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Problem

Question:

How long does it take to go from gas to condensed phase? Typically, if the
density is only slightly larger than saturation density: it takes a long time —
there is a nucleation barrier to overcome.

Physics / thermodynamics: topic of nucleation theory.

This talk:

stochastic approaches to metastability for Markovian dynamics whose
stationary measures are Gibbs measures. Adapt existing results for lattice spin
systems to continuum. BiancHuI, BOVIER, ECKHOFF, DEN HOLLANDER, GAYRARD, [OFFE,
KLEIN, MANZI, NARDI, SPITONI...

Limitations:

We do not know whether the system actually has a gas / condensed phase
transition at positive temperature. But: this does not bother us because we
work in the zero-temperature limit at fixed finite volume.

Moreover, artificial dynamics — particles appear and disappear out of the blue.
Expected: methods carry over to a whole class of Markovian dynamics.
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Grand-canonical Gibbs measure

» L >0, box A =10, L] x [0, L]
> B > 0 inverse temperature, p € R chemical potential
> v:[0,00) = RU{oo} pair potential — soft disk potential RADIN 81
00, r<l
v(r) = < 24r — 25, 1<r<25/24,
0, r > 25/24.

> Total energy U({x,...,xn}) =22, _; v(Ixi — x), U(0) = U({x}) = 0.
» Probability space:

Q:={w C A card(w) < co}.

Reference measure: Poisson point process @, intensity parameter 1.
Grand-canonical Gibbs measure P = Pg ;A

1

G6) = 2 e(~8(U) - un(e))).

S

(w) := card(w) = number of points in configuration w.
= ZA(B, 1) grand-canonical partition function.



Dynamics
Combine interaction energy and chemical potential
H(w) = U(w) — pn(w).

Dynamics: Metropolis-type Markov process with generator

(LF) (@) == Y exp(~AIH(w\x) = Hw)]+) (Flw\x) = F(w))

XEw
+ /Aexp(—ﬁ[H(w Ux) — H(w)]}) (f(w Ux)— f(w))dx.

Birth and death process: particles appear and disappear anywhere in the box.
Rates are exponentially small in § if adding / removing particle increases H(w).
Grand-canonical Gibbs measure is reversible.

Analogue of spin-flip dynamics for lattice spin systems: Glauber dynamics.
Used in numerical simulations under the name grand-canonical Monte-Carlo.
Studied in finite and infinite volume GLOTzL °81; BERTINI, CANCRINI, CESI "02;
Kuna, KONDRATIEV, ROCKNER ...

Warm-up for more "realistic” dynamics (particles hop / diffuse).



Metastable regime

We are interested in the limit 5 — co at fixed p, fixed A.
The equilibrium measure Pg , A will concentrate on minimizers of
H(w) = U(w) — pn(w). Observe

mln H(w) = r'gerI; n(rg)lnk(U(w) — pn(w)) = ITEIR%(EI( — kp).

Ground states: RADIN 81

Ec:= min U(w) = -3k + [V12k —3].

n(w)=k
Every minimizer of U is a subset of a triangular lattice of spacing 1.

Three cases:

1. p < =3 : k+— Ex — kg increasing, minimizer kK = 0.
Minimum = empty box.

2. > —2: k= Ex — kpu decreasing, minimizer: k large.
Minimum = filled box.

3. =3 < p < —2: local minimum at k = 0, global minimum: k large.
Empty box = metastable, filled box = stable. Metastable regime.

Question: for 1 € (=3, —2), how long does it take to go from empty to full?



Critical and protocritical droplets

Write p = =3+ h.
Assumption h € (0,1) and h™* ¢ IN.

Set )
ZC = LEJ .

Proposition The map k — Ex — ku has a unique maximizer k.,

_JBEA3 ) — e+ 1)+, he (T 7),
(32 + 30 +1) + b+ 1, he (¢ 77i2):

Note: 3¢2 4+ 3¢. + 1 = no. of particles in equilateral hexagon of sidelength £..

Proposition Let k, := k. — 1. The minimizer of U(w) with n(w) = k, is
unique, up to translations and rotations — obtained from an equilateral hexagon
of sidelength ¢. by adding or removing one row. Protocritical droplet.

Critical droplet = protocritical droplet + a protuberance.

Proof: builds on RADIN ’81. Related: AU YEUNG, FRIESECKE, SCHMIDT '12.

Generalization of known results for Ising / square lattice to triangular lattice +
continuum degrees of freedom.



Target theorem
Time to reach dense configurations:

D ={weQ|n(w)= polAl},
7p = inf{t > 0| w: € D}.

po =~ density of the triangular lattice.

Goal: as 5 — oo,

[Eomo = (14 0(1)) C(8) " exp(T) |

Energy barrier:

M= T&%((Ek - kp) = Ex, — kep.

Prefactor:

1

X a finite sum over critical droplet shapes.
Might have to settle for different set D because of the complex energy
landscape.

Generalizes results for Glauber dynamics on square lattice. Principal difference:
prefactor 3-dependent. Appearance of derivative v/(1+) = 24 reminiscent of
Eyring-Kramers formula (transition times for diffusions). Blends discrete and
continuous aspects.



Details & interpretation

Inverse of the hitting time: intermediate expression

(Eorp) " ~

1|~

|L(w)|
————— exp(—fH(w)) Q(dw).
Jony TG PP @)
with

Lw)={yeN|HwUy) < H(w)and (x)} CA
(*) there is a sequence wx = wU{y,y1,..., ¥} k=1,...,n such that
H(wk) < T for all k and w, € D.

Evaluation:

» As 3 — oo, only a small neighborhood of critical droplets (quasi-hexagon
+ protuberance) contributes to the integral.

> |L(w)|/(1+ |L(w)|) = probability that a critical droplet w grows rather
than shrinks.

» probability of seeing a critical droplet: 27|A| (position in space +
orientation) x a Laplace type integral over droplet-internal degrees of
freedom.

» Evaluation as 8 — oo leads to powers of 3, sum over possible shapes of
critical droplets (location of the protuberance).



Potential theoretic approach

(Xt) irreducible Markov process with finite state space V/, transition rates
q(x,y), (x # y). Reversible measure m(x). Conductance:

c(x,y) = m(x)q(x,y) = m(y)q(y, x).

A, B disjoint sets, A = {a} singleton. Representation of the hitting time:

1
E.tg = W X;/ h(x)m(x)

h(x) = P«(72 < 78) unique solution of the Dirichlet problem
h(a)=1, h(b)=0 (be B),
(Lh(x)= > a(x.y)(h(y) = h(x)) =0 (x € V\({a} U B)).

YEV, y#x
“Capacity” or effective conductance:
cap(a, B) = Y _ q(a,y)(h(a) — h(y)) = (—Lh)(a).
yev

Well-known formulas. Have analogues for continuous state spaces.



Potential theoretic approach, continued
Dirichlet form and Dirichlet principle:

E(N) =3 3 cbon)(fly) - ()’

x,yeV
cap(A, B) = min{&(f) | fla=1, f|zg = 0}.

Instead of computing hitting times, we have to estimate capacities. Facilitated
by variational principles: Dirichlet, Thomson, Berman-Konsowa.

Remark: vocabulary (capacity / conductance) hybrid of two distinct pictures:

> Random walks <+ electric networks: network of resistors,
c(x,y) = 1/r(x,y) = conductance, f(x) = voltage at node x, £(f) =
power of dissipated energy. Think

P = Ul = RI*> = CU>

> Probabilistic potential theory (Brownian motion <+ Laplacian): Dirichlet
form = electrostatic energy, think

&)= [ cITe(Pax

GAUDILLIERE '09: Condenser physics applied to Markov chains: a brief introduction to potential
theory. Notes from the XIlI. Brazilian school of probability.



Application to continuum Glauber dynamics

Dirichlet form:
1
8N = 5 | F(=LA(:)Ps ()
=11 / / & A mHW)HWLD) (£, U x) — £(w))2dx Q(dw)
— JQJA

Network with edges (w,w U x), conductances exp(— 3 max[H(w), H(w U x)]).
More precisely: conductance is a measure K(dw, d@) on Q x Q,

E(f) = %/Q Q(f(w) — £(@))*K(dw, d&).

Wanted: effective conductance (capacity) between A= {0} and B=D =
dense configurations as § — co.

Upper bound with Dirichlet principle — cap(@, D) < £(f), f = guessed good
test function.

Lower bound with Berman-Konsowa principle: capacity as a maximum over
probability measures on paths from () to D.

Finite state space: BERMAN, KONSOWA 90.

Reversible jump processes in Polish state spaces DEN HOLLANDER, J. (in preparation).



Berman-Konsowa principle and state of the proof

Berman-Konsowa principle: DEN HOLLANDER, J. '13
» P probability measure on paths v = (wo, . ..,wn) from ) to D
> &p flow: Pp(C x C) = expected no. of edges from C; to G, (measure).

> Variational representation for the capacity:
_ dop -1
cap(0, D) =supE[( - Gten) |-
(oy)ey

> Lower bound for the capacity: guess a test measure P on paths.

State of the proof for asymptotics of the hitting time:

> Proof nearly complete for time to become supercritical, i.e., modified
choice of D ~
D={weQ|nlw)>k+1}.

» For original choice D = {n(w) > po|A|}, need to answer an additional
question about energy landscape, “no-deep-well property”. Open.

If property does not hold, it is possible that the Glauber dynamics gets stuck in
configuration in D\D.



