|+ ω|A−2αPλZ|.

Idea of Proof: Bounds on v − u using the PDEs.
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Conclusion

As r(W ) ≈ O(‖Z‖2) ≈ O(σ2):

S(t, s,W )m̂0 − u(t) = v(t)− u(t) + Zφ(ϑtW )

= O(‖Z‖2) + Zφ(ϑtW )

= O(σ)

Thus we verified accuracy for the observer.
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Birkhoff bounds

For stability we assume:

γ > 0 is sufficiently large that for some η > 0

lim sup
s→−∞

1

t− s

∫ t

s
‖S(τ, s,W )m̂

(1)
0 ‖

2dτ <
γ − 2η

4K
δ .

Not proved. Should be possible, by varying Φ = Φ(W )
[Stannat, Es-Sahir 11], [Flandoli, Gatarek 95]

Also method in [Chueshov, Duan, Schmalfuss 03] might work.

Technical Problem:
r(W ) does not satisfy Birkhoff-theorem (Er =∞)
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Stability

Theorem (Pull-Back Accuracy) [BLSZ12]

Assume one initial condition m̂
(1)
0 ∈ H satisfies

Birkhoff-bounds.

Let m̂
(2)
0 ∈ H be any other initial condition.

Then

lim
s→−∞

|S(t, s,W )m̂
(1)
0 − S(t, s,W )m̂

(2)
0 | · e

η(t−s) = 0.

Idea of proof: random PDE for e = m̂(1) − m̂(2)

energy type estimates – Gronwall’s Lemma – Birkhoff
bounds for integrals on Z and m̂(1) in the exponential....
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Generalized Observer I

Other filter lead in the limit of high frequency observations
to

∂tm̂ = −δAm̂+ B(m̂, m̂) + CPΓ−1P (u− m̂) + CPΓ−
1
2∂tW

∂tC = LC + CL∗ − CPΓ−1PC

Γ operator determined by observational noise

linear operators L determined as part of the filter

P projects onto the observed modes

C is a covariance operator (symmetric, trace-class)

Observation: If the Ricatti-type equation has an
attracting stable steady state for C, then this algorithm
simply converges to 3DVAR algorithm.
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Generalized Observer II

∂tm̂ = −δAm̂+ B(m̂, m̂) + CPΓ−1P (u− m̂) + CPΓ−
1
2∂tW

∂tC = LC + CL∗ − CPΓ−1PC

Problem:
For filters like the extended Kalman Filter we have

L = −δA+ 2B(m̂, ·)

and thus coupled equations.
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Remarks

Proof of the high frequency limit?
Convergence of the Euler-Maruyama scheme!?

General solutions u, non-autonomous f?
We only needs boundedness of u for t→∞ (or s→ −∞)

Other types of equations/models?
Proofs use only local and one-sided Lipschitz conditions.

Birkhoff bounds ???

stability & accuracy for generalized observer ???
only partial ideas – work in progress
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Summary

Study Filter in the high frequency limit

Stability & Accuracy via continuous time
filter/observer

2D Navier-Stokes & 3DVAR as first example

Thank you very much for you attention!
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