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Reaction-Diffusion Models

Simplest case u = u(x, t) satisfies

— = — + f(uv), (x,t) € R x [0, 00).

Classical nonlinearities:

(a) Nagumo/Allen-Cahn/RGL f(u) = u(1 — u)(u — a),

(b) Fisher-Kolmogorov-Petrovskii-Piscounov f(u) = u(1 — u),
(c) combustion nonlinearity | ,; =0, f|(,1) > 0, f(1)=0.

bistable-type monostable-type ignition-type

0.04 0.25 f

f (a) /\ £ (b) o1 (C)

-0.06

1
|
|
|
|
|
| .l
0 a ut 0 u 1 0 )



Travelling wave ansatz u(x, t) = U(x — ct), ¢ = wave speed.
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Travelling wave ansatz u(x, t) = U(x — ct), ¢ = wave speed.

du_O%u gy e U _dU
ot 0x? d¢  de?
Look for travelling front with
» bistable nonlinearity f(U) = U(1 — U)(U — a),

>
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Travelling wave ansatz u(x, t) = U(x — ct), ¢ = wave speed.

ou  0%u E=x—ct du d’U

oW g =g U
Look for travelling front with
» bistable nonlinearity f(U) = U(1 — U)(U — a),
| 2
lim U()=0 and lim U(§) = 1.
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Theorem (Aronson, Fife, McLeod, Nagumo, Weinberger, .. .)

For a € (0,1), there exists an exponentially stable travelling front
u(x,t) = U(x — ct) = U(¢) € CL(R) to

ou 0%u

E:@Jru(l—u)(u—a),
which is unique up to translation and satisfies

im_U(¢)=0, Jim U(¢)=1, lim U'(€) =0, U'(&) > 0.
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Theorem (Aronson, Fife, McLeod, Nagumo, Weinberger, .. .)

For a € (0,1), there exists an exponentially stable travelling front
u(x,t) = U(x — ct) = U(¢) € CL(R) to

ou 0%u

E:@—i—u(l—u)(u—a),

which is unique up to translation and satisfies

lim U(€) =0, lim U€)=1, lim U'(€)=0, U(¢)>0.

£——o0 |&|—o0

P existence: dc € R s.t. the associated ODE has a heteroclinic.

> stability: 3k > 0 s.t. for u(-,0) = up € L*(R),0< up <1
llu(-,t) = U(- = ct + )l ®) < Ke™ "t for all t > 0.

for some constants v and K depending upon ug.

> uniqueness: any other pair (U, ) satisfies

c=¢g, U(-) = U(- + &), for some & € R.



A Possible Generalization...

Consider the abstract bistable nonlinearity
feCY(R), f(0)=f(1)=f(a)=0, flpz <O,

and define the convolution

J*S(u) = /RJ(X —y)S(u(y,t)) dy.

f’(a,l] > 0.



A Possible Generalization...

Consider the abstract bistable nonlinearity
feC'(R), f(0)=F(1)=F(a)=0, floa <0, flay>0.

and define the convolution

J*S(u) = /RJ(X —y)S(u(y,t)) dy.

Theorem (Chen, 1997)
Let f(u) := G(u,S*(u),---,S"(u)), assume (mild) conditions for

ou d%u

1 n
E:Dﬁ_{_G(u?Jl*s(u)v"'aJn*S(u))a D>0

= existence, uniqueness, exponential stability of a front hold.
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Intermezzo: Why do we bother?
The bistable nonlinearity 7(u)
» arises from the classical double-well potential (f(u) = F'(u)),
» occurs in normal forms / amplitude equations (NLS, RGLE),
» appears for coarsening, oscillations, neural fields, ...,
> is a "building block” e.g. in the FitzHugh-Nagumo equation

ou _ 2y B
{gg g W —v+l R gcext
S = €(u—v),
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Return to 1-D Case

0 0?

7” = 71.2] + f(u) )

ot Ox ~—~—~
v reaction

diffusion equation

Bistable case: front is robust under reaction-term perturbation.
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Return to 1-D Case

2
=Y ),
ot Ox ~—~

e . reaction
diffusion equation !

Bistable case: front is robust under reaction-term perturbation.
Robust to perturbation of diffusion-equation part?

u_#u_,
ot Ox2 Y

Replace L by [... Question: How to do this?

Answer: Go back to probabilistic fundamentals of diffusion.
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0 t w0 A(x)dx



Continuous-Time Random Walks and Diffusion

Choice of two distributions:

» waiting time in (t, t + At) is
x w(t)dt

» jump length in (x,x + Ax) is

o t 10 A(x)dx
Important is the choice of moments
» mean waiting time T = [7° w(t)t dt

> jump length variance X2 = [ (x — px)?A(x) dx



Continuous-Time Random Walks and Diffusion

Choice of two distributions:

> waiting time in (t,t + At) is
x w(t)dt

» jump length in (x,x + Ax) is

o t 10 A(x)dx
Important is the choice of moments
» mean waiting time T = [7° w(t)t dt

> jump length variance X2 = [ (x — px)?A(x) dx

Result: Assume T,¥2 < oo, then central limit theorem implies
P(particle at x at time t) = u(x, t) obeys

2
@:Klau

ot Ix2’ Ky = diffusion coefficient.



Some Facts on Perturbed Models...
Case 1: T = oo, X2 < 00, subdiffusive with long waiting time
> example: w(t) ~ Aﬁﬂ%ﬂ with 8 € (0,1),
» non-Markovian with “diffusion” equation

ou 1-8 82U

8t~ RLt %2

involving the Riemann-Liouville fractional derivative
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Some Facts on Perturbed Models...
Case 1: T = oo, X2 < 00, subdiffusive with long waiting time
> example: w(t) ~ ABtl%B with 8 € (0,1),

» non-Markovian with “diffusion” equation

ou 1-8 82U

8t~ RLt %2

involving the Riemann-Liouville fractional derivative

1-8 1 9 [t u(x,s)
Dgp fulx, t) := @a/o mds
TODAY - Case 2: T < 00, 2 = o0, long jumps / Lévy flights
» example: A(x) ~ Aawﬁ with a € (1,2),

» Markovian with “diffusion” equation

ou o
ot KaDRg xu

involving the Riemann-Feller fractional operator Dgp , .



Riesz-Feller Operators

» Schwartz space

S(R) = {f € C(R) : supyer [x 55 (x)| < 00, Yp,7 € No}
» Fourier transform and Fourier inverse transform

Ff() = fR et f(x)dx and F~1f(x) = fR e I F(£)de



Riesz-Feller Operators

» Schwartz space

S(R) = {f € C(R) : supyer [x 55 (x)| < 00, Yp,7 € No}
» Fourier transform and Fourier inverse transform

Ff() = fR et f(x)dx and F~1f(x) = fR e I F(£)de

3

Define 2-parameter family of Riesz-Feller operators Dg on S(R) as

F(Dg)(&) = vg(§)FF(E), E€R,

with pseudo-differential operator symbol

U5(6) = —I¢” exp | (sgn())6 7 |



F(D§1)(€) = b (©FF(©).  vi(©) = ~Ié|" e |i(san(€))075 ]

Observe: e ¥i(€) — glél™exp[i(sen(€)05] _ [efgx}

where X is a Lévy-stable random variable.
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Observe: e ¥i(€) — glél™exp[i(sen(€)05] _ [efgx}

where X is a Lévy-stable random variable.
» —g(€) is log of the Lévy-stable characteristic function,

> « is the index of stabiliy, 0 is the asymmetry parameter.



F(D§1)(€) = b (©FF(©).  vi(©) = ~Ié|" e |i(san(€))075 ]
Observe: e %56 — o€l exp[i(sen(€))05] _ g [eigx]

where X is a Lévy-stable random variable.
» —g(€) is log of the Lévy-stable characteristic function,

> « is the index of stabiliy, 0 is the asymmetry parameter.

Id

" Feller-Takayasu diamond

0] < min{e,2 — a}
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Consider the “operator-perturbed” diffusion equation
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Main Result(s)

Consider the “operator-perturbed” diffusion equation

@
ot

where f is bistable.

= Dg'u+ f(u), u=u(x,t), (x,t) e Rx[0,00) (1)

Some results for fractional Laplacian D§ = ((%22)“/2, a€(0,2):
» Chmaj 2013 - front existence using operator approximation,

» Gui 2012 (announced) - front existence using continuation.

Theorem (Achleitner, K., 2013)

Assume « € (1,2), |0] < min{a,2 — a} (and some mild conditions)
then a monotone, unique, exponentially stable front exists for (1).
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Ingredients of the Proof |

Idea: sub- and super-solutions (“Chen '97, approach”).

Existence:

1. Start nice profile v(x,0)
2. Evolution %% = Dg'v + f(v)

3. {(v(- +&(L), tj) 132, —front
(where v(&(t), t) = a)

Sample step: let w := v + eeXt and --- = supersolution

ow

E > Dg‘w+ f(W).



Ingredients of the Proof Il

For uniqueness, stability (and existence) need key lemma:

Lemma (“Two-Fence Lemma”)
(U,c) isafront. 30 <o <1, 0> 1s.t Ve (0,00] and & € R

wi(x, t) := U (x —ct+ &+ od[l - e—f@f]> + e P,

are super- and sub-solutions with 3 := & min(—f(0), —f'(1)).
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» Properties of Green's function G(x, t) for % =Dfueg.
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Ingredients of the Proof Il
Need further several components:
> Well-definedness of Dj'g for g & S(R).
» Properties of Green's function G(x, t) for % =Dfueg.

G>0, |G, D)|n=1G(x,t)=tYG(xt7 1),

» Comparison principle for fractional operator equations

% < Do+ F(u), %> Dg'v + F(v), v(-,0) 2 u(-,0)
N v(x,t) > u(X, t) for all (x,t).

» A-priori bounds on Riesz-Feller operators

M2—a Ml—a
sup | D§ g (x)]| < const. (ng sy o + Il )
xER a 1



Ingredients of the Proof IV

Lemma
3 integral representation of Dg'; from it = a-priori bounds.



Ingredients of the Proof IV

Lemma
3 integral representation of Dg'; from it = a-priori bounds.

Proof.

Infinitesimal generators of Lévy processes (e.g. — Sato, CUP, 1999)

=>Dé)‘g(x):q/o g(x+¢) *Ei(j)*g(X)éd£

+C2/0°° g(X*&)fg(X)+g’(X)£d£.

£1+0

Therefore, DS is well-defined on CZ(R).



Ingredients of the Proof IV

Lemma
3 integral representation of D§'; from it = a-priori bounds.

Proof.

Infinitesimal generators of Lévy processes (e.g. — Sato, CUP, 1999)

= Dg(x) = a1 /O g(x+¢) ;i(j)*g(x)édg

o /0‘>c g(X*E)fg(XHg’(X)EdE.

£1+0

Therefore, DS is well-defined on CZ(R).

/oo g(x+¢) —g(x) 7g/(X)£d£ = f/\jo ,gl}ra [ 01 g'(x + s¢)éds 7g/(X)§:| d¢

M £1+a

— i o= | g/ (x+56) — /(%) as) a

bounded by 2[|g’ |, (r)
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Geoscience (climate change, climate subsystems, earthquakes)

> Alley et al., Abrupt climate change. Science, 2003
> Lenton et al., Tipping elements in the earth’s climate system. PNAS, 2008

Ecology (extinction, desertification, ecosystem control)
» Drake and Griffen, Early warning signals of extinction in deteriorating
environments. Nature, 2010
» Veraart et al., Recovery rates reflect distances to a tipping point in a living

system. Nature, 2012
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> Lenton et al., Tipping elements in the earth’s climate system. PNAS, 2008

Ecology (extinction, desertification, ecosystem control)
» Drake and Griffen, Early warning signals of extinction in deteriorating
environments. Nature, 2010
» Veraart et al., Recovery rates reflect distances to a tipping point in a living
system. Nature, 2012




Deterministic Generic Models: Fast-Slow Systems

Fast variables x € R™, slow variables y € R", time scale separation 0 < ¢ < 1.

dx / dx .
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Deterministic Generic Models: Fast-Slow Systems

Fast variables x € R™, slow variables y € R", time scale separation 0 < ¢ < 1.

{Zﬁ=x’ = flay)  g=s {z = & = f(xy)

=y = egxy) ¥ = y = glxy)

} e=0 J e=0

{X’ = f(xy) {0 = f(x,y)
y' =0 vy = glxy)
fast subsystem slow subsystem

v

C := {f = 0} = critical manifold = equil. of fast subsystem.

v

C is normally hyperbolic if D,f has no zero-real-part eigenvalues.

v

Fenichel’s Theorem: Normal hyperbolicity = “nice” perturbation.

v

Critical transitions at fast subsystem bifurcations possible.



What about Noise and Warning Signs...
(W

(W2
(W3
(W4

1) The system recovers slowly from perturbations: slowing down.
) The autocorrelation increases before a transition.
) The variance increases near a critical transition.



What about Noise and Warning Signs...

(W1) The system recovers slowly from perturbations: slowing down.
(W2) The autocorrelation increases before a transition.
(W3) The variance increases near a critical transition.
(w4) .
1
d; = I(—ye—x?)dt + GodW,,
dy: = 1 dt.
° (xt, yt) Xt
vl G

-06 0.0003

0.0002

0.0001

-02 0 02 04 06 08 1 -0.7
X

Figure : (x0,¥0) = (0.9, —0.92) [red dot], o = 0.01, ¢ = 0.01.




A Classification Result

Theorem (K. 2011/2012)

Classification of generic critical transitions for all fast subsystem
bifurcations up to codimension two:

» Fold, Hopf, (transcritical), (pitchfork)
» Cusp, Bautin, Bogdanov-Takens

» Gavrilov-Guckenheimer, Hopf-Hopf



A Classification Result

Theorem (K. 2011/2012)

Classification of generic critical transitions for all fast subsystem
bifurcations up to codimension two:

» Fold, Hopf, (transcritical), (pitchfork)
» Cusp, Bautin, Bogdanov-Takens
» Gavrilov-Guckenheimer, Hopf-Hopf
The main results are:
1. (Existence:) Conditions on slow flow to get a critical transition.

2. (Scaling:) Leading-order covariance scaling H(y) for
Cov(xs) = o?[H.(y)] + O(6(s, ).

3. ((e,0)-expansion:) Higher-order calculations for the fold.

4. (Technique:) Covariance estimates without martingales.
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Spatio-Temporal Stochastic Dynamics

» Bounded domain — 'finite-dim." bifurcations, warning signs.

» Unbounded domain — 777

Natural class to study (evolution SPDE):

ou %u aiee!
E:W—Ff(u)—k noise’, u=u(x,t).

Example: Fisher-Kolmogorov-Petrovskii-Piscounov (FKPP):

ou  0%u

a:ﬁ—i—u(l—u).
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Background - FKPP

ou  02u

Ezﬁ—{—u(l—u)

» Model for waves u = u(x — ct) in biology, physics, etc.

» Take x € R and localized initial condition u(x,t = 0).

Basic propagating front(s):
» u=0and u =1 are stationary.

» Wave connecting the two states:

m u(n) = 0.

li
n——00

u(n) = u(x —ct),  lim u(n) =1,
» Propagation into unstable state u = 0 since

Duf = Dy[u(1 —u)] = D,f(0) = (1 —2u)|,_,>0.
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> Q-trace-class noise



SPDE Version of FKPP

ou  0%u

a:ﬁﬁ-u(l_u)"‘ag(u) g(X,t), o> 0.

Possible choices for 'noise process’ £(x, t)
» white in time £ = B, E[B(t)B(s)] = §(t — s)
> space-time white £ = W, E[W(x, t)W(y,s)] = 6(t — s)5(x — y)
> Q-trace-class noise

Possible choices for 'noise term’ g(u)
» g(u) = u, ad-hoc (Elworthy, Zhao, Gaines,...)
» g(u) = v2u, contact-process (Bramson, Durrett, Miller, Tribe,... )

> g(u) =/ U(]. - U), capacity (Miiller, Sowers,... )



Propagation Failure

FKPP SPDE exhibits propagation failure

ou  0%u

E:@Jru(l—u)JrUg(U) £(x, 1), g(0) =0.

i.e. solution may get absorbed into v = 0.

(b) 0 =0.3 and (c) o = 1.2.



Scaling near transition: single-point observer statistics:

1 T 1 T ) 1/2
o= u(0,t)dt, X = / u(0,t) —o)* dt
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Figure : Average over 200 sample paths; t € [10, 20].



Scaling near transition: single-point observer statistics:

1 T 1 T ) 1/2
u(0,t)dt, X = / u(0,t) —o)* dt

u=

Figure : Average over 200 sample paths; t € [10, 20].

Challenge: Statistics (of SPDEs) near instability?
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