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Metastability: A common phenomenon

> Observed in the dynamical behaviour of complex systems
> Related to first-order phase transitions in nonlinear dynamics

Characterization of metastability
> Existence of quasi-invariant subspaces €;, i € |
> Multiple timescales

> A short timescale on which local equilibrium is reached within the Q;
> A longer metastable timescale governing the transitions between the Q;

Important feature

> High free-energy barriers to overcome

Consequence

> Generally very slow approach to the (global) equilibrium distribution
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Metastability in the real world

Examples
> Supercooled liquid
> Supersaturated gas

> Wrongly magnetized ferromagnet

Free energy

/\ > Near first-order phase transitions

° > Nucleation implies crossing of
energy barrier

Order parameter
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Reversible diffusions

Gradient dynamics (ODE)
K = V()
Random perturbation by Gaussian white noise (SDE)

dxf(w) = =V V(x5 (w)) dt + V2 dB,(w)
with

> V:RY - R: confining potential, growth condition at infinity

> {Bi(w)}e>0: d-dimensional Brownian motion

Kolmogorov's forward or Fokker—Planck equation
> Solution {x{(w)}¢ is a (time-homogenous) Markov process
> Densities p, (x,t) — p(x,tly,s), of the transition probabilities satisfy

%p =L.p=V-[VV(x)p] +elp
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Equilibrium distribution

> If {x7(w)}+ admits an invariant density pg, then £.py = 0

> Easy to verify (for gradient systems)

po(x) = 7

L veare

> Invariant measure or equilibrium distribution

1
e (dx) = ?e_ V(/e dx

€

> [ concentrates in the minima of V

e=1/4 20

20,

e =1/100

with Z = / e V/e gx
Rd
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Transition times between potential wells

First-hitting time of a small ball Bs(x}) around minimum x%

Ty = T)fi(w) =inf{t > 0: x{(w) € Bs(x})}

Eyring—Kramers Law [Eyring 35, Kramers 40]

> d =1: Ex* T+ =~ 271- e[V(Z*)fv(Xi)]/E
- VI (x2)|V"(z¥)]

o |det VEV(Z*)] viz)-vie /e

d>2: Ewx1y >~
Ca= STEE N\ detvRv(xr)

where \;(z*) is the unique negative eigenvalue of V2V at saddle z*
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Proving Kramers Law

Exponential asymptotics and optimal transition paths via large deviations
approach [Wentzell & Freidlin 69-72]

lim elogExs 7y = V(2%) — V(x¥)
e—0 -

Only 1-saddles are relevant for transitions between wells

Low-lying spectrum of generator of the diffusion (analytic approach)
[Helffer & Sjéstrand 85, Miclo 95, Mathieu 95, Kolokoltsov 96, ... ]

Potential theoretic approach [Bovier, Eckhoff, Gayrard & Klein 04]

27 |det V2V (z*)] V()

=V(x2)l/e 1/2
Mi(z9)] | det V2V(x*) [1+O((clloge])"/?)]

Exi T+ =

Full asymptotic expansion of prefactor [Helffer, Klein & Nier 04]
Asymptotic distribution of 7, [Day 83, Bovier, Gayrard & Klein 05]

imPo {7 >t Epri}=e"
e—=0 7 -
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Non-quadratic saddles

What happens if det V2V (z*) =07

det V2V(z*) =0 = At least one vanishing eigenvalue at saddle z*

= Saddle has at least one non-quadratic direction
= Kramers Law not applicable

Why do we care about this
non-generic situation?

Parameter-dependent systems
may undergo bifurcations

Quartic unstable direction Quartic stable direction
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Example: Two harmonically coupled particles

V,(x1, %) = U(x) + U(xe) + 3 (x1 — x2)?

Change of variable: Rotation by 7 /4 yields

x4 x>
Ux)=%-7%
~ 1 1-2y 1
Vilyiye) = =598 = =5 —vi + g (v +6y1y3 +7)
Note: det V2 VV(O, 0) =1—2v = Pitchfork bifurcation at v = 1/2
v>1 3>v>1 I>v>0
O O
@, O
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Further examples: More particles
> NN particles with nearest-neighbour coupling: i € A =Z/NZ
g
V() = 3 U0a) + 3 3 (xiea —x)?
ieN iEN
Results [Berglund, Fernandez & G. 07]
> Bifurcation diagram, showing a series of symmetry-breaking bifurcations
> Optimal transition paths
> Exponential asymptotics of transition times

> Ginzburg-Landau SPDE on a compact interval: x € [0, L], various b.c.

Drd(x, 1) = O d(x, t) + B(x, t) — ¢(x, t)* ( + weak spatio-temporal noise)
L
Energy functional V(¢) = / [U((x)) + ¢ (x)*] dx
0

Results [Maier & Stein 01; Berglund & G. 09; Barret, Berglund & G. in prep.]
> Pitchfork bif. at L = 27 (periodic b.c.) or L = 7w (Neumann b.c.)
> Subexponential asymptotics of transition times at critical L
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Degenerate saddles: An example

Assume z* = 0 and eigenvalues \; < 0 = Xy < A3 < --- < )y of V2V/(0)

d
1 1
V(x) = _5‘)\1|X12 T3 E Aix? + E Vijexixixx + - ..
Jj=3

1<i<j<k<d
Normal form: There exists a polynomial g(y) = O(]|y||?) s.t.

d
1 1
V(y+g(y)) = —§|/\1|y12 + Gy3 + Gays + 5 Z )\jyjz + higher-order terms
=3

Simplest case: z* = 0 a saddle with C3 = 0 and C; > 0. In this case,

d
1 1
Viy+gly)= — §|)\1|y12 + Coys + 5 Z /\jyj2 + higher-order terms
j=3
1 d
= —u(n)+ w(n)+ 5 23: Ajy7 + higher-order terms
j=
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Main result
> Assume x* is a quadratic local minimum of V
(non-quadratic minima can be dealt with)
> Assume x is another local minimum of V/

> Assume z* = 0 is the relevant saddle for passage from x* to x7}

v

Normal form near saddle

V(y) = —u1(y1) + wa(y2) Z/\J}/J

> Assume growth conditions on uq, u

Theorem [Berglund & G., to appear in MPRF 2010]

u(y2)/e 4
E (2me)d/2 e~ VIx2)/e v2 ﬁ 2me
T = —
- \/det V2V/(x / e—tiln)/e dy; j=3 Aj

x [1+ O((elloge|)™)

where o > 0 is explicitly known, depends on the growth conditions on wuy, u»
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Corollaries:
From quadratic saddles to saddles with a quartic direction

d
1 1
> Quadratic saddle: V(y) = 7§|>\1|y12 + 5} :)\J_ng I

Jj=2

- V(") -V e | 12
e \/|/\1|detV2V e [1+ O((cllog <])?)]

d
1 1
> Quartic stable direction: V(y) = —§|)\1\y12 + C4y§ + = Z/\j)/jz n
Jj=3

26,/ [ (@2m)As .. g

[V(z*)-V(x2)]/e 1/4
r(1/4) \/ ldet V2V(x*) < [1+ O((ellogel)*)]

By 7e =
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Corollaries:
From quadratic saddles to saddles with a quartic direction

d
1 1
> Quadratic saddle: V(y) = —§|)\1|y12 + 5 E Ajyf +
j_

- (V(z")=V(x2))/eq | 1/2
e \/|/\1|detv2v e [1+ O((clloge))/2)]

d
1
> Quartic unstable direction: V/(y) = —Cyy; + 5 E )\jyj2 +
=2

r(1/4) (27T)1/\2.../\d V(z*)— «
Bor 74 = V(z") V(<)) /eq | 1/4
ST T iy | det VRV () © [1+ O((ellog ])*/)]
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Corollaries: Worse than quartic . ..

d
1
> Quartic unstable direction: V/(y) = —Cyy; + 5 Z )xjyf + ...
j=2

I'(1/4) 27‘1’)\2...)\(/

[V(z*)=V(x)]/e 1 I 1/4
| e [+ O((llog el)1/*)]

]Exi T+ =

d
1
> Degenerate unstable direction: V(y) = —Cgpylzp + 5 Z)\jyjz +...
j=2

r(1/2p) 277')\2 . )\d V(z*)— .
Ew 7y = lVE)=VE/e 1 o(. . Y/2P
o pC21p/2p51/2(1—1/p) det V2V/(x*) [ ((--)7=P)]
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Corollaries: Pitchfork bifurcation

d
. : 1 1 1
Pitchfork bif.: V(y) = —5\)\1\}/12 + 5)\2)/22 + Cays + 5 ;)\jyjz +
> For Ay > 0 (possibly small wrt. ¢):

(A2 +v2eC)As... \g V() —V(x))/e
Ey 7y =27 5 1+
- ‘)\1‘ det V V( _) \U+()\2/\/ 2€C4)

+R(e)]

where
o1+ ) 00 /16 ?
Vi(a) = [ e K () |
Ki/sa = modified Bessel fct. of 2nd kind S — S

> For \» < 0: Similar

A2 — prefactor
(involving eigenvalues at new saddles and /11 /4)

e =0.5, € =0.1, € =0.01
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Ginzburg—Landau SPDE: Stationary states

Oru(x, t) = O(x, t) + u(x, t) — u(x, t)® + V2e£(t, x)

v

x € [0,L] and u(x, t) € R, weak space-time white noise \/2c¢
Neumann b.c.: 9,u(0,t) = O,u(L,t) =0

v

v

Energy functional V/(u) / [U(u(x)) + 3u/(x)?] dx

v

Stationary states for L < 7:

> ug(x) = £1 (uniform and stable; global minima)
> up(x) = 0 (uniform and unstable; transition state)
> Activation energy V/(up) — V(us) = L/4

Stationary states for L > 7

v

> ug(x) = £1 (uniform and stable; remain global minima)

> up(x) = 0 (uniform and unstable; no longer transition state)

> Uinst,+ (x) of instanton shape (pair of unstable states; transition states)
> Additional stationary states as L increases; not transition states

> As L/ 7: Pitchfork bifurcation
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Ginzburg—Landau SPDE: Classical results
and reduction to finite-dimensional systems

Classical results [Faris & Jona-Lasinio 82]
> Existence and uniqueness of mild solution

> Large deviation principle

Reduction to finite-dimensional systems: Galerkin approximation
> Truncate Fourier series
1 2 <
ug(x,t) = —=yo(t) + —= > y(t)cos(mkx/L)
Vi Vi ;

> Rewrite potential in Fourier variables; retain only modes with k < d

d
1
V@ (y) = 5 ST+ Vi), M= 1+ (nk/L)?
k=0

> Apply results for finite-dimensional systems
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Ginzburg—Landau SPDE: Uniform control of error terms

> Result for the Galerkin approximation
e1C(d) AW /E[1 - Ry ()] < E oy < €7 C(d) AW /5[ + RE ()]
- Uy

(The contribution ¢” is only present at bifurcation points / non-quadratic saddles)

> The following limits exist and are finite

lim C(d)=: C(c0)  and lim AW = AW

d—o0 d—o0

> Important: Uniform control of error terms (uniform in d):

R*(c) :=supRi(e) =0 as e—0
d

Away from bifurcation points, c.f. [Barret, Bovier & Méleard 09]
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Ginzburg—Landau SPDE: Taking the limit d — oo

> For any ¢, the distance between u(x, t) and Galerkin approximation u(?(x, t)
becomes small on any finite time interval [0, T]
[Liu '03, Blomker & Jentzen '09]

> Uniform error bounds and large deviation results allow to decouple limits of
small € and large d

> Yielding

e7C(00) AW 1 - R(2)] < Ey_ 7y, <e€7C(00) eAWE (1 4 RY(2)]
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Ginzburg—Landau SPDE

Theorem [Barret, Berglund & G., in preparation]

For the Ginzburg—Landau SPDE with Neumann b.c., L <7

(Similar expression for L > ) 11 To | e=0003
10 ‘\
b |
L/4 :f ;t £=0.001
E, 7y, = ——=e/" ! I
u_ U+ rO(L) z_ y“‘»\l £=0.003
1 [ A e=001
where the rate prefactor satisfies ;
(recall: \y = =1+ (7/L)?) I

03 04 05 06 07 08 09 1.0 1.1 1.2 1.3 14 1.5 16 1.7

1 sinh \fL
L) = 23/47 sin L \/ A1+ 35/4 35/4 [ o0l

— mvsinh(\ﬁﬁ)s_lﬂ[l—|—(9(...)] as L N
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Thank you for your attention!
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Ginzburg—Landau equation

dru(x, t) = O(x, t) + u(x, t) — u(x, t)* + noise

v

On finite interval x € [0, L]

v

u(x,t) € R (one-dimensional, representing e.g. magnetization)

v

Boundary conditions
> Periodic b.c. u(0,t) = u(L,t) and 0xu(0,t) = Oxu(L, t)
> Neumann b.c. with zero flux d,u(0, t) = dcu(L,t) =0

v

Weak space-time white noise

Deterministic dynamics minimizes energy functional

V(u) = / [0/ (x)? — Ju(x)? + Lu(x)"] dx

as
ov

6XXU(X7 t) + U(X, t) — U(X7 t)3 = _E
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Stationary states for the deterministic system

d2

5 u(x) = —u(x) + u(x)? = 7% { M}

> Uniform stationary states
> us(x) = £1 (stable; global minima of V)
> up(x) = 0 (unstable — when is up a transition state?)
> Periodic b.c.: For k =1,2,... and L > 27k
> Continuous one-parameter family of stationary states
Uk, (x) = ”mzirl sn(\/% +¢,m) where 4kvm+1K(m) =L
> Neumann b.c.: For k=1,2,... and L > 7k

> Two stationary states
2m
m+1

U +(x) ==+ sn( + K(m), m) where  2kv'm+ 1K(m) = L
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Stationary states: Neumann b.c.

For k=1,2,... and L > mk:

2 k
Uk, +(x) = 4/ m—Tl sn( X + K(m),m) where  2kv/m + 1K(m

m+41

~—

uy = +1
u1,+
uz 4

us,+

Usg 4

UoEO

Ug, —

N

\A2S 25/

uz —

uz —
ui,—
u-=-1
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Stability of the stationary states: Neumann b.c.

Consider linearization of GL equation at stationary solution v : [0, L] — R
42
Orv = Alu]lv  where  Alu] = o +1— 30
Stability is determined by the eigenvalues of A[u]
> us(x) = £1: Alus] has eigenvalues —(2 + (mk/L)?), k =0,1,2,...
> up(x) = 0: Alug] has eigenvalues 1 — (7k/L)?, k =0,1,2,...

Counting the number of positive eigenvalues: None for vy and ...

us,+
uz,+
ui,+

RS
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Stability of the stationary states: Neumann b.c.

v

For L < m:
> ut(x) = £1 are stable; global minima

> up(x) = 0 is unstable; transition state
> Activation energy V(up) — V(us+) = L/4

v

For L > 7
> ug(x) = £1 remain stable; global minima
> up(x) = 0 remains unstable; but no longer forms the transition state
> uy,+(x) are the new transition states (of instanton shape)

v

Pitchfork bifurcation as L increases through 7:
Uniform transition state up bifurcates into pair of instanton states u; 4

v

Subsequent bifurcations at L = k7 for k = 2,3,... do not affect transition
states
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Ginzburg—Landau equation with noise

Oru(x,t) = Ou(x,t) + u(x,t) — u(x, t)* +v/2e£(t, x)

u(-,0) = ¢()
0xu(0,t) = Owu(L,t)=0 (Neumann b.c.)

o

> Space—time white noise £(t, x) as formal derivative of Brownian sheet

> Mild / evolution formulation, following [Walsh '86]:
L it L
u(x,t) = / Gi(x,2z)p(z) dz + / / Ge—s(x, 2)[u(s, z) — u(s, 2)*] dzds
Jo Jo Jo
it el
+V2¢e / / G:_s(x, z)W(ds, dz)
o Jo

where

> G is the heat kernel
> W is the Brownian sheet

Existence and a.s. uniqueness [Faris & Jona-Lasinio 82]
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Question

How long does a noise-induced transition from the global minimum u_(x)
to (a neighbourhood of) vy (x) = 1 take?

-1

T4, = first hitting time of such a neighbourhood

Metastability: We expect E,,_ Tu, ~ geonst/e

We seek
> Activation energy AW
> Transition rate prefactor ;"
> Exponent « of error term

such that
By, 7u, = g teAW/E[1 4+ O(%)]
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Large deviations for the Ginzburg—Landau equation

Large deviation principle [Faris & Jona—Lasinio '82]:

> For L < r:
AW = V() — V(u_)=L/4
> For L > m:
AW = V(u+)—V(u) = 3\/% 8E(m) — (1_,;)—1(——3:17_'—5)}((”1)
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Formal computation of the prefactor for the GL equation

Consider L < 7
> Transition state: up(x) =0, V[up] =0
> Activation energy: AW = V[ug] — V[u_] = L/4
> Eigenvalues at stable state u_(x) = —1: juy = 2+ (7k/L)?
> Eigenvalues at transition state up = 0: A\, = —1 + (7k/L)?
Thus formally [Maier & Stein '01, '03]

|)\0| H Mk Slnh(\/EL)
- v 23/4 sin L

For L > m: Spectral determinant computed by Gelfand’s method

Problems
> What happens when L 7~ 7?7 (Approaching bifurcation)

> |Is the formal computation correct in infinite dimension?
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Ginzburg—Landau equation: Introducing Fourier variables

> Fourier series

1
u(x, t) = \[ \f Zyk cos(mkx/L) = \f ZYk

keZ
> Rewrite energy functional V in Fourler variables

V) = S AR Valy) . = 1+ (kL

k=0
where
1 U
Valy) = ;1 > TS
ki+ko+k3+ks=0
> Resulting system of SDEs

1 oo .
yk:—)\k)’k—z Z )/kl)’kz}’k3+ VQSWI‘(k)
ki+ko+ks=k

with i.i.d. Brownian motions Wt(k)

Metastable Lifetimes in Random Dynamical Systems AIMS, Dresden 28 May 2010

|kwx/L

20 /20



Truncating the Fourier series

> Truncate Fourier series (projected equation)

d
ua(x, £) = %yo(t) + \% S yi(t) cos(rkx/1L)

> Retain only modes k < d in the energy functional V

v@(y Z MyE + Vily)
where

1
d ~ o~~~
V4( )(}/) Y Z Yk Yko Yks Yka
ki+ko+ks+ks=0
kie{—d,....0,....+d}

> Resulting d-dimensional system of SDEs

. 1 S ;
Vi = =AYk = 7 > T Tho s + V25 W
ka+ho-tks=k
kie€{—d,....0,...,+d}
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Reduction to finite-dimensional system

> Show the following result for the projected finite-dimensional systems
e1C(d) W1 - Ry (e)] < E 7,0 <& C(d) AW (1 4 RY(e)]

(The contribution ¢” is only present at bifurcation points / non-quadratic saddles)

> The following limits exist and are finite

lim C(d)=: C(c0)  and lim AW = AW

d—o0 d—o0

> Important: Uniform control of error terms (uniform in d):

R*(c) :=supRi(e) =0 as e—0
d

Away from bifurcation points, c.f. [Barret, Bovier & Méleard 09]
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Taking the limit d — oo

> For any ¢, distance between u(x, t) and solution u(?)(x, t) of the projected
equation becomes small [Liu '03] on any finite time interval [0, T]

> Uniform error bounds and large deviation results allow to decouple limits of
small € and large d

> Yielding

e7C(00) AW /1 = R7(e)] < By 7, < 7 C(00) W1 4 RY(2)]
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Result for the Ginzburg—Landau equation

Theorem [Barret, Berglund & G., in preparation]

For the Ginzburg-Landau equation with Neumann b.c., L <7

(Similar expression for L > ) 1 fo | om0
9 ‘\
E, 1y, = e4 [14+0((]log e|)/* 7 \ o
u—tuy rO(L) [ + (( | g |) )] r;-_ !\A’ £=0.003
1 / { e=001
where the rate prefactor satisfies ;
(recall: 2y = 1+ (x/0)?) L — ..

03 04 05 06 07 08 09 1.0 1.1 1.2 1.3 14 1.5 16 1.7

- 1 smh(ﬁL) )\1 W ( )\1 )
- 23/4g sin L A1+ /3e/4L " \V/3e/4L

m sinh(v27) e /4 as L A

Fo(L)
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Towards a proof in the finite-dimensional case:
Potential theory for Brownian motion |

First-hitting time 74 = inf{t > 0: B, € A} of A C R

Fact |: The expected first-hitting time wa(x) = Ex7a is a solution to the Dirichlet
problem

Awp(x) =1 for x € A°
wa(x) =0 forxe A

and can be expressed with the help of the Green function Gac(x,y) as

wa(x) = [ Gac(x,y) dy
AC
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Potential theory for Brownian motion Il

The equilibrium potential (or capacitor) ha g is a solution to the Dirichlet problem

AhAJg(X) =0 forxe (A U B)C
hag(x)=1 forxe A
hag(x)=0 forxeB

Fact Il: ha g(x) = Py[ta < 78]

The equilibrium measure (or surface charge density) is the unique measure ps g on
0A s.t.

hag(x) = A Gpe(x,y) pa,g(dy)
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Capacities
Key observation: For a small ball C = B;(x),

/A hea(y) dy = / /OC Gac(y,2) pc,a(dz) dy
= / wa(z) pc.a(dz) ~ wa(x) capc(A)
Joc

where cap(A) = / pc.a(dy) denotes the capacity
ac
1

B, 7a = ~— | gy d
= Ta = wa(x) cade(X)(A) /AC Bs(x),A(Y) dy

Variational representation via Dirichlet form

capC(A):/ [Vhc a(x)||> dx = inf / [Vh(x)|? dx
(CUA)e heHe,a J(cun)e

where Hc a = set of sufficiently smooth functions h satisfying b.c.
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General case
dxt = —VV(x{) dt + V2e dB;
What changes as the generator A is replaced by eA —VV -V ?

capc(A) =¢ inf Vh(x)|]? e” V=4
e =< inf [ IVHI x
1

B 7a = ~——~ | hg —V/eg
Ta = walx) capg; (x)(A) /A Bstaly) € d

It remains to investigate capacity and integral.

Assume, x = x* is a quadratic minimum. Use rough a priori bounds on h

271_5)11/2 e7V(Xi)/E
g, (x+ e~V /e gy ~ (
/C Bsx2).AL) Y det V2V(x*)
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Estimating the capacity

For the truncated energy functional

d d
1 J 1
v@(y EZ/\kYk+V( ((y )**EYOJFUl 1) ;AkaJr
where
1 3
(1) = S+ gnt
To show

where R(g) = O((c|log])'/*) is uniformly bounded in d
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Sketch of the proof

Proof follows along the lines of [Bovier, Eckhoff, Gayrard & Klein 04]

> Upper bound: Use Dirichlet form representation of capacity
cap = inf O(h) < O(hs) = 0(h.) == [[Vhe(y)|7e 0" dy

Choose § = y/celloge| and

1 for yo < =0
hi(z) = ¢ f(y) for =6 <yp <4
0 for yo >0

where ef”(yo) + 0y, V(¥0,0)f'yo) = 0 with b.c. f(£6) =0 or 1, resp.
> Lower bound: Bound Dirichlet form for capacity from below by

> restricting domain
> taking only 1st component of Vh
> using b.c. derived from a priori bound on hc 4
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