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FitzHugh—Nagumo SDE

due = [ur — u3 + v]dt + o dW,
th = 5[3— Uug — th]dt

> u;: membrane potential of neuron

> v gating variable (proportion of open ion channels)

—ur

e=0.1
b=
1
a= =+ 0.02
o =0.03

Regularity structures and renormalisation of FitzHugh—Nagumo SPDEs in three space dimensions

5 November 2015

1/15



FitzHugh—Nagumo SPDE

du=Au+u—1P+v+¢E

Orv = aju + arv

> u=u(t,x) ER, v=v(t,x) €ER (or R"), (t,x) e D=R, xT9, d =2,3
> &(t, x) Gaussian space-time white noise: E[£(t,x)é(s, y)] = 6(t —s)d(x — y)
¢: distribution defined by (£, ) = W, {Wi}her2(py, EIWs W] = (h, )

(Link to simulation)
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Main result

Mollified noise: £° = g % &
where o-(t,x) = Ed%g(s%, ) with ¢ compactly supported, integral 1
Theorem [NB & C. Kuehn, preprint 2015, arXiv/1504.02953]

There exists a choice of renormalisation constant C(g), lim._o C(g) = oo,
such that

Ort® = Auf 4 [1+ C(e)uf — (uF)® 4+ ve +¢&°
0iv® = a1u® + apv®

admits a sequence of local solutions (u®, v¢), converging in probability to a
limit (u,v) as € — 0.
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Main result
Mollified noise: £ = o, * &

X

where o-(t,x) = Ed%g(e%, ) with ¢ compactly supported, integral 1

Theorem [NB & C. Kuehn, preprint 2015, arXiv/1504.02953]

There exists a choice of renormalisation constant C(g), lim._o C(g) = oo,
such that

et = Au® + [1+ C(e)]u — (u°)® 4 vo +&°

0iv® = a1u® + apv®

admits a sequence of local solutions (u®, v¢), converging in probability to a
limit (u,v) as € — 0.

Local solution means up to a random possible explosion time
Initial conditions should be in appropriate Holder spaces

C(e) < log(e7t) for d =2 and C(¢) < e~ ford =3

Similar results for more general cubic nonlinearity and v € R”

v Vv Vv

v
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Mild solutions of SPDE

Oru = Au+ F(u)+ ¢ J
u(0, x) = uo(x)
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Mild solutions of SPDE

Oru=Au+ F(u)+¢& J
u(0,x) = up(x)

Construction of mild solution via Duhamel formula:
> 0u=Au = u(t,x)= / G(t,x — y)uo(y)dy =: (et up)(x)

where G(t,x): heat kernel (compatible with bc)
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Mild solutions of SPDE

Oru = Au+ F(u)+ ¢
(0, %) — uo(x) J

Construction of mild solution via Duhamel formula:
> 0u=Au = u(t,x)= / G(t,x — y)uo(y)dy =: (et up)(x)
where G(t,x): heat kernel (compatible with bc)
t
> u=Au+f = u(t,x)= (eAt up)(x) —i—/ At=s) f(s,-)(x)ds
0

Notation: u = Gug + G * f
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Mild solutions of SPDE

Oru = Au+ F(u)+ ¢
(0, %) — uo(x) J

Construction of mild solution via Duhamel formula:
> 0u=Au = u(t,x)= / G(t,x — y)uo(y)dy =: (et up)(x)
where G(t,x): heat kernel (compatible with bc)
t
> u=Au+f = u(t,x)= (eAt up)(x) —i—/ At=s) f(s,-)(x)ds
0
Notation: u = Gug + G * f

> Ou=Au+¢ = u=Guy+ Gx{ (stochastic convolution)
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Mild solutions of SPDE

Oru = Au+ F(u)+ ¢
(0, %) — uo(x) J

Construction of mild solution via Duhamel formula:
> 0u=Au = u(t,x)= / G(t,x — y)uo(y)dy =: (et up)(x)

where G(t,x): heat kernel (compatible with bc)

t
> Qu=A0Au+f = u(t,x)= (e’ up)(x) —i—/ Alt=9) £(s,.)(x) ds
0
Notation: u = Gug + G * f
> Ou=Au+¢ = u=Guy+ Gx{ (stochastic convolution)

> Ou=Au+E+F(u) = u=Guy+ Gx*[{+ F(u)
Aim: use Banach's fixed-point theorem — but which function space?
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Holder spaces

Definition of C* for f : I — R, with / C R a compact interval:
pO0<a<l |f(x)—f(y)| < Clx—y|* Vx#y

>a>1: fecle) and f e cot

> o < 0: f distribution, |(f,n3)] < C6*

where 1%(y) = 2n(*5¥) for all test functions 5 € €~

Property: f €C% 0<a<1 = f €C*?!where (f,n)=—(f7)
Remark: f € C1*® 4 |f(x) — f(y)] < C|x — y|**®. See e.g f(x) = x + |x|3/
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Holder spaces

Definition of C* for f : I — R, with / C R a compact interval:
pO0<a<l |f(x)—f(y)| < Clx—y|* Vx#y

>a>1: fecle) and f e cot

> o < 0: f distribution, |(f,n3)] < C6*

where 1%(y) = 2n(*5¥) for all test functions 5 € €~

Property: f €C% 0<a<1 = f €C*?!where (f,n)=—(f7)
Remark: f € C1*® 4 |f(x) — f(y)] < C|x — y|**®. See e.g f(x) = x + |x|3/

Case of the heat kernel: (0 —A)u=f = u=Gxf
Parabolic scaling C&: |x —y| — |t — 5|1/2 + E,d:ﬂxi —yil

bn(5) — Fan(e )
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Schauder estimates and fixed-point equation

Schauder estimate
ad¢Z, feCd = G*fecg”J

Fact: in dimension d, space-time white noise £ € C' a.s. Va < —%
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Schauder estimates and fixed-point equation

Schauder estimate
ad¢Z, feCd = G*fecg+2J

Fact: in dimension d, space-time white noise £ € C' a.s. Va < —%

Fixed-point equation: u = Guy + G * [§ + F(u)]
s d=1: €0 = GxeeCl? = F(u) defined

s d=3 el = Grcecs Y

= F(u) not defined
> d=2£€C;? = Gx£cC) = F(u) not defined

Boundary case, can be treated with Besov spaces
[Da Prato & Debussche 2003]

Why not use mollified noise? Limit £ — 0 does not exist
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Regularity structures
Basic idea of Martin Hairer [Inventiones Math. 198, 269-504, 2014]:

Lift mollified fixed-point equation
u= Gup+ G *[£° + F(u)]

to a larger space called a Regularity structure
(vo, Z8) ——— U
ol
(vo, &) ——0"— ¢
> 1 = S(up, £°): classical solution of mollified equation

> U = S(ug, Z%): solution map in regularity structure

> S and R are continuous (in suitable topology)
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Regularity structures
Basic idea of Martin Hairer [Inventiones Math. 198, 269-504, 2014]:

Lift mollified fixed-point equation
u= Gup+ G *[£° + F(u)]

to a larger space called a Regularity structure

Sm
(UO, /\//ZE) B UM

o |

(vo, &) ——0——10F
Sm

v

u® = S(ug, £%): classical solution of mollified equation

v

U = S(ug, Z¢): solution map in regularity structure
> S and R are continuous (in suitable topology)

> Renormalisation: modification of the lift ¥

Aternative approaches for d = 3: [Catellier & Chouk '13], [Kupiainen '15]
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Regularity structures

(Uﬂ\ﬂ_’_) s @ =

Structure of Hairer, Invent. Math. 198:269-504 (2014) Drawing by Christian Kuehn
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Basic idea: Generalised Taylor series

f:l—-R,0<axl
feC** o feC?andf’eC”

Associate with f the triple (f,f’, ")

When does a triple (fy, fi, f2) represent a function f € C?T<?
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Basic idea: Generalised Taylor series

f:l—-R,0<axl
feC** o feC?andf’eC”

Associate with f the triple (f, f', ")
When does a triple (fy, fi, f2) represent a function f € C?T<?

When there is a constant C such that for all x,y €/

60) ~ (<) ~ (v = ) ~ 3~ xPB0) < Che =y P
1f(y) — A(x) = (v — x)fa(x)] < C|x — y|*T
f(y) — ()] < Clx— y|*
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Basic idea: Generalised Taylor series

f:l—-R,0<ax<l
feC*** o fe(C?and "’ eC”

Associate with f the triple (f, f', ")
When does a triple (fy, fi, f2) represent a function f € C?T<?

When there is a constant C such that for all x,y €/

60) ~ (<) ~ (v = ) ~ 3~ xPB0) < Che =y P
1f(y) — A(x) = (v — x)fa(x)] < C|x — y|*T
f(y) — ()] < Clx— y|*

Notation: f = ful + AX + HLX?

Regularity structure: Generalised Taylor basis whose basis elements can
also be singular distributions

Regularity structures and renormalisation of FitzHugh—Nagumo SPDEs in three space dimensions 5 November 2015 8/15



Definition of a regularity structure
Definition [M. Hairer, Inventiones Math 2014]
A Regularity structure is a triple (A, T,G) where

1. Index set: A C R, bdd below, locally finite, 0 € A

2. Model space: T = @ Ta, each T, Banach space, To = span(1) ~ R
acA
3. Structure group: G group of linear maps [ : T — T such that

rT—TE@Tg V1 e T,

and Tl =1Vl eg. pe
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Definition of a regularity structure
Definition [M. Hairer, Inventiones Math 2014]
A Regularity structure is a triple (A, T,G) where
1. Index set: A C R, bdd below, locally finite, 0 € A
2. Model space: T = @ T., each T, Banach space, Tp =span(1) ~ R
acA
3. Structure group: G group of linear maps [ : T — T such that
rT—TE@Tg V1 e T,
[B<a

and N1 =1Vl €.

Polynomial regularity structure on R:
> A= Np
> Tk ~ R, Ty = span(X¥)
> Tp(XK) = (X —h)*VheR

Polynomial reg. structure on RY: Xk = Xlk1 . .Xcl,(d € Ty |kl = Z;le ki
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Regularity structure for O,u = Au — u® + ¢

New symbols: =, representing &, Holder exponent |=|; = ag = —% —K

Z(7), representing G x f, Holder exponent |Z(7)|s = |7|s + 2
70, Holder exponent |To|s = |7|s + |o]s
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Regularity structure for O,u = Au — u® + ¢

New symbols: =, representing &, Holder exponent |=|; = ag = —% —

Z(1), representing G * f, Holder exponent |Z(7)|s = |7|s + 2
7o, Holder exponent |to|s = |T|s + |05

T Symbol | |7|s d=3 d=2
= = Qg —g — K —2—K
7(2)3 A 3a0+6 | =2 -3k | 0—3x
I(z)? AV 200 +4 | —1—-2x | 0—2k
TZEMIER | P | s5ap+12| 155 | 2-5k
(2) 1 ag +2 —I—-k |0—k
12z | P |4a0+10|0-4x | 2-4k
IZEPI(E)? | v | 4ap+10 | 0—4r | 2—4x
Z(2)%X; VXi | 2a0+5 | 0—2k 1-2k
1 1 o 0 0
I(Z(Z)?) V30048 |1-3k |2-3x
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Fixed-point equation for O;u = Au — v® + ¢
u=Gx*[¢& - v’ + Gup = U=T(=Z—-U¥)+¢l+...
Uy=0
Ui =1+l
U2:T—|-<p1—\?+390\(+...
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Fixed-point equation for O;u = Au — v® + ¢
u=Gx*[¢ -’ + Guy = U=T(=Z—-U¥)+¢l+...
Uy=0
U =1+l
U =T+ ¢l - \?4—390\( +...
To prove convergence, we need

> A model (M,T): Vz € R+, M7 is distribution describing 7 near z
I, € G describes translations: Mz = [, 3

> Spaces of modelled distributions

DY = {f R @ Tyt 1(2) - Teaf(D)lls S 1z — 2177}
B<y
equipped with a seminorm

> The Reconstruction theorem: provides a unique map R : D7 — C¢'
(o = inf A) s.t. [(Rf = M,f(2),m0 )| < &7
(constructed using wavelets)
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Canonical model Z¢ = (¢, T¥)

Defined inductively by
(M3)(2) = £(2)
(N2X9)(2) = (z - 2)*
(Mzro)(z) = (NZ7)(2)(NZ0)(2)
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Canonical model Z¢ = (IN°,T¢)
Defined inductively by

(M=)(2) = £°(2)

(M2X4)(2) = (z - 2)"
(Me70)(2) = (M7)(2)(N20)(2)
(MEZ(7))(2) = [ 6(2— 2)(Mer)(2) oz
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Canonical model Z¢ = (IN°,T¢)
Defined inductively by
(M3)(2) = £(2)
(N2X9)(2) = (z - 2)*
(Mzro)(z) = (NZ7)(2)(NZ0)(2)
(NZ(m)(z )_/G(Z—Z)(HET)( 'Ydz’ — polynomial term
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Canonical model Z¢ = (IN°,T¢)
Defined inductively by
(M23)(z) =£°(2)
(NEX)(2) = (2 - 2)"
(Me7o)(2) = (NZ7)(2)(NZ0)(2)
(NZ(m)(z )—/G(z—z) Ns7)(Z")dz’ — polynomial term

Then K s.t. RKf = G * Rf and the following diagrams commute:

DY K Dr+2 (uo, Z%) i» U
co co (uo, &%) F——— u°
Gx

where o, = inf A and Kf = Zf + polynomial term + nonlocal term
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Why do we need to renormalise?

Let G. = G * o. where g. is the mollifier

(ME1)(2) = (G % &°)(2) = (G- #&§)(2) = / Ge(z — 21)€(21) dz1

belongs to first Wiener chaos, limit € — 0 well-defined
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Why do we need to renormalise?

Let G. = G * o. where g. is the mollifier

(ME1)(2) = (G % &°)(2) = (G- #&§)(2) = / Ge(z — 21)€(21) dz1

belongs to first Wiener chaos, limit € — 0 well-defined

(Nz)(z2) = (G xE&°)(z / Ge(z — 21)Ge(z — 22)&(21)&(22) dz1 dzo

diverges as ¢ — 0
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Why do we need to renormalise?

Let G. = G * o. where g. is the mollifier

(ME1)(2) = (G % &°)(2) = (G- #&§)(2) = / Ge(z — 21)€(21) dz1

belongs to first Wiener chaos, limit € — 0 well-defined

(Nz)(z2) = (G xE&°)(z / Ge(z — 21)Ge(z — 22)&(21)&(22) dz1 dzo

diverges as ¢ — 0
Wick product: {(z1) ¢ {(22) = {(21){(z2) — 6(z1 — 22)

(I'I;V)(z):// Gs(zle)GE(z722)5(21)05(22)d21d22+/Gs(zle)zdzl

in 2nd Wiener chaos, bdd Ci(e)—o0

Renormalised model: (ﬁ;\/)(z) = (Nz3)(z) — Gi(e)
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The case of the FitzZHugh—Nagumo equations
Fixed-point equation

u(t,x) = G [€° + u— u® + V](t, x) + Guo(t,x)

t
v(t,x) = / u(s, x) elt=9)22 3, ds + &2 v
0

Lifted version
U=TI[Z+U—- U+ V]+ Gu
V=EU+ Quw

where & is an integration map which is not regularising in space
New symbols £(Z(Z)) = ¢, etc. ..

We expect U, and thus also V to be a-Hélder for o < —%
Thus Z(U — U3 + V) should be well-defined

The standard theory has to be extended, because £ does not correspond
to a smooth kernel
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Concluding remarks

> Models with O;u of order u* + v* and O;v of order u? + v should be
renormalisable
Current approach does not work when singular part (t, x)-dependent

> Global existence: recent progress by J.-C. Mourrat and H. Weber on
2D Allen—Cahn

> More quantitative results?
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Details on implementing &£

Problems:
> Fixed-point equation requires diagonal identity (¢ 7)(t,x) =0
> Usual definition of K would contain Taylor series

)= Z /Dk z—2z)(N,7)(dz)

\k|5<a

k
ZX/Dk Z)(Rf — N,f(2))(dz)

[kls <y
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Details on implementing &£

Problems:
> Fixed-point equation requires diagonal identity (¢ 7)(t,x) =0
> Usual definition of K would contain Taylor series

k
J(@2)r= Y %/DkG(sz)(ﬂzT)(dE)

lk|s <o

Xk _ -
Nf(z)= Y ﬂ/ch;(z—z)(m— N,f(z))(dz)
‘k|5<’)’
Solution:
> Define MET only if =2 < |7|s < 0 (otherwise ET=0) = J(z)7 =0

> Define IC only for f =37\ g+ 3 socr(t,X)T =1 f- 4 £y
= can take Rf = I .f(t,x) and thus N'f = 0 for these f
> Time-convolution with @ lifted to

(KRNt x) = DY et > /Q(t—s)cT(s,x)dST:: (EF_+OF)(t, )

|7]s <0 |7]s>0

Regularity structures and renormalisation of FitzHugh—Nagumo SPDEs in three space dimensions 5 November 2015 16/15



Fixed-point equation

Consider Oru = A, + F(u,v) + & with F a polynomial of degree 3
If (U, V) satisfies fixed-point equation

U=ZI[=+ F(U, V)] + Gug + polynomial term
V=EU_+ QUs + Qw

then (RU, R V) is solution, provided RF(U, V) = F(RU,RV)
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Fixed-point equation

Consider Oru = A, + F(u,v) + & with F a polynomial of degree 3
If (U, V) satisfies fixed-point equation

U=ZI[=+ F(U, V)] + Gug + polynomial term
V=EU_+ QUs + Qw

then (RU, R V) is solution, provided RF(U, V) = F(RU,RV)

Fixed point is of the form

U:T+ap1+[a1? +a,Y +a3'°%’+a4’?"]+[b1\f+b2\f'+b3"f']+
vttt [m T 40 45 10+ b +5Y 4 5Y] + ..

Regularity structures and renormalisation of FitzHugh—Nagumo SPDEs in three space dimensions 5 November 2015 17/15



Fixed-point equation

Consider Oru = A, + F(u,v) + & with F a polynomial of degree 3
If (U, V) satisfies fixed-point equation

U=ZI[=+ F(U, V)] + Gug + polynomial term
V=EU_+ QUs + Qw
then (RU, R V) is solution, provided RF(U, V) = F(RU,RV)

Fixed point is of the form

UZT—l—gal—&—[al\T/ +a,Y +a3'°%’+a4’?"]+[b1\f+b2\f'+b3"f']+
Vedagl+ (a7 +5 7 45V 10+ B +5Y +5Y]+ ...

> Prove existence of fixed point in (modification of) DY with y =1+ &
> Extend from small interval [0, T] up to first exit from large ball

> Deal with renormalisation procedure
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Renormalisation

> Renormalisation group: group of linear maps M : T — T
Associated model: MY s.t. M7 = MM7 where M, = Nl;,

Allen—Cahn eq.: M = e~ Ghi=GLl with [; : 8 =1, Ly : 1
FHN eq.: the same group suffices because Q is smoothing
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Renormalisation

> Renormalisation group: group of linear maps M : T — T
Associated model: MY s.t. M7 = MM7 where M, = Nl;,

Allen—Cahn eq.: M = e~ Ghi=GLl with [; : 8 =1, Ly : 1
FHN eq.: the same group suffices because Q is smoothing

> Look for r.v. M,7 s.t. if 1Y) = (I—Ig':))"/’E then 3k, 6 > 0 s.t.
ERﬁzT, 77?)‘2 < A\2ITls 5 ERﬁzT . ﬁga)T’ 77?>‘2 < 220 \2I7|s+r

Then (ﬁ&a),Ff)) converges to limiting model, with explicit LP bounds
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Renormalisation

> Renormalisation group: group of linear maps M : T — T
Associated model: MY s.t. M7 = MM7 where M, = Nl;,

Allen—Cahn eq.: M = e~ Ghi=GLl with [; : 8 =1, Ly : 1
FHN eq.: the same group suffices because Q is smoothing

> Look for r.v. M,7 s.t. if 1Y) = (nf))"/’s then 3k, 6 > 0 s.t.
(M, n) | < A2+ B|(Tr — NP7, ) [? < X a2letn
Then (ﬁ&a)ff)) converges to limiting model, with explicit LP bounds

> Renormalised equations have nonlinearity F st
F(MU, MV) = MF(U, V) + terms of Holder exponent > 0

FHN eq. with cubic nonlinearity
F = aiu+ asv+ Biu? + Bouv + Bav? + 410 + you?v + y3uv? 4 y4v3

~

F(u,v) = F(u,v) — co(e) — a(e)u — ca(e)v
with the ¢;(¢) depending on Ci, Gy, provided either d =2 or 42 =0
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