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Setting:
Introduction . . . .
Gonen oo-dimensional stochastic system in H
General
Cahn-Hilliard du = E(u)dt + dW (SPDE)J
Stochastic

m L nonlinear operator (e.g. Au+ f(u))

J— m small additive noise
Droplets m W- Wiener process in H, covariance operator ()

2D-Case (]E<’LL, W(t)> <’U, W(t» = tQ<u’ ’U>)
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Femotion [)eterministic slow manifold M C H
(Dynamics for W = 0)
For example, parametrized by position of interfaces

Introduction
Setting

General U(t)

Cahn-Hilliard \
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I NOT NECESSARILY INVARIANT !!
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Otto, Reznikoff [07] — Slow manifold - gradient systems

Beck, Wayne [09] — Slow manifold — Burgers on R
m Brassesco, Butta,et.al.[98,02,...] — single interface motion

Setting

(stochastic Ginzburg-Landau, Phase Field Equation)
Fatkullin, Kovacic, Vanden Eijnden [10] gradient systems

Statistics, numerics, asymptotic expansions
vanden Eijnden, Fatkullin[03], Fatkullin[10], Lythe[00,..], .....

S. Weber [14], Shardlow [00] multi-kink stoch. Allen-Cahn

Stannat et al [14,.....] travelling waves
m For SDE see Gentz & Berglund . ...

Stochastic Cahn-Hilliard — Brassesco [14]

The motion of a single interface in Cahn-Hilliard on R
is non-Markovian (fractional Brownian motion)
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[ ]
Meta-Theorems lN k it

University

Theorems (for stochastic dynamics)

m Attractivity of the manifold M

- only for a neighboorhood
- M not necessarily invariant for deterministic dynamics

m Stability of M
- exit from a neighboorhood of M
- here: weaker results than Large Deviation (not optimal)

m Motion along the manifold

- Deterministic dynamics
- Wiener process projected to M
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Theorem: Stability l.N.k nivrsi

University

Metatheorem (Stability)

With high probability, a solution
stays on the “order of noise-strength” close to M
until it exits “at the end” of M

u(t)

noise
strength M



Motion along the manifold lNkUmverm
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Introduction

For some parameter space P C RV

General

M={ub€H : £E€P}.

Coordinates

Cahn-Hilliard AIM:
Determine b : P — RY and oj : P+ H such that

Stochastic

u(t) 2 ut®  with  dg; = bj(€)dt + (0(€),dW) .

Allen-Cahn
Droplets

2D-Case
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One Possibility l.N k

Umversmr

Front motion

u=uf+v with vl 8§ju§ and 85ju5 is tangential
Introduction

General

Coordinates

Cahn-Hilliard / Qg(t) \ M

Stochastic
Now:
. Differentiate (Ito-formula)
Droplets
e u=1u+v and (85ju§, v) =0,

eliminate dv and derive an equation for d¢;.
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o
St by UNID G

For Stability

dv = du + du®
= L(v +u®)dt + Geu® - d¢ + Tto-Correction + dW
= DL(ub)v dt + N(ub,v)dt + Ous - dé + . ..

Now take scalar product with v
NEED:
= ... Bounds on linearized operator (v, DL(uf)v)
m ... Control of Nonlinearity N (u,v)
To show bounds for v over large times with high probability
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Show for t < 7*
( 7*exit time from a neighboorhood of M - distance R)

d|[v|* = —ac||v|*dt + O(Ke)dt + (O(||v])), dW)
Inductively

K. € P
EHU(T*)HQP < Cp( —;”Q ”) .Er*

€

Stability

If Ko+ ||Qc|| < acR2e”, then:

Exiting the neighboorhood of M before any time of order
€ 7 due to v being large has small probability.
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Stochastic Cahn-Hilliard lN.k Ynivenitas
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Introduction
General m Results of [Antonopoulu, Karali, DB, 12]
m Motion of interfaces betweeen several "pure” phases

o e m Approximate slow manifold

. m parametrized by the interface positions

tochastic

m Based on Bates & Xun [94,95] 4+ Carr & Pego [89,90]

Allen-Cahn

Droplets

2D-Case



Cahn-Hilliard model S —
l.N k e

Cahn & Hilliard [58,59], Cook [70]

Front motion

Introduction
Phenomenological model for phase separation
General
For binary alloy, fluid,....
starting from an initially homogeneous mixture
Cahn-Hilliard
introduction
u(t,r) — concentration of one component
Stochastic (t > 0 time, x space)
u = %1 (almost) “pure* phases.
Allen-Cahn
Droplets

2D-Case



Augsburg
University

Cahn-Hilliard-Cook l.N.k
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Stochastic Cahn-Hilliard Equation

oru = —83[626£u — f(u)] + Eéataccvva (CH)

Neumann-type (no flow) boundary conditions
Opu(t,0) = Opu(t,1) =0  d3u(t,0) = Bu(t,1) =0

SPDE

m I smooth double well, F/ = f (E.g. F(u) =
= Noise strength: €9, > 9/2 (technical reason)
m Interaction length/interface width: 0 < e < 1

(1—u?)?)

1
1
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du = —2[20%u — f(u)] + €8,0.W

W(t,x) =Y arfBr(t)ex(x)
k=1

m ¢ eigenfunctions of Dirichlet Laplacian (i.e., sin(mkz))
m o — 0 for k — oo, sufficiently fast  (for Ito-formula)

® {fk}ren i.1.d. standard Brownian motion

Physics: Mass conservative space-time white noise, ay = 1
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Slow Manifold

Construction

Carr & Pego [89,90]

IND
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University
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Stationary solutions of deterministic (CH)!

redueten (upto boundary conditions)
General
o(-,0.1) A o)
Cahn-Hilliard / \
> o
Slow manifold
Stochastic _6/2 £/2

®(x,0,+1) solves

Allen-Cahn

Droplets 6263(1) = f((I)) , @(—5/2) =0= (I)(e/z)

2D-Case
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Approximatimation u" lN k Ynisesica

Umversmr

" indexed by interfaces h € Q, C RN*!

Distance: £; = hji1 —h;j > €/p (later p=¢€", 0 <k < 1)

o(- —ma,la, 1) é(-—mnNy1,€n41,1)

hy Ve Nie o Nwe |l e

t — — T >

NP P N

(-, €1, —1) é(-—1,4n42,—1)

Near h; use cut-off to glue the ¢’s smoothly.



Slow Manifold M l.N.k Yo
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Introduction (CH) is mass conservative. (i.e. fol u(t)dr = fol u(0)dz)
— Fix mass M = fo (t,z) dz.
o Definition (Slow Manifold)
1

Slow manifold M = {'LLh : h € Qp, / Uhd.’L' = M}
Stochastic 0

Interface hyy; is a function of £ = (hy,...,hn).
Allen-Cahn
Droplets Deﬁne u§ = uh

2D-Case
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Technical Point:
Introduction If u(t,,ﬁ[}) SOlVeS (CH), then

General ﬂ(t, x) = / u(t, Z)dz
0

Cahn e solves the Integrated Cahn-Hilliard equation (ICH).

Slow manifold

Stochastic A'dvantage:

The linearized operator (around )
Allen-Cahn Lc — _6283 + 8If/<uf)8z
Droplets
2D-Case

is self-adjoint. (It depends on & !)
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Attraction — Deterministic (ICH) lN kgﬁggrggt
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3 exponentially (in €) small neighboorhood T' of M that is

locally exponentially attracting with rate O(1)

Introduction ﬂ
T

General

Cahn-Hilliard

Slow manifold

On M lies a stationary solution u* (equidistant interfaces)
with its N-dim. unstable manifold W*(u*) exponentially
close to M.

Stochastic

Allen-Cahn

Droplets Lvu (“*)
2D-Case m Y
M
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Theorem

a(0) = a¢© + (o).
As long as B(9) = €2||020]|% + ||0.7]|?> = O(€3):
i = ¢ 4 ¥ is a solution of (ICH)

=
& and 0 solve (SDE) & (SPDE)

déx = by, (&, 0)dt + ¢ (01, (£0), dW) (SDE)
with b and o stated later.
dv = L(a6 + 0)dt + dW — dat, (SPDE)
where L£(@) = —€2041 + O, f (0,1).
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=> AZNOES . (Ef = 0,a0)

br(€) = > A (e +9), B) +Z Q.E;, 05(9))

i

+ 240 B - 50 58205 9] (@), ()}

L,k
Ari(gv ﬁ) ~ 4£i+1(5i,7' + 57«71'71) + CM‘E

Recall:
Covariance operator of W is Q.ep, = 20 a%ek

Indices are derivatives, Ef] = O, Ef and ﬂfj = 0, 8&.&5

Most of the terms in b are Ito-Stratonovic correction.
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Theorem — Stability

Consider a solution @ = @¢ + @ of (ICH).
Fix k > 0.

If A.(9(0)) < €%, then with high probability
A(B(t)) = O(°7)

for all ¢t < €74 for any ¢ > 0 or until interface breaks down.

4

Def. Ac(0) = (0,L°0) with  ¢c€®||0]|3;, < A(D) < C[0]3

Exponential attraction holds for a larger neighbourhood of
order B(7) = O(¢°).
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Two interfaces (N = 1)

Second interface determined by first (mass conservation).

d¢ ~ exp. small + €°||0as||~2(8as, odW) ,

Stratonovic equation for €XW projected to M

Space-time white noise (Q, = €2 - Id) — (too rough)

Example

¢ is close to a Brownian motion with variance €29 /4¢.

[B-X-94] : [|@$]|2 ~ 4¢ - distance between interfaces.
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1D-Allen-Cahn l.N k Uit
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Front motion

Introduction
General
du = [€0%u +u — u?)dt + dW
& Neumann b.c

Cahn-Hilliard

m similar dynamics than Cahn-Hilliard
Stochastic B no mass conservation

m Interface motion similar [S. Weber 14, PhD]
Allen-Cahn
Droplets

2D-Case
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Results of [Weber 14] lN kgﬁgﬁ;ﬁt
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m based on [X. Chen 04]
m Using maximum principle
Introduction m Exit from manifold with N-layers
into the domain of attraction for N-2-layers
General
N-2
Cahn-Hilliard .
interfaces
u(t)
Stochastic
-C. .
Allen-Cahn N-interfaces
Droplets

2D-Case
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Introduction
General On some sufficiently large domain D € R?
2 1)
Cahn-Hilliard du = |e“Au +u— D|/ d$:| dt te aw
& Neumann b.c
Stochastic
Allen-Cahn
Droplets

2D-Case



Front motion

Droplets

Augsburg
University

°
Mass conservative Allen-Cahn lN k e

U~ 1 : on ball of radius 1 — € around & € 9D
1 =1 : outside ball of radius 1 + € around & € 9D

M={u:¢e€dD} ~ St

oD



Motion of a droplet

Universitdt
[Antonopoulou, Bates, Karali, DB 14] lNkuﬁe}?fy

Front motion

Theorem

Assume § < 4 and W sufficiently smooth in space.
Then:
Solutions stay close to M up to times of order e~ 9.
dé = c(&)dt + €| 0¢ut|| =2 (Dgus, odW)
with ¢(e) = K'(£), where K'(€) is the curvature of 9D at £

Droplets
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Introduction

General

2D Case — Cahn-Hilliard

Cahn-Hilliard

Results of [Antonopoulou, Karali, DB 15(7)]

Stochastic

Allen-Cahn
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Rescale time, such that:

Introduction
due = A(—eAue + e L f/(ue))dt + €7 dW (CH)
General
with Neumann boundary conditions on domain D.
Cahn-Hilliard
Chemical potential ve such that
Stochastic du€ — _A/Uedt + EUdW
, (SYS)
Allen-Cahn ’UE = —7f/(u6) + 6Au€
Droplets €

2D-Case
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2D-Case — very small noise

[ J
Universitit
(based on Alikakos, Bates, Chen 94) l.N kﬁ'ﬁﬁ:r";%y

If 0 < &, then the limit (u,v) satisfies free boundary

problem
Av =0 in D\T,

Opv =0 on 0D
v=AH onT

2V =0pvt —9,v~ onT

NEED:
I' =T'(¢) is closed hypersurface dividing u = 1 from u = —1

with mean curvature H, velocity V,

unit outward normal n, constant A > 0
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°
2D-Case — Conjecture l.N Universit

ugshurg
University

Conjecture for o =1

The limit (u,v) solves the stochastic Hele-Shaw problem.

Av =0 in D\T,
Opv =0 on 0D
v=AH+W onT

2V = 8n'U+ —0Opv- onl




Front motion

Introduction

General

Cahn-Hilliard

Stochastic

Allen-Cahn
Droplets

2D-Case

N

Thank you very much

for your attention
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