Finite time extinction for stochastic sign fast diffusion and
self-organized criticality.

Benjamin Gess

Fakultat fir Mathematik
Universitdt Bielefeld

Sixth Workshop on Random Dynamical Systems,
Bielefeld, October 2013

preprint:[arXiv:1310.6971].

B. Gess (Universitat Bielefeld) Finite time extinction and SOC. 1/ 30



|
Outline

@ Self-organized criticality

© Derivation of the BTW model from a cellular automaton

© Finite time extinction and self-organized criticality

© Finite time extinction for stochastic BTW

B. Gess (Universitat Bielefeld) Finite time extinction and SOC. 2 /30



Self-organized criticality

Self-organized criticality

B. Gess (Universitat Bielefeld) Finite time extinction and SOC. 3 /30



Self-organized criticality

@ Many (complex) systems in nature exhibit power law scaling: The number of
an event N(s) scales with the event size s as

N(s)~s™®
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Self-organized criticality

@ Many (complex) systems in nature exhibit power law scaling: The number of
an event N(s) scales with the event size s as

N(s)~s™®

@ For example:
] earthquakes | 50 largest cities in the USA |
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Self-organized criticality

@ Phase-transitions: The Ising model, ferromagnetism
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Self-organized criticality

@ Phase-transitions: The Ising model, ferromagnetism
o Critical temperature T = T¢:

o strongly correlated: small perturbations can have global effects
e no specific length scale (complex system, criticality)
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Self-organized criticality

@ Phase-transitions: The Ising model, ferromagnetism
o Critical temperature T = T¢:

o strongly correlated: small perturbations can have global effects
e no specific length scale (complex system, criticality)

@ Observe: For T = T, power-law scaling for N(s) being the number of +1
clusters of size s.
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Self-organized criticality

@ Ising model needs precise tuning T = T, to display power law scaling
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Self-organized criticality

@ Ising model needs precise tuning T = T, to display power law scaling
@ How can this occur in nature?
o |dea of self-organized criticality: [Bantay, lanosi; Physica A, 1992]

“Criticality” refers to the power-law behavior of the spatial and temporal
distributions, characteristic of critical phenomena.

“Self-organized” refers to the fact that these systems naturally evolve into a
critical state without any tuning of the external parameters, i.e. the critical
state is an attractor of the dynamics.

B. Gess (Universitat Bielefeld) Finite time extinction and SOC. 6 / 30



Self-organized criticality

Ising model needs precise tuning T = T, to display power law scaling
@ How can this occur in nature?
Idea of self-organized criticality: [Bantay, lanosi; Physica A, 1992]

“Criticality” refers to the power-law behavior of the spatial and temporal
distributions, characteristic of critical phenomena.

“Self-organized” refers to the fact that these systems naturally evolve into a
critical state without any tuning of the external parameters, i.e. the critical
state is an attractor of the dynamics.

o Bak, Tang, Wiesenfeld: Sandpile as a toy model of self-organized criticality
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Self-organized criticality

Sandpiles

@ Two scales: Slow energy injection (adding sand), fast energy diffusion
(avalanches)

Number of Sites Involved in Avalanche

y=-1.1081x +3.6264

Log(N(s))
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Self-organized criticality

Sandpiles

@ Two scales: Slow energy injection (adding sand), fast energy diffusion
(avalanches)

@ Criticality: No typical avalanche size, local perturbation may have global

effects
Number of Sites Involved in Avalanche
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Self-organized criticality

Sandpiles

@ Two scales: Slow energy injection (adding sand), fast energy diffusion
(avalanches)

@ Criticality: No typical avalanche size, local perturbation may have global
effects

o Power law scaling: N(s) is the number of valances of size s.

Number of Sites Involved in Avalanche

y=-1.1081x +3.6264

Log(N(s))
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Cellular automata model

@ The following model goes back to [Bantay, lanosi; Physica A, 1992].
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@ The following model goes back to [Bantay, lanosi; Physica A, 1992].
@ Aim: Define a cellular automaton displaying SOC.
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Cellular automata model

@ The following model goes back to [Bantay, lanosi; Physica A, 1992].

@ Aim: Define a cellular automaton displaying SOC.

N

o Consider an N x N square lattice, representing a discrete region & = {(i,j)};_;-
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Cellular automata model

@ The following model goes back to [Bantay, lanosi; Physica A, 1992].

@ Aim: Define a cellular automaton displaying SOC.

o Consider an N x N square lattice, representing a discrete region &' = {(i,j)}ﬁ’jzl.
o

At each site (i,j) the height of the sandpile at time ¢ is hfj
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Cellular automata model

The following model goes back to [Bantay, lanosi; Physica A, 1992].

Aim: Define a cellular automaton displaying SOC.

N

Consider an N x N square lattice, representing a discrete region & = {(i,j)};_;-

At each site (i,j) the height of the sandpile at time ¢ is hfj

The system is perturbed externally until the height h exceeds a threshold (crit-
ical) value h€.
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Cellular automata model

The following model goes back to [Bantay, lanosi; Physica A, 1992].

Aim: Define a cellular automaton displaying SOC.

N

Consider an N x N square lattice, representing a discrete region & = {(i,j)};_;-

At each site (i,j) the height of the sandpile at time ¢ is hfj

The system is perturbed externally until the height h exceeds a threshold (crit-
ical) value h€.
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Cellular automata model

@ Then, a toppling (avalanche) event occurs: The toppling at any ‘activated’
site (k,/) is described by:

Wt — i — My, Y(ij) e 0,

i

where

4 (k)= (i)
Mlil;l: -1 (k7I)N(laJ)
0 otherwise.
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Cellular automata model

@ Then, a toppling (avalanche) event occurs: The toppling at any ‘activated’
site (k,/) is described by:

Wt — i — My, Y(ij) e 0,

i

where
4 (k)= (i)
le[gl: -1 (k7I)N(laJ)
0 otherwise.

@ Rewrite as:
hirt —hE = — M H(E — hS),  Y(ij) € 0,

where H is the Heaviside function.
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Cellular automata model

@ Then, a toppling (avalanche) event occurs: The toppling at any ‘activated’
site (k,/) is described by:

1o

1 K .
hfj+ — hfj - Mg, Y(i,j) e O,
where
4 (k)= (i.))
ME =S —1 (k1) ~(i,))
0 otherwise.

@ Rewrite as:
hi™ — bl = — M H(hG — b)), V(i,j) € 0,
where H is the Heaviside function.

@ The avalanches are continued until no site exceeds the threshold (which obvi-
ously happens after finitely many steps).
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Cellular automata model

@ As an example:
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Derivation of the BTW model from a cellular automaton

Continuum limit

@ Passing to a continuum limit in
hii™t = hly = — M H(hf — h5), V(i) € 0,
gives (informally)
a C
& X(1,8) = BH(X(1,) - X°(£)),

where X is the continuous height-density function.
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Derivation of the BTW model from a cellular automaton

Continuum limit

) Passing to a continuum limit in
+1 Kl 1y ..
hitj _hE__MU (hitj_ 5)7 V(/,J)eﬁ’,

gives (informally)

%x(;g) — AH(X(t,E) — XE(&)),

where X is the continuous height-density function.

@ In addition we impose zero Dirichlet boundary conditions:

H(X(t,E)— X(£)) =0, on d0.
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Derivation of the BTW model from a cellular automaton

Continuum limit

) Passing to a continuum limit in
+1 Kl 1y ..
hitj _hE__MU (hitj_ 5)7 V(/,J)eﬁ’,

gives (informally)

%x(;g) — AH(X(t,E) — XE(&)),

where X is the continuous height-density function.

@ In addition we impose zero Dirichlet boundary conditions:

H(X(t,E)— X(£)) =0, on d0.

o Note: Only the relaxation/diffusion part modeled here. For full SOC-model
we would have to include the external, random energy input.
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Finite time extinction and self-organized criticality

Finite time extinction and SOC

@ Question: Do avalanches end in finite time?
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Finite time extinction and self-organized criticality

Finite time extinction and SOC

@ Question: Do avalanches end in finite time?
o Recall:

%x(gg) — AH(X(t,E) — XE(&)),

@ We will restrict to the supercritical case, i.e. supposing xp > X¢.
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Finite time extinction and self-organized criticality

Finite time extinction and SOC

@ Question: Do avalanches end in finite time?
o Recall:

%x(gg) — AH(X(t,E) — XE(&)),

@ We will restrict to the supercritical case, i.e. supposing xp > X¢.
@ Substituting X — X — X and using X > 0 yields
d
5, X(£,6) = Asgn(X(t,£)),
X(0,6) =x(8)
with xp > 0 and zero Dirichlet boundary conditions:

sgn(X(t,€)) =0, on dO.
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Finite time extinction and self-organized criticality

Finite time extinction and SOC

@ Question: Do avalanches end in finite time?
o Recall:

%x(gg) — AH(X(t,E) — XE(&)),

@ We will restrict to the supercritical case, i.e. supposing xp > X¢.
@ Substituting X — X — X and using X > 0 yields

2 X(1.6) = Bsgn(X(1.£))
X(0,8) = xo(3)
with xp > 0 and zero Dirichlet boundary conditions:
sgn(X(t,€)) =0, on dO.

o Informally:
Asgn(X) = 8o(X)AX +sgn”(X)|VX|?.
°
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Finite time extinction and self-organized criticality

Finite time extinction and SOC

@ Question: Do avalanches end in finite time?
o Recall:

%x(gg) — AH(X(t,E) — XE(&)),

@ We will restrict to the supercritical case, i.e. supposing xp > X¢.
@ Substituting X — X — X and using X > 0 yields

2 X(1.6) = Bsgn(X(1.£))
X(0,8) = xo(3)
with xp > 0 and zero Dirichlet boundary conditions:
sgn(X(t,€)) =0, on dO.

o Informally:
Asgn(X) = 8o(X)AX +sgn”(X)|VX|?.
@ Avalanches end in finite time = Finite time extinction.
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Finite time extinction and self-organized criticality

Finite time extinction for deterministic PDE

Finite time extinction for deterministic PDE
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Finite time extinction and self-organized criticality

Finite time extinction for singular ODE

o Consider the singular ODE

f=—cf* aec(0,1), c>0.
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Finite time extinction and self-organized criticality

Finite time extinction for singular ODE

o Consider the singular ODE

f=—cf* aec(0,1), c>0.

@ Then:
(F%) =—(1-a).
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Finite time extinction and self-organized criticality

Finite time extinction for singular ODE

o Consider the singular ODE

f=—cf* aec(0,1), c>0.

@ Then:
(F%) =—(1-a).

@ We obtain
fl_"‘(t) = fl_"‘(O) —(1—a)ct

which implies finite time extinction.
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Finite time extinction and self-organized criticality

Finite time extinction and SOC

o [Diaz, Diaz; CPDE, 1979] finite time extinction (FTE) was first proven for

%X(t7€) = Asgn(X(t,&)).

@ In [Barbu; MMAS, 2012] another (more robust) approach based on energy
methods was introduced.
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Finite time extinction and self-organized criticality

Finite time extinction and SOC

o Informally the proof boils down to a combination of an L' and an L™ estimate
of the solution:
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Finite time extinction and SOC

o Informally the proof boils down to a combination of an L' and an L™ estimate
of the solution:

o Informal L™ estimate:

[X(8)][ee < [[x0leo,  VE>0.
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Finite time extinction and self-organized criticality

Finite time extinction and SOC

o Informally the proof boils down to a combination of an L' and an L™ estimate
of the solution:

o Informal L™ estimate:

[X(8)][ee < [[x0leo,  VE>0.

o Informal L'-estimate:
00 [ 1X(2.8)1d8 = [ sen(X(t.8))Asgn(X(t.£))dé
=~ | IVsen(x(z.£))2de

< ( / |sgn(><(t,5))|"dé) ’
< —({&IX(t,€) #0}])7,

for some (dimension dependent) p > 2. Note: % <1
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Finite time extinction and self-organized criticality

Finite time extinction and SOC

@ Observe

/{7|X(t7€)\d€ <X (®)ll=[{&X (2, ) # 0}
< %ol {5 1X(2,8) # O}.
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Finite time extinction and self-organized criticality

Finite time extinction and SOC

@ Observe

/ﬁlx(hﬁ)\dé <X (®)ll=[{&X (2, ) # 0}
< %ol {5 1X(2,8) # O}.

@ Using this above gives

o xtegyite = [ 1x(ene)

%12
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Finite time extinction and self-organized criticality

Finite time extinction and SOC

@ Observe

/ﬁlx(hﬁ)\dé <X (®)ll=[{&X (2, ) # 0}
< %ol {5 1X(2,8) # O}.

@ Using this above gives

o xtegyite = [ 1x(ene)

%12

o We are left with the singular ODE
f=—cf* aec(0,1), c>0

for which we have seen that finite time extinction holds.
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Finite time extinction for stochastic BTW
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Finite time extinction for stochastic BTW

The stochastic BTW model

@ In [Diaz-Guilera; EPL (Europhysics Letters), 1994], [Giacometti, Diaz-Guilera;
Phys. Rev. E, 1998], [Diaz-Guilera; Phys. Rev. A, 1992] it was pointed out
that it is more realistic to include stochastic perturbations.
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The stochastic BTW model

@ In [Diaz-Guilera; EPL (Europhysics Letters), 1994], [Giacometti, Diaz-Guilera;
Phys. Rev. E, 1998], [Diaz-Guilera; Phys. Rev. A, 1992] it was pointed out
that it is more realistic to include stochastic perturbations.

@ This leads to SPDE of the form
dXt = AH(Xt 7XC) + B(Xt 7XC)th7

with appropriate diffusion coefficients B.

B. Gess (Universitat Bielefeld) Finite time extinction and SOC. 21 / 30
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The stochastic BTW model

@ In [Diaz-Guilera; EPL (Europhysics Letters), 1994], [Giacometti, Diaz-Guilera;
Phys. Rev. E, 1998], [Diaz-Guilera; Phys. Rev. A, 1992] it was pointed out
that it is more realistic to include stochastic perturbations.

@ This leads to SPDE of the form
dXt = AH(Xt 7XC) + B(Xt 7XC)th7

with appropriate diffusion coefficients B.
@ We study linear multiplicative noise, i.e.
N

dX; = AH(X; — X) + Y f(Xe — X)dBE.
k=1
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Finite time extinction for stochastic BTW

The stochastic BTW model

@ In [Diaz-Guilera; EPL (Europhysics Letters), 1994], [Giacometti, Diaz-Guilera;
Phys. Rev. E, 1998], [Diaz-Guilera; Phys. Rev. A, 1992] it was pointed out
that it is more realistic to include stochastic perturbations.

@ This leads to SPDE of the form
dXt = AH(Xt 7XC) + B(Xt 7XC)th7

with appropriate diffusion coefficients B.
@ We study linear multiplicative noise, i.e.
N

dX; = AH(X; — X) + Y f(Xe — X)dBE.
k=1

@ Question: Do avalanches end in finite time?
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Finite time extinction for stochastic BTW

The stochastic BTW model

@ Recall:

N
dX; = Asgn(X;)+ Y i XedBy,
k=1

with zero Dirichlet boundary conditions.
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Finite time extinction for stochastic BTW

The stochastic BTW model

@ Recall:

N
dX; = Asgn(X;)+ Y i XedBy,
k=1

with zero Dirichlet boundary conditions.

@ Finite time extinction can be reformulated in terms of the extinction time
To(®) :=inf{t>0|X;(®) =0, a.e. in O}.

We distinguish the following concepts:
(F1)
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Finite time extinction for stochastic BTW

The stochastic BTW model

@ Recall:

N
dX; = Asgn(X;)+ Y i XedBy,
k=1

with zero Dirichlet boundary conditions.

@ Finite time extinction can be reformulated in terms of the extinction time
To(®) :=inf{t>0|X;(®) =0, a.e. in O}.

We distinguish the following concepts:

(F1) Extinction with positive probability for small initial conditions:
P[1p < o] > 0, for small X = xg.
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The stochastic BTW model

@ Recall:

N
dX; = Asgn(X;)+ Y i XedBy,
k=1

with zero Dirichlet boundary conditions.

@ Finite time extinction can be reformulated in terms of the extinction time
To(®) :=inf{t>0|X;(®) =0, a.e. in O}.

We distinguish the following concepts:

(F1) Extinction with positive probability for small initial conditions:
P[1p < o] > 0, for small X = xg.

(F2) Extinction with positive probability: P[7 < o] > 0, for all Xy = xo.
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Finite time extinction for stochastic BTW

The stochastic BTW model

@ Recall:

N
dX; = Asgn(X;)+ Y i XedBy,
k=1

with zero Dirichlet boundary conditions.

@ Finite time extinction can be reformulated in terms of the extinction time
To(®) :=inf{t>0|X;(®) =0, a.e. in O}.

We distinguish the following concepts:

(F1) Extinction with positive probability for small initial conditions:
P[1p < o] > 0, for small X = xg.

(F2) Extinction with positive probability: P[7 < o] > 0, for all Xy = xo.

(F3) Finite time extinction: P17y < o] =1, for all Xy = xp.
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Finite time extinction for stochastic BTW

Some known results

@ Existence and uniqueness of solutions to
N
dXy € A¢(Xy)dt+ Z fi Xpd B
k=1

with ¢ being possibly multi-valued goes back to [Barbu, Da Prato, Rockner;
CMP, 2009].
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Some known results

@ Existence and uniqueness of solutions to
N
dXy € A¢(Xy)dt+ Z fi Xpd B
k=1
with ¢ being possibly multi-valued goes back to [Barbu, Da Prato, Rockner;

CMP, 2009].
@ In the same paper (F1) for the Zhang model is shown for d = 1.
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Finite time extinction for stochastic BTW

Some known results

@ Existence and uniqueness of solutions to

N
dX: € AP(X)dt+ Y fiXcdpL
k=1

with ¢ being possibly multi-valued goes back to [Barbu, Da Prato, Rockner;
CMP, 2009].

@ In the same paper (F1) for the Zhang model is shown for d = 1.

@ In [Barbu, Da Prato, Réckner; JMAA, 2012] this was extended to prove (F1)
for the BTW model for d = 1.
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k=1

with ¢ being possibly multi-valued goes back to [Barbu, Da Prato, Rockner;
CMP, 2009].

@ In the same paper (F1) for the Zhang model is shown for d = 1.

@ In [Barbu, Da Prato, Réckner; JMAA, 2012] this was extended to prove (F1)
for the BTW model for d = 1.

@ In the recent work [R6ckner, Wang; JLMS, 2013] finite time extinction for the
Zhang model has been solved.
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Finite time extinction for stochastic BTW

Some known results

@ Existence and uniqueness of solutions to
N
dXy € A¢(Xy)dt+ Z fi Xpd B
k=1

with ¢ being possibly multi-valued goes back to [Barbu, Da Prato, Rockner;
CMP, 2009].

@ In the same paper (F1) for the Zhang model is shown for d = 1.

@ In [Barbu, Da Prato, Réckner; JMAA, 2012] this was extended to prove (F1)
for the BTW model for d = 1.

@ In the recent work [R6ckner, Wang; JLMS, 2013] finite time extinction for the
Zhang model has been solved.

@ In case of additive noise
dX; € Asgn(X;)dt+dW,,

ergodicity has been shown for d =1 in [Gess, Télle; JMPA, to appear].
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Finite time extinction for stochastic BTW

Some known results

@ Existence and uniqueness of solutions to
N
dXy € A¢(Xy)dt+ Z fi Xpd B
k=1

with ¢ being possibly multi-valued goes back to [Barbu, Da Prato, Rockner;
CMP, 2009].

@ In the same paper (F1) for the Zhang model is shown for d = 1.

@ In [Barbu, Da Prato, Réckner; JMAA, 2012] this was extended to prove (F1)
for the BTW model for d = 1.

@ In the recent work [R6ckner, Wang; JLMS, 2013] finite time extinction for the
Zhang model has been solved.

@ In case of additive noise
dX; € Asgn(X;)dt+dW,,

ergodicity has been shown for d =1 in [Gess, Télle; JMPA, to appear].

@ In [Barbu, Réckner; ARMA, 2013] (F1) has been shown for the related stochas-
tic total variation flow for d < 3.
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Finite time extinction for stochastic BTW

Main result

Theorem (Main result)

Let xo € L™(0), X be the unique variational solution to BTW and let
w(w) :=inf{t > 0|X;(w) =0, for a.e. £ € 0}.

Then finite time extinction holds, i.e.

]P[‘L'o < °°] =1.
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Finite time extinction for stochastic BTW

Main result

Theorem (Main result)
Let xo € L™(0), X be the unique variational solution to BTW and let
w(w) :=inf{t > 0|X;(w) =0, for a.e. £ € 0}.
Then finite time extinction holds, i.e.
Pty <o) =1.

For every p > g\/ 1, the extinction time To(®) may be chosen uniformly for xg
bounded in LP(0).

v
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Finite time extinction for stochastic BTW

Transformation

o Recall:

N
dX = Asgn(Xe) + ) fiXedBy,
k=1
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Finite time extinction for stochastic BTW

Transformation

@ Recall:
N
dX, = Asgn(X;)+ Y i XedBy,
k=1

@ Our approach to FTE will be based on considering the following transformation:
Set U, := Zf(\’zl katk, = Zle sz and Y; := e #t X;. An informal calculation

shows
aYt c e“tASgn(Yt)—ilYt. (*)
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Finite time extinction for stochastic BTW

Transformation

@ Recall:
N
dX, = Asgn(X;)+ Y i XedBy,
k=1

@ Our approach to FTE will be based on considering the following transformation:
Set U, := Zf(\’zl katk, = ZL\’ZI sz and Y; := e #t X;. An informal calculation

shows
aYt c e“tASgn(Yt)—ilYt. (*)

@ Compare the deterministic setting:

dY: € Asgn(Y;).
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Finite time extinction for stochastic BTW

Outline of the proof

@ There are two main ingredients of the proof:

@ A uniform control on || X¢||p for all p>1.
@ An energy inequality for a weighted L-norm.
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Finite time extinction for stochastic BTW

Outline of the proof

@ There are two main ingredients of the proof:

@ A uniform control on || X¢||p for all p>1.
@ An energy inequality for a weighted L-norm.

@ On an intuitive level the arguments become clear by approximating
/M= ™1 — sgn, for m 0.

To make these arguments rigorous, in fact a different (non-singular, non-
degenerate) approximation of sgn is used.
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Finite time extinction for stochastic BTW

Outline of the proof

@ There are two main ingredients of the proof:

@ A uniform control on || X¢||p for all p>1.
@ An energy inequality for a weighted L-norm.

@ On an intuitive level the arguments become clear by approximating
/M= ™1 — sgn, for m 0.

To make these arguments rigorous, in fact a different (non-singular, non-
degenerate) approximation of sgn is used.

@ In the following let Y; be a solution to

oY, eeteAy!™ iy,
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Finite time extinction for stochastic BTW

Step 1: Informal LP bound

e Step 1: A uniform control on || X;||, for all p > 1.
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Finite time extinction for stochastic BTW

Step 1: Informal LP bound

e Step 1: A uniform control on || X;||, for all p > 1.

@ We may informally compute for all p > 1:
a,_./ YelPdE :p/ y,lp- et Ay, Im g
o o

B 4(p—1)mp ohie pim-1 2
(p—|—m—1)2 (V|Yt| ) ds

yp+m IA He of
Jrp+m 1/‘ | eftdt.
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Finite time extinction for stochastic BTW

Step 1: Informal LP bound

e Step 1: A uniform control on || X;||, for all p > 1.

@ We may informally compute for all p > 1:
a,_./ YelPdE :p/ y,lp- et Ay, Im g
o o

B 4(p—1)mp ohie pim-1 2
(p+m—1)2 (V|Yt| ) ds

yp+m IA He of
Jrp+m 1/‘ | eftdt.

o Taking p > 1 and then m — 0 we may “deduce” from this

at/ Y, |PdE <.
0
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Finite time extinction for stochastic BTW

Step 2: Informal “LY" bound

e Step 2: An energy inequality for a weighted L!-norm.

1)m +m-1\ 2
at/mv’d&——((im_)lf [ e (v, *5) o
ptm—1 yirs >
+p+m 1/|Y| AettdE, p>1.
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Step 2: Informal “LY" bound

e Step 2: An energy inequality for a weighted L!-norm.

1)m +m-1\ 2
at/mv’d&——((im_)lf [ e (V1,757 o
ptm—1 yirs >
+p+m 1/|Y| AettdE, p>1.
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Finite time extinction for stochastic BTW

Step 2: Informal “LY" bound

e Step 2: An energy inequality for a weighted L!-norm.

4(p—1)mp ptm-1Y2
p — He (Y
. [ Ivapdg =~ 2B [ et (VI ) ag

pm / +m-1
P [y, ettt dE p > 1.

@ Choose p=m+1 and let m — 0. We obtain

até|vt|d§ :,/ﬁem (ngn(Yt))2d<§+%/ﬁAe“‘d§
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Finite time extinction for stochastic BTW

Step 2: Informal “LY" bound

e Step 2: An energy inequality for a weighted L!-norm.

4(p—1)mp ptm-1Y2
p — He (Y
. [ Ivapdg =~ 2B [ et (VI ) ag

pm / +m-1
4+ — Y:|? AeMtdE p>1.
@ Choose p=m+1 and let m — 0. We obtain

até|vt|d§ :,/ﬁem (ngn(Yt))2d<§+%/ﬁAe“‘d§

@ Recall: deterministic case

0 [ 1Velde =~ [ Vsgn(v)Pde.
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Finite time extinction for stochastic BTW

Step 2: Informal “LY" bound
Key trick: Use a weighted L!-norm
o Let ¢ be the classical solution to
Ap=-1, on O
=1 ond0l.
Note 1 < ¢ < [|@]|e =: Cp.
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Step 2: Informal “LY" bound
Key trick: Use a weighted L!-norm
o Let ¢ be the classical solution to
Ap=-1, on O
=1 ond0.
Note 1 < ¢ < [|@]|e =: Cp.

@ We informally compute

o [ ovilde == [ ge (Vsgn(vi) &+ [ Alpere)d.
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Finite time extinction for stochastic BTW

Step 2: Informal “LY" bound

Key trick: Use a weighted L!-norm
o Let ¢ be the classical solution to

Ap=-1, on O
=1 ond0.

Note 1 < ¢ < [|@]|e =: Cp.
@ We informally compute

o [ ovilde == [ ge (Vsgn(vi) &+ [ Alpere)d.

o Note
A(pett) = —ett + 2V - Vet + pAett

has a negative sign for small times (e#t ~ 1)!
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Finite time extinction for stochastic BTW

Step 2: Informal “LY" bound

Key trick: Use a weighted L!-norm
o Let ¢ be the classical solution to
Ap=-1, on O
=1 ond0.

Note 1 < ¢ < [|@]|e =: Cp.
@ We informally compute

o [ ovilde == [ ge (Vsgn(vi) &+ [ Alpere)d.

@ Note
A(pett) = —ett + 2V - Vet + pAett
has a negative sign for small times (e#t ~ 1)!
o Shift the initial time

O / e HolY,|dE = — / e“*‘“ﬂp(vsgn(yt))zdg% / sgn(Y:)?AektHs odE
o o o
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Finite time extinction for stochastic BTW

Thanks

Thanks!
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