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Motivation: modelling of interface growth
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Figure: Takeuchi, Sano, Sasamoto, Spohn (2011, Sci. Rep.)
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KPZ equation

@ KPZ equation is a model for random interface growth:
h: Ry xR — R,

dth(t,x) = kAh(t, x) + Noxh(t,x)|*> + £(t, x)

diffusion slope-dependence  space-time white noise
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KPZ equation

@ KPZ equation is a model for random interface growth:
h: Ry xR — R,

dth(t,x) = kAh(t, x) + Noxh(t,x)|*> + £(t, x)

diffusion slope-dependence  space-time white noise

@ Kardar-Parisi-Zhang (1986): slope-dependent growth F(@Xh),

F(dxh) = F(h) + F'(h)(0xh — h) + %F”(E)(&Xh —h)?+...
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KPZ equation

@ KPZ equation is a model for random interface growth:
h: Ry xR — R,

dth(t,x) = kAh(t, x) + Noxh(t,x)|*> + £(t, x)
- ——

diffusion slope-dependence  space-time white noise

@ Kardar-Parisi-Zhang (1986): slope-dependent growth F(@Xh),
F(dxh) = F(h) + F'(h)(dxh — h) + ;F”( )(9xh — h)* +

Highly non-rigorous since Oy h is a distribution. But: Hairer-Quastel (2015,
unpublished) justify it via scaling.

Nicolas Perkowski Paracontrolled KPZ equation 3/23



KPZ equation

@ KPZ equation is a model for random interface growth:
h: Ry xR — R,

Orh(t,x) = kAh(t,x) + AOxh(t,x)|* + £(t, x)
——

diffusion slope-dependence  space-time white noise

@ Kardar-Parisi-Zhang (1986): slope-dependent growth F(0yh);
_ 1
F(0xh) = F(h) + F'(h)(dxh — h)+2F”( )(Oh — h)? +

Highly non-rigorous since Oy h is a distribution. But: Hairer-Quastel (2015,
unpublished) justify it via scaling.

e Fluctuations of e1/3h(te~1, xe=2/3) should converge to KPZ fixed
point. Only known for one-point distribution, special hy (Amir et al.
(2011), Sasamoto-Spohn (2010), Borodin et al. (2014)).

Nicolas Perkowski Paracontrolled KPZ equation 3/23



Weak KPZ universality conjecture

Orh = Ah+ |0ch|? + €.

@ KPZ equation for t — oo in KPZ universality class. For t — 0
Gaussian (Edwards-Wilkinson class of symmetric “growth” models).
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Weak KPZ universality conjecture

Orh = Ah+ |0ch)? + €.

@ KPZ equation for t — oo in KPZ universality class. For t — 0
Gaussian (Edwards-Wilkinson class of symmetric “growth” models).

o Weak KPZ universality conjecture: KPZ equation is only growth
model interpolating EW and KPZ. Mathematically: fluctuations of
weakly asymmetrical models converge to KPZ.

@ Example: Ginzburg-Landau V¢ model
dd = (pV'(FT) = qV'(F)) dt +dw/; P =x —x 7Y
For p = q convergence to 0y¢) = aAyp + €. For p—q = /e

convergence to KPZ Diehl-Gubinelli-P. (2015, in preparation).
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How to interpret KPZ?

Lh(t,x) = (0 — A)h(t,x) = |0xh(t,x)|* + £(t, x).

e Difficulty: h(t,-) has Brownian regularity, so |0, h(t,x)|? =7
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How to interpret KPZ?

Lh(t,x) = (0 — A)h(t,x) = |0xh(t,x)|* + £(t, x).

e Difficulty: h(t,-) has Brownian regularity, so |0, h(t,x)|? =7
@ Cole-Hopf transformation: Bertini-Giacomin (1997) set
h(t, x) := log w(t, x), where

Lw(t,x) = w(t,x)E(t, x)

(linear 1td SPDE). Correct object but no equation for h.
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How to interpret KPZ?

Lh(t,x) = (0 — A)h(t,x) = |0xh(t,x)|* + £(t, x).

e Difficulty: h(t,-) has Brownian regularity, so |0, h(t,x)|? =7
@ Cole-Hopf transformation: Bertini-Giacomin (1997) set
h(t, x) := log w(t, x), where

Lw(t,x) = w(t,x)(t,x)

(linear 1td SPDE). Correct object but no equation for h.

@ Hairer (2013): series expansion and rough paths/regularity structures,
defines |Oxh(t, x)[. So far on circle (h: Ry x T — R), but certainly
soon extended to h: Ry x R — R.
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How to interpret KPZ?

Lh(t,x) = (0 — A)h(t,x) = |0xh(t,x)|* + £(t, x).

e Difficulty: h(t,-) has Brownian regularity, so |0, h(t,x)|? =7
@ Cole-Hopf transformation: Bertini-Giacomin (1997) set
h(t, x) := log w(t, x), where

Lw(t,x) = w(t,x)(t,x)

(linear 1td SPDE). Correct object but no equation for h.

@ Hairer (2013): series expansion and rough paths/regularity structures,
defines |Oxh(t, x)[. So far on circle (h: Ry x T — R), but certainly
soon extended to h: Ry x R — R.

@ Martingale problem: Assing (2002), Gongalves-Jara (2014), Gubinelli-Jara (2013)
define “energy solutions” of equilibrium KPZ. Uniqueness long open,
solved in Gubinelli-P. (2015).
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Solution concepts and weak KPZ universality

@ Cole-Hopf: equation for e/; most systems behave badly under
exponential transformation. Only very specific models: Bertini-Giacomin
(1997), Dembo-Tsai (2013), Corwin-Tsai (2015).
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Solution concepts and weak KPZ universality

@ Cole-Hopf: equation for e/; most systems behave badly under
exponential transformation. Only very specific models: Bertini-Giacomin
(1997), Dembo-Tsai (2013), Corwin-Tsai (2015).

o Pathwise approach: needs precise control of regularity, so far only
semilinear S(P)DESZ Hairer-Quastel (2015), Hairer-Shen (2015), Gubinelli-P. (2015).
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Solution concepts and weak KPZ universality

@ Cole-Hopf: equation for e/; most systems behave badly under
exponential transformation. Only very specific models: Bertini-Giacomin
(1997), Dembo-Tsai (2013), Corwin-Tsai (2015).

o Pathwise approach: needs precise control of regularity, so far only
semilinear S(P)DESZ Hairer-Quastel (2015), Hairer-Shen (2015), Gubinelli-P. (2015).

@ Martingale problem: powerful for universality of equilibrium
fluctuations Gongalves-Jara (2014), Gongalves-Jara-Sethuraman (2015),
Diehl-Gubinelli-P. (2015, in preparation). Before only tightness and martingale
characterization of limits. Now: uniqueness proves convergence.
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Aims for the rest of the talk

@ Equivalent derivation of Hairer's solution, replacing rough paths by
paracontrolled distributions.
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Aims for the rest of the talk

@ Equivalent derivation of Hairer's solution, replacing rough paths by
paracontrolled distributions.

@ New stochastic optimal control formulation of the KPZ equation.
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Aims for the rest of the talk

@ Equivalent derivation of Hairer's solution, replacing rough paths by
paracontrolled distributions.

@ New stochastic optimal control formulation of the KPZ equation.

@ Uniqueness of equilibrium KPZ martingale problem.
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@ Paracontrolled formulation of the equation
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Formal expansion of the KPZ equation

Lh(t,x) = (0 — A)h(t,x) = |0xh(t,x)|? — 0o + £(t, %),

@ Perturbative expansion around linear solution: h =Y + h=1 with
Y € CY/?-,
LY =¢,
thus
L= = [0, Y]? — 00 4+ 20, YO hZt 410, h=1)2 .
N P

c-1-=BZ'% c-1/2— Cco-
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Formal expansion of the KPZ equation

Lh(t,x) = (0 — A)h(t,x) = |0xh(t,x)|? — 0o + £(t, %),

@ Perturbative expansion around linear solution: h =Y + h=1 with

Y € Ccl/2-,
LY =¢,

thus

Lh™r = [0, V[P — 00 + 20k YafP1+¢ah>H?
N—_——

c-1-=BZ'% Cc- 1/2* Cco-

o Continue expansion: set LYY = |0, Y|? — 0o and then

Ly¥ = 9, YYO.Y and in general LYmn) = 9 ymno, Y™,

h=> c(r)Y".

T

Seems very difficult to make this rigorous.

Nicolas Perkowski Paracontrolled KPZ equation

Formally:
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Truncated expansion

Following Hairer (2013), truncate expansion and set
h=Y+YVitayYynr,
where h” is paracontrolled by P with LP = 0,Y, write

WP =H <P+ h
M~ N
C3/2— c2-
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Truncated expansion

Following Hairer (2013), truncate expansion and set
h=Y+YVitayYynr,
where h” is paracontrolled by P with LP = 0,Y, write

WP =H <P+ h |
~—— =~
C3/2— c2—
where for Ay = k-th Littlewood-Paley block:
W<P= Y AHAP.
i<j—1

Intuitively: h” is frequency modulation of P plus smoother remainder;
more intuitively: on small scales h” “looks like" P.
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Paracontrolled differential equation

Paracontrolled ansatz: h € Dy if h=Y + YV + 2YY 1 P with
h? =K < P+ ht.
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Paracontrolled differential equation

Paracontrolled ansatz: h € Dy, if h=Y + YV + 2YY + AP with
hP =H <P+ h.

Theorem (Gubinelli, Imkeller, P. (2015))

For paracontrolled h € Dy, the square |0y h|? — oo is well defined, depends
continuously on h and (Y, YV, YY’7 YY", YV, 6, Po, Y), and we have

|0xh|? — 0o = lim (|0x(6: * h)|? — c.).
e—0
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Paracontrolled differential equation

Paracontrolled ansatz: h € Dy, if h=Y + YV + 2YY + AP with
hP = W < P+ ht.

Theorem (Gubinelli, Imkeller, P. (2015))

For paracontrolled h € Dy, the square |0y h|? — oo is well defined, depends
continuously on h and (Y, YV, YY’, YY", YV, 0, Po, Y), and we have

|0h|? — 00 = lim (|0x(d= * h)|* — c.).
e—0

Theorem (Gubinelli, P. (2015))

Local-in-time existence and uniqueness of paracontrolled solutions.
Solution depends locally Lipschitz continuously on extended data

(Y, YV, Y, v v 9,.Pa.Y). Agrees with Hairer's solution.
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© KPZ as HJB equation
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Formal derivation
@ Cole-Hopf: h = log w, where
Lw(t,x) = w(t,x)({(t,x) —o0),  w(0) =e"O.
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Formal derivation
@ Cole-Hopf: h = log w, where
Lw(t,x) = w(t,x)({(t,x) —o0),  w(0) =e"O.

@ Feynman-Kac:

w(t.x) = B[ exp (ho(By) + /ot(g(t ~5.B,) —oo)ds) .
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Formal derivation
@ Cole-Hopf: h = log w, where
Lw(t,x) = w(t,x)({(t,x) —o0),  w(0) =e"O.

@ Feynman-Kac:
w(t.x) = B[ exp (ho(By) + /ot(g(t ~5.B,) —oo)ds) .

@ Boué-Dupis (1998):

. t
log E[e (B)] =supE[F(B+/ vsds)—%/ vszds].
v 0 0
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Formal derivation
@ Cole-Hopf: h = log w, where
Lw(t,x) = w(t,x)({(t,x) —o0),  w(0) =e"O.

@ Feynman-Kac:
t
w(t.x) = B[ exp (ho(Br) +/0 (€t — 5. B) — oc)ds)].
@ Boué-Dupis (1998):
. 1 t
log E[e (B)] =supE[F(B+/ vsds)——/ vszds].
v 0 4 0

@ Thus (see also E-Khanin-Mazel-Sinai (2000)):

t t
hle.x) = supEx [Bo(o0) + [ (€t =5.5) —o0)ds — 5 [ as].

where 7Y = x + Bs + fos v,dr. (But of course nothing was rigorous!)
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Let's make it rigorous
Regularize &:
Lh. = |6xh€|2 —c+&.

Then

t 1 t
he(t.x) = sup Ex [ o(37) + /0 (6t~ 57%) — e)ds — /0 2ds).
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Let's make it rigorous
Regularize &:
Lhe = |8Xh€|2 —C + &

Then
t 1 t )
be(eox) = sup [ m(of) + [ (6t —s.2) — s — 3 [ v2as]
v 0 0
Fix singular part of optimal control:

d¢Y =20, (Ye + YY) (t — s5,¢Y)ds + veds + dBs,

Then 1t gives
he(t, x) = (Yo + Y + YE)(t,x)

+ Sl‘J/pEX [ho(({) + /Ot <8XY6R(t —5,CJ)vs — %’Vs|2)d5}7

where YER solves a linear paracontrolled equation.
14 / 23



Singular control problem

he(t,x) = (Ye + YY + YF)(t,x)

B [ho(c) + [ (3YR( 5. 3lal?)as].

d¢Y =20, (Ye + YY)(t — 5,¢Y)ds + vsds + dBs.

@ Robust formulation that allows ¢ — 0;

Nicolas Perkowski Paracontrolled KPZ equation 15 / 23



Singular control problem

he(t,x) = (Ye + YY + YF)(t,x)

B [ho(c) + [ (3YR( 5. 3lal?)as].

d¢Y =20, (Ye + YY)(t — 5,¢Y)ds + vsds + dBs.

@ Robust formulation that allows ¢ — 0;

@ get quantitative pathwise bounds in terms of linear equation, no
blowup for all realizations of ¢ and all initial conditions;
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Singular control problem

he(t,x) = (Ye + Y + YF)(t, x)
t 1
wsup B (et + [ (BYA(E—5.¢ve — 31wl ],
v 0
d¢Y = 20,(Y: + YY) (t — s5,¢Y)ds + veds + dBs.
@ Robust formulation that allows ¢ — 0;
@ get quantitative pathwise bounds in terms of linear equation, no

blowup for all realizations of ¢ and all initial conditions;

@ techniques of Delarue-Diel (2014), Cannizzaro-Chouk (2015) allow to formulate
control problem in the limit, get variational representation of KPZ.
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Singular control problem

he(t,x) = (Ye + YY + YF)(t,x)
t
1
+ sup Ex | ho(¢) +/ O YR(t —5,¢)vs — 2 |vs|?)ds|,
P ho(cH) + |2V )vs — 71vel?) ds|

d¢Y =20, (Ye + YY)(t — 5,¢Y)ds + vsds + dBs.

@ Robust formulation that allows ¢ — 0;

@ get quantitative pathwise bounds in terms of linear equation, no
blowup for all realizations of ¢ and all initial conditions;

@ techniques of Delarue-Diel (2014), Cannizzaro-Chouk (2015) allow to formulate
control problem in the limit, get variational representation of KPZ.

@ Result independent of Cole-Hopf, only used to abbreviate derivation.
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© Uniqueness of the martingale solution
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Burgers generator

Burgers equation:
et = Au + Oy u® + DE.

@ Invariant measure p = law(white noise).
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Burgers generator

Burgers equation:
Oru = Au+ O + O0xE.

@ Invariant measure p = law(white noise).

e Formally: generator Lo + B, Ly symmetric in L?(x) and B
antisymmetric. Ly is generator of OU process 0;1) = A + 0,&.

@ So for u(0) ~ p, backward process i(t) = u(T — t) should solve
Opll = Al — 0xl® + 9

for new white noise {A Difficult to make rigorous.
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Gubinelli-Jara controlled processes

Gubinelli-Jara (2013): u is called controlled by the OU process if
Q uy ~ pforall t;
Q forallpe S

() = o)+ [ 0 Bp)ds + A() + M),

M(¢) martingale with (M(p)): = 2t||0xpl|;2 and (A(p)) = 0;
© i; = ut_; of same type with backward martingale M,

A= —(A1 — AT_0).
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Gubinelli-Jara controlled processes

Gubinelli-Jara (2013): u is called controlled by the OU process if
Q uy ~ pforall t;
Q forallpeS

() = u(e) + | ue(Ag)ds + Ad(g) 1 Me(g),

M(p) martingale with (M(¢)): = 2t||0x¢||;2 and (A(p)) = 0;

© i; = ut_; of same type with backward martingale M,
-At = —(AT - AT—t)-
Define fOT Oxu2ds via martingale trick:

T T
F(ur) = F(uo) +/ LoF(us)d5+/ DF (us)dAs + MY,
0 0
T T . .
F(dr) = F(do) +/ LoF(us)ds +/ DF(d5)dAs + MY,
0 0

T _ F _ \F
s02 [, LoF(us)ds = —M3; — M7

18 / 23



Uniqueness of energy solutions |

Call controlled u energy solution if A = 'Gxu2ds. Gubinelli-Jara (2013):
gy 0 s
existence.

@ Uniqueness difficult because energy formulation gives little control.

@ Easy: uniqueness of paracontrolled energy solutions.
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Uniqueness of energy solutions |
Call controlled u energy solution if 4 = fo Oxu?ds. Gubinelli-Jara (2013):
existence.
@ Uniqueness difficult because energy formulation gives little control.
@ Easy: uniqueness of paracontrolled energy solutions.

Then we read Funaki-Quastel (2014) who study invariant measure for KPZ via
Sasamoto-Spohn discretization:

@ Mollify discrete model to safely pass to continuous limit
Oth® = AR + 6. % 6. % (Oh® — )2+ 0. % &;

o Cole-Hopf: w® = eh" solves

Orw® = Aw® + w® (55 * O * (8;;/5)2 - <8XWE)2> + we(d: % £).

we€

@ Use Boltzmann-Gibbs principle to show convergence of nonlinearity.
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Uniqueness of energy solutions ||

Implement Funaki-Quastel strategy for energy solutions:
" —1
o Ut =0, xu. Itd: we = e% ¥ solves

dwf = Awedt + wiog HdME + dAS) — wi(uf)?dt + wic.dt.

o O 10:M; — €. If rest converges to ¢ € R, then
Orw = Aw + w(€ + ¢). Since Oy log w® = dy log w2, u is unique.
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Uniqueness of energy solutions ||

Implement Funaki-Quastel strategy for energy solutions:

A —1,e
o Ut =0, xu. Itd: we = e% ¥ solves

dwf = Awedt + wiog HdME + dAS) — wi(uf)?dt + wic.dt.

o O 10:M; — €. If rest converges to ¢ € R, then
Orw = Aw + w(€ + ¢). Since Oy log w® = dy log w2, u is unique.

@ Remains to study (ddg 1A — (uf)?dt + c.dt).
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Uniqueness of energy solutions Il
Convergence of (d9g1AS — (vf)2dt + c.dt):
o A°=6.x A= [0 *Ocu?ds, so

(d@;lA‘;{ — (u‘,_?)zdt + c.dt)
= Mp(d¢ * (uf) — (0 * ut)z)dt

e - /T (6. + up)2dx)dt

where Moy = ¢ — [1 @dx.
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Uniqueness of energy solutions Il
Convergence of (d9g1AS — (vf)2dt + c.dt):
o A=+ A= fo 5= * Oxu?ds, so

(d@;lAi — (u‘,_?)Zdt + c.dt)
= Mo(0e * (uf) — (0 * ut)2)dt

Fe - /T (6. + up)2dx)dt

where Moy = ¢ — [1 @dx.

@ Remains to control integrals like fOT F(us)ds. Kipnis-Varadhan
extends to controlled processes, so
t 2
B[] sup | F(ue)ds|"] S sup(2B1F () 6 (uo)]~E[G()(~LoG) o))}
t<T.Jo

where Ly is OU generator, ug ~ white noise.
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Uniqueness of energy solutions |V

e Control supg{2E[F(up)G(uo)] — E[G(uo)(—LoG)(uo)]}, where Lg is
OU generator, ug ~ white noise.

@ For us: F in second chaos of white noise. Use Gaussian IBP to reduce
to deterministic integral over explicit kernel.
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Uniqueness of energy solutions |V

e Control supg{2E[F(up)G(uo)] — E[G(uo)(—LoG)(uo)]}, where Lg is
OU generator, ug ~ white noise.

@ For us: F in second chaos of white noise. Use Gaussian IBP to reduce
to deterministic integral over explicit kernel.

Theorem (Gubinelli, P. (2015))
There exists a unique controlled process u which is an energy solution to
Burgers equation.
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Thank you
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