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Synchronization of individuals

Emergence of synchrony is widely encountered in complex systems of

individuals in interaction (networks of neurons, collective behavior of social

insects, chemical interactions between cells, planets orbiting, . . . ).

Three main ingredients for interacting individuals:

1 a dynamics for each individual (e.g. FitzHugh-Nagumo or Hodgkin-Huxley

for neurons)

2 a network of interactions (possibly heterogeneous and delayed)

3 absence or presence of a thermal noise (possibly correlated).

Under these conditions, for a sufficiently strong interaction between individuals

and for a sufficiently large population, synchronization should occur

(individuals exhibit similar simultaneous behavior).
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General framework: mean-field interacting diffusions in R
m

Here, each individual θ is a diffusion in R
p.

For T > 0, N > 1, consider t ∈ [0,T ] 7→ (θ1(t), . . . ,θN(t)) solution to

dθi(t) = c(θi )dt +
1

N

N

∑
j=1

Γ(θi ,θj)dt +σdBi(t), i = 1, · · · ,N,

c(·): local dynamics of one individual

Γ(·, ·): interaction kernel

Bi : i.i.d. Brownian motions (thermal noise).

Exchangeability

If at t = 0, the vector (θ1(0), . . . ,θN(0)) is exchangeable, then, at all time

t > 0, the law of the vector (θ1(t), . . . ,θN(t)) is also exchangeable.
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An example

Interesting examples include the granular media system:

dθi (t) =−∇V (θi)dt − 1

N

N

∑
j=1

∇W (θi −θj)dt +σdBi(t),

for V and W having convexity properties.

θ

V (θ)

[✎ Carillo, McCann, Villani, Malrieu, Guillin, Cattiaux, Berglund, Gentz, Tugaut, etc.]
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Interacting diffusions in a random environment

Exchangeability may not be a suitable property: one needs to encode the fact

that the dynamics may not be the same for each individual (e.g., inhibition or

excitation for a neuron).

Idea: set a sequence of i.i.d. random variables (ωi ) encoding the intrinsic

behavior of the individual θi . For this choice of disorder (ω1,ω2, . . . ,ωN), we

modify the dynamics and the interaction in the following way:

dθi(t) = c(θi ,ωi)dt +
1

N

N

∑
j=1

Γ(θi ,θj ,ωi ,ωj)dt +σdBi(t), i = 1, · · · ,N.

Question

What is the (quenched) influence of the disorder on the long-time/large N

behavior of the system in comparison with the case without disorder?
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Disordered mean-field models in neuroscience

Consider FitzHugh-Nagumo dynamics for the spiking activity of one neuron

θ = (v ,W ) ∈ R
2 i.e.

{

εV̇ = V −V 3/3+W + I

Ẇ = aW +bV ,

where V is the membrane potential and W is a recovery variable. The disorder

ω = (a,b) encodes the state (inhibited/excited) of one neuron.

dθi(t) = c(θi ,ωi)dt +
1

N

N

∑
j=1

Γ(θi ,θj ,ωi ,ωj)dt +σdBi(t), i = 1, · · · ,N,

Here Γ models synaptic connections between neurons.

[✎ O. Faugeras, J. Touboul et al.: similar systems with delay, two-scale of population, disorder,

etc.]

Difficulty: absence of reversibility.
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A simpler model: the Kuramoto model

✎ Kuramoto [’75], Strogatz, Giacomin, Pakdaman, Pellegrin, Poquet, Bertini, L.

The state space here is the one-dimensional circle: S := R/2π:

dθi (t) = ωi dt +
K

N

N

∑
j=1

sin(θj −θi)dt +σdBi(t), i = 1, . . . ,N,

Intuition: competition between

ωidt : random intrinsic speed of rotation for each rotator θi ,

K sin(·)dt : synchronizing kernel between rotators.

Absence of disorder = reversibility

If ∀i = 1, . . . ,N,ωi = 0, the dynamics is reversible.
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Example: The disorder is chosen by a toss of coins µ = 1
2
(δ−1 +δ1).
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Example: The disorder is chosen by a toss of coins µ = 1
2
(δ−1 +δ1).

−1 +1

Questions: what is the influence of the disorder on the system? Does it

depend only on its law µ (centered, symmetric or not) or on a typical realization

(ω1, . . . ,ωN)?
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Example: The disorder is chosen by a toss of coins µ = pδ−1 +(1−p)δ1.

−1

Questions: what is the influence of the disorder on the system? Does it

depend only on its law µ (centered, symmetric or not) or on a typical realization

(ω1, . . . ,ωN)?
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Simulation I: N = 500, K = 3, σ = 1, no disorder

dθi (t) =
K

N

N

∑
j=1

sin(θj −θi)dt +σdBi(t), i = 1, . . . ,N,
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Simulation II: N = 600, K = 6, σ = 1, µ = 1
2
(δ−1+δ1)

dθi (t) = ωi dt +
K

N

N

∑
j=1

sin(θj −θi)dt +σdBi(t), i = 1, . . . ,N,
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The empirical measure

dθi(t) = c(θi ,ωi)dt +
1

N

N

∑
j=1

Γ(θi ,θj ,ωi ,ωj)dt +σdBi(t), i = 1, · · · ,N.

We want to understand the (quenched vs annealed) behavior as N → ∞ of the

empirical measure

νN,t :=
1

N

N

∑
j=1

δ(θj(t),ωj).

Law of Large Numbers?

Does the continuous limit say anything on the particle system?

Central Limit Theorem? Large Deviations?
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Quenched convergence of the empirical measure νN

Under Lipschitz regularity on c and Γ, moment condition on µ and

convergence of the initial condition ν
(ω)
N,0

N→∞−→ ν0,

Proposition (Quenched LLN - L. 2011)

For a.e. (ωi)i > 1, the empirical measure ν
(ω)
N converges in law, as a process to

t 7→ νt(dθ, dω)

that is the unique weak solution to the following McKean-Vlasov equation:

∂tνt =
1

2
divθ

(

σσT ∇θνt

)

−divθ

[

νt

(

c(θ,ω)+
∫

Γ(θ,ω, ·, ·)dνt

)]

.

Self-averaging phenomenon

At the level of the LLN, the dependence in the disorder lies in its law, not a

typical realization.
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McKean-Vlasov equation in the Kuramoto model

In the limit of an infinite population: qt(θ,ω), density at time t of oscillators with

phase θ and frequency ω solves

∂tqt(θ,ω) =
σ2

2
∆qt(θ,ω)−K ∂θ

[

qt(θ,ω)
(

〈sin∗qt〉µ(θ)+ω
)]

.

What makes the Kuramoto tractable is that the nonlinearity is nice (it only

concerns the first Fourier coefficients of q). In particular, if there is no disorder,

one can show that

the microscopic system is reversible,

there exists a Lyapounov functional for the continuous model.

From this, one can derive many things in the case of small disorder, by

perturbation arguments.
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Non-symmetric disorder: existence of traveling waves

1 The law of the disorder is not centered (Eµ(ω) 6= 0): we can go back to

the centered case by the change of variables θ̃i(t) := θi(t)− tEµ(ω)
(existence of traveling waves).

2 The law of the disorder is centered (Eµ(ω) = 0) but not symmetric:

Theorem (Giacomin, L., Poquet, 2012 )

If the disorder is small, there exist solutions to the McKean-Vlasov equation of

the following type

qψ(θ,ω) := q(θ− c(µ)t −ψ)

and the family q(ψ) is stable by perturbation.

Question

What if the law of the disorder is centered and symmetric?
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Symmetric disorder: synchronization

In this case, the McKean-Vlasov admits stationary solutions that can be

explicitly computed:

0 = ∂tqt(θ,ω) =
σ2

2
∆qt(θ,ω)−K ∂θ

[

qt(θ,ω)
(

〈sin∗qt〉µ(θ)+ω
)]

,

Theorem (Giacomin, L., Poquet, 2012 )

For small disorder, there exists Kc > 0 such that

if K 6 Kc , qi ≡ 1
2π is the only stationary solution (incoherence),

if K > Kc, 1
2π coexists with a circle (rotation invariance) of nontrivial

stationary solutions {(θ,ω) 7→ qs(θ+θ0,ω); θ0 ∈ S} (synchronization).

Moreover, such a circle of synchronized solutions is stable under perturbations.
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K ≤ 1

qi(·, ·) ≡ 1

2π

qs(·+ θ0, ·)

Figure : The incoherent

solution qi ≡ 1
2π
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K > 1

qi(·, ·) ≡ 1

2π

qs(·+ θ0, ·)

Figure : The incoherent

solution qi ≡ 1
2π

Figure : One synchronized

solution qs
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Fluctuations of νN around its McKean-Vlasov limit

For fixed t ∈ [0,T ], fixed disorder (ω), consider the random tempered

distribution

η
(ω)
N,t :=

√
N

(

ν
(ω)
N,t −νt

)

∈ S ′.

Semi-martingale representation of η
(ω)
N : for all ϕ regular, t 6 T :

〈

η
(ω)
N,t , ϕ

〉

=
〈

η
(ω)
N,0 , ϕ

〉

+
∫ t

0

〈

η
(ω)
N,s , LN(ϕ)

〉

ds+M
(ω)
N,t (ϕ),

where LN is a linear operator and M
(ω)
N,t (ϕ) a martingale.
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Some negative answer

Remark

There cannot be any real quenched Central Limit Theorem, in the sense that

for fixed disorder (ω), the process η
(ω)
N may not converge.

Why? Consider the example of independent Brownian motions with random

drifts (i.e. Γ≡ 0 and c(θ,ω) = ω):

dθi(t) = ωi dt + dBi(t).

In the quenched model, the (ωi)i > 1 are fixed. In order to study the

fluctuations of this system, one needs to understand the quantity

√
N

(

1

N

N

∑
i=1

ωi −E(ω)

)

,

which does not converge for fixed (ωi)i > 1 (but only in law w.r.t. (ωi)i > 1).
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The correct set-up

Instead of looking at

η
(ω)
N :=

√
N

(

ν
(ω)
N −ν

)

∈ C ([0,T ],S ′),

for fixed (ω), one can always consider the application

(ω) 7→ HN(ω) := law of η
(ω)
N ∈ M1(C ([0,T ],S ′)).

The correct set-up is to say that the sequence of random variables (HN)N

converges in law in the big space M1(C ([0,T ],S ′)).

Eric Luçon (Paris 5) The disordered Kuramoto model Nov. 2, 2013 24 / 33



Quenched CLT

Hypothesis

b and c are regular,

(ωj) are i.i.d. and
∫

R
|ω|4α

µ(dω) < ∞ for some α > 0.

Theorem (L. 2011)

Let HN(ω) be the law of the process η
(ω)
N . Then (HN)N converges in law in

M1(C ([0,T ],S ′)) to ω 7→ H(ω) satisfying the following characterization: for all

ω, H(ω) is the law of the solution ηω of the SPDE:

ηω
t = X(ω)+

∫ t

0

Lqs
ηω

s ds+Wt ,

where, Wt is explicit and for all ω, X(ω) is a Gaussian process that is not

centered. W is independent with X .
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Kuramoto: asymptotic behavior of the fluctuation process

Binary disorder: µ = 1
2
(δ−ω0

+δω0
), ω0 > 0.

Theorem (L. 2012)

For all K > 1, there exists ω0 = ω0(K ) such that η satisfies

∀ω,
ηω

t

t

in law−−−−−→
t→∞

v(ω)q′.

Moreover, as a function of ω, ω 7→ v(ω) is a Gaussian random variable with

variance

σ2
v :=

ω2
0

4
.
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The case with spatial extension

Joint work with W. Stannat.

We want to take into account the positions of the particles θi : we place

one particle at each point of the lattice Z
d and the interaction between

two particles depends on the distance between them.

θi

θj

∼ N
ΛN ⊂ Z

d

ΨN(i, j)

0 N−N

Eric Luçon (Paris 5) The disordered Kuramoto model Nov. 2, 2013 28 / 33



Spatially extended weakly interacting diffusions

The system becomes

dθi(t)= c(θi ,ωi)dt+
1

|ΛN | ∑
j∈ΛN ,j 6=i

Γ(θi ,θj ,ωi ,ωj) ·Ψ
(

i

2N
,

j

2N

)

dt+σdBi(t),

where

ΛN is a box in Z
d of size ∼ N, with volume |ΛN |,

Ψ(·, ·) is a spatial weight.

Possible choices of weights Ψ are:

A cut-off function: Ψ(x ,y)≈ 1|x−y |6 R

A power-law interaction: Ψ(x ,y) = 1

|x−y |α
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The power-law case for α < d

dθi (t) = c(θi ,ωi)dt +
1

|ΛN | ∑
j∈ΛN ,j 6=i

Γ(θi ,θj ,ωi ,ωj)
∣

∣

∣

i−j

2N

∣

∣

∣

α dt +σdBi(t).

Proposition (L. - Stannat, 2013 )

The empirical measure

νN :=
1

|ΛN | ∑
j∈ΛN ,j 6=i

δ(θi ,ωi ,
i

2N
)

converges, as a process, to the unique solution dνt = qt(θ,ω,x)dθµ(dω)dx

where

∂tqt =
1

2
divθ

(

σσT ∇θqt

)

−divθ

[

qt

(

c(θ,ω)+
∫

Γ(θ,ω, ·, ·)
|x −·|α dqt

)]

.
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Precise fluctuations estimates in the case α < d

For an appropriate weighted Wasserstein distance (for some p > 1 and for

some adequate domain D),

d(λ,ν) := sup
f∈D

(

E

∥

∥

∥

∥

∫
f dλ−

∫
f dν

∥

∥

∥

∥

p)1/p

.

Theorem (L. - Stannat, 2013 )

For any γ < d
2

, there exists a constant C > 0 such that:

sup
0 6 t 6 T

d(νN,t ,νt) 6 C























N−(γ∧1), if α ∈
[

0, d
2

)

,

(lnN) ·N−( d
2
∧1), if α = d

2
,

N−((d−α)∧1), if α ∈
(

d
2
,d
)

.

Eric Luçon (Paris 5) The disordered Kuramoto model Nov. 2, 2013 31 / 33



Perspectives

Is it possible to prove a quenched LDP in the mean field case?

What can we say about the phase transition in the spatial case? About

the central limit theorem?

What if the positions of the particles are chosen randomly?

Can we derive similar McKean-Vlasov equations for more general graphs

(small-world graphs, etc.)?
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Thank you for your attention!
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