Dynamics of Non-densely Defined Stochastic
Evolution Equations

seit 1558

Alexandra Neamtu

Institute of Mathematics
Friedrich-Schiller-University Jena

Bielefeld, 6th November 2015



@ Motivation

Alexandra Neamtu Dynamics of Non-densely Defined Stochastic Equations



@ Motivation

© Random evolution equations

Alexandra Neamtu Dynamics of Non-densely Defined Stochastic Equations



@ Motivation
© Random evolution equations

© Random attractors

Alexandra Neamtu Dynamics of Non-densely Defined Stochastic Equations



SDE:
dU(t) = (AU(t) + F(U(t)))dt + dW(t), t € [0, T] (11)
U(0) = Up. '
RDE:
{dj};) = Av(t) + F(w, v(t)), t € [0, T] 12)
v(0) = w.
Dynamics

@ random attractors;

@ invariant manifolds.
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SDE:

{dU(t) = (AU() + F(U()de +dW(0). te0.T] ) )

U(0) = Up.
RDE:
MO — Au(t) + F(w, v(t), t€[0,T] (12)
v(0) = v. |
Dynamics

@ random attractors;
@ invariant manifolds.

Here: A is a non-densely defined linear operator: NO Cy-semigroup!
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Motivation

Example: Deterministic case

Age-structured models in population dynamics [P. Magal and S.
Ruan (2009)]

Orv(t,a) + O,v(t,a) = —pv(t,a), t >0, a> 0,

v(t,0)=f (f B(a)v(t a)da>
v(0,) = wo(-) € L}(0,0).
Ricker type birth function: f(x) = xe >, x € R and b > 0.
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Motivation

Example: Deterministic case

Age-structured models in population dynamics [P. Magal and S.
Ruan (2009)]

Orv(t,a) + O,v(t,a) = —pv(t,a), t >0, a> 0,
v(t,0) f(fﬂ(av (t a)da>
v(0,-) = w(*) € L}(0, 00).
Ricker type birth function: f(x) xe~ X, x€Rand b>0.
Set X =R x L1(0,00) and u(t,) = ¢y ).

A(9)=( —,V(O) )W|thD() {O}><W11(0 ).

—V

Fofopx'(0,00) X, F( 9 )= F (Of ﬁ(a)v(a)da>
0

)
LX(
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Motivation

Abstract Cauchy-Problem

One obtains

du = Au+ F(u), u(0)= uy € D(A). (1.3)

Note that D(A) = {0} x L}(0, 00) # X.
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Motivation

Abstract Cauchy-Problem

One obtains

du = Au+ F(u), u(0)= uy € D(A). (1.3)

Note that D(A) = {0} x L}(0, 00) # X.
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non-dense domain, Ann. Scuola. Norm. Sup. Pisa Cl. Sci 14
(1987), 285-344;

@ Z. Liu, P. Magal and S. Ruan, Hopf bifurcation for nondensely
defined Cauchy problems, Z. Angew. Math. Phys. 62 (2011),
191-222;

e P. Magal, S. Ruan, On semilinear Cauchy problems with
nondense domain, Adv. Diff. Eq. 14 (2009), 1041-1084;

e H. R. Thieme, Integrated semigroups and integrated solutions
to abstract Cauchy problems, J. Math. Anal. Appl. 152
(1990), 416-447.
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Random evolution equations

Preliminaries

Definition

Let 0 : R X Q — Q be a family of P-preserving transformations having following properties:
@ the mapping (t,w) — O:w is (B(R) ® F, F)-measurable;
Q 0o = lda;
© 0i0s =0:00; forall t,s, € R.

Then the quadrupel (2, F, P, (0¢)tecr) is called a metric dynamical system.

Definition

A linear random dynamical system is a mapping

0 R" X Qx X = X, (t,w,x) — o(t,w, x),

@ ¢is (B(R") ® F ® B(X), B(X))-measurable;
Q «(0,w, ) = ldx forall w € Q;

e the cocycle property:
p(t + s, w, x) = @(t, Osw, p(s,w, x)), forall x € X,s,t ERT,w € Q;

@ foreachw € Qand t € R, [X 3 x = ¢(t,w, x) € X] € L(X).
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Random evolution equations

Let X be a separable Banach space and Xp := D(A);

' (t) = Au(t) + F(0rw, u(t)), u(0) = up € Xop. (2.1)

Definition
A family of linear bounded operators (S(t)):>o is called an integrated
semigroup if
Q@ S(0)=0;
@ t+— S(t) is strongly continuous;
S

© S(s)S(t) = [(S(r+t)— S(r))dr, t,s>0.
0

Examples:
t
Q S(t) = [ T(s)ds where (T(t))r>0 is a Co-semigroup;
0

@ Au = iAu generates an integrated semigroup in LP(R") for p #£ 2.
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Random evolution equations

A continuous map u € C([0, T]; X) is an integrated solution of (2.1) if

(1] ftu(s)ds € D(A), te 0, TJ;
0

Q u(t)=u+ Af u(s)ds + ft F(Osw, u(s,w, up))ds, t € [0, T].
0 0

Assumptions:

M

< — forall A > wp and all kK > 1;
LX)  (A—wgp)

o Jor-a

(b) lim (M —A)"1x =0, forall x € X.

A—00

@ Ag=Aon D(Ap) ={x € D(A) : Ax € Xp} generates a Cp-semigroup
(T(t))e=0 on Xo;
@ A generates an integrated semigroup (S(t)):>0 on X.
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Random evolution equations

Variation of constants

(M—A)"1: X = Xy and (M — A" Ix = x, for x € Xo.

lim A
A—00
Equation on Xjp:

(M — A du(t) = Ao — A)Lu(t)dt + (A — A) TR (Brw, u(t))dt,

(M = A u(e) = TN — A ug + / T(t — s)(AM — A) " F(Osw, u(s))ds.

| o

Theorem

Equation (2.1) possesses a unique global integrated solution

t
u(t,w, uo) = T(t)uo + lim / T(t — s)AMN — A) " F(bsw, u(s, w, up))ds.
— 00
0

(22)
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Random evolution equations

Special case

Consider

du(t) = (Au(t) + f(u(t)))dt + cdW(t), u(0) = ug € D(A), o € D(A). (2.3)

0
@ Ornstein-Uhlenbeck process: dz = zdt + dW, z(w) = — [ e°w(s)ds
—00
0
(t,w) = z(0rw): z(0ew) = — [ €w(t+s)ds +w(t), t €R.
— 00

@ Transformation: x(t) = u(t) — z(0:w).

Equation (2.3) becomes:  x'(t) = Ax(t) + F(0rw, x(t)),

F(Otw, x(t)) = f(x(t) + z(0rw)) + Az(Orw) + z(btw).
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Random attractors

The parabolic case

Assumptions: Ag generates an analytic semigroup, B € v(H; Xp) and W is an
H-cylindrical Wiener process.

dU(t) = (AU(t) + F(U(t)))dt + BdW(t)
v(t) = U(t) — Z(0rw)
dv(t) = Av(t)dt + F(v(t) + Z(0:w))dt.
Infinite dimensional noise: LP(IR)-valued Brownian motion: formally

W(t) =) gu(x)wi(t) = > Wi(t)exBex-
k=1 k=1

(gk)k21 € Lp(]R7 /2) define Bh := Z [h,ek]gk, he€ b and (ek)kz]_ ONB in k.
k>1

2 P P
2| S, ., < B Znter, = [® ¢
kzka | ey =P kglw e o) > vgk(x)| dx

2 k>1

2

< [ E et | o< .

R \k>1
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Random attractors

Applications: Parabolic SPDE-s with nonlinear boundary conditions

9 — i — 4 4 M(u(t,))(x) + dW(t), 1> 0,¢>0,x >0
6u(t,0) _ G(U(t7)) (31)

0x

u(0,-) = up € LP((0, 0); R).

sax=rxr0®.AG) = (%) () = (5
Ao (8) - (WE u,,) with D(Ag) = {0} x {u € W>P(R) : u/(0) = 0}.

@ Ag generates an analytic Cy-semigroup;
@ there exists p* > 1 such that

lim sup A>* [|(A — A) ™| < oco.
A—00

Fractional power: (—A)~# for g > 1 — p% [Magal et.al. (2010)].

v(t) = T(t)vo + /(AI — A))PT(t = s)(AM = A)TPF(v(s) + Z(0sw))ds.
0
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Random attractors

Random Dynamics

Definition

Let D be the collection of the tempered random subsets of X and consider
{A(w)}weq € D. Then {A(w)}weq is called a random absorbing set for ¢ in D
if for every B € D and w € , there exists a tg(w) > 0 such that

o(t,0—tw, B(0—tw)) C A(w), for all t > tg(w).

For each w fix:

| A(w)
@(t, 0—1w)B (6—rw)
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Random attractors

Singular Gronwall Lemma

Lemma (Henry, (1993))

Let f be a nonnegative locally integrable function on [0, T') with

t

f(t) < a(t) + L/(t —s)Pf(s)ds on [0, T).

0

Then it holds on [0, T)

<a(t)+/z r(n ( — §)" =B~ (o) gs.

Apply to:
t
V()] < e lvol| + L/e_”(t_s)(t— ) (Iv(s)l] + 11Z2(6sw) ) ds.
0
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Random attractors

Random attractor

A random set {A(w)},,ecq of X is called a random D-attractor if for all w € Q:

a) A(w) is compact and w — d(x, A(w)) is measurable for every x € X;
b) {A(w)}weq is invariant:

o(t,w, A(w)) = A(Orw) for all t > 0;
c) {A(w)},eq attracts every set in D, for every B = {B(w)}yeq € D,

Jimd(o(t, 0w, B(0-1w)), A(w)) =0,

where d is the Hausdorff semimetric, d(Y, Z) = sup inf ||y — z||x.
yeY zeZ
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Random attractors

Problem: Compactness on unbounded domains

@ closed absorbing set;

@ RDS ¢ is called D-pullback asymptotically compact if for all w € ,
{d(tn, O—t,w, un)} ey has a convergent subsequence, for t, — oo and
un € B(6_t,w) with {B(w)}y,eq € D.
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Random attractors

Problem: Compactness on unbounded domains

@ closed absorbing set;

@ RDS ¢ is called D-pullback asymptotically compact if for all w € ,
{d(tn, O—t,w, un)} ey has a convergent subsequence, for t, — oo and
un € B(6_t,w) with {B(w)}y,eq € D.

Purpose: show ¢ is pullback asymptotically compact.

° {(tn, 0—t,w, vo(0—t,w))}ne1 bounded in LP(R);

#(tn, 0—t,w, vo(f—t,w)) — &

(2]
l¢(tn, 0—t,0; vo(O—t,w))l[w2en(r) < kp(w),

since D((—Ag)®) = W2%P(R).
© There exist R* = R*(w,e) and T = T(B,w) for all t, > T:

|d(tn, 0—t,w, vo(O—t,w)) — &|Pdx < e.

|x|=R*
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Random attractors

Outlook

© Multiplicative noise;

@ Random invariant manifolds: (Lyapunov-Perron method);
© Oseledets splitting;

@ Delay equations

du(t) = Au(t)dt + F(us)dt + dW/(t), for t > 0.
u(t) = uo(t), for t € [—r,0].
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Random attractors
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Thank you for your attention!
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