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Thermohaline Circulation (THCQC)

m— Surface Bl Salinity > 36 %

B Salinity < 34 %
(Rahmstorf, Nature 2002) = Bottom > Deep Water Formation

> “Realistic’ models (GCMs, EMICs): Numerical analysis
> Simple conceptual models: Analytical results
> In particular: Box models




North-Atlantic THC: Stommel’s Box Model ('61)

T;. Temperatures _\5/_
S.: Salinities 7
F': Freshwater flux
QR(Ap): Mass exchange ﬁ
Ap =agAS — ar AT Ty S
AT =17 —1T> low latitudes
AS =S — S 10°N — 35°N
([ d 1
— AT = ——(AT —0) — Q(Ap) AT
) ds Tr
d So
\ &AS = EF — Q(Ap)AS

Model for @ [Cessi '94]: Q(Ap) = Tid + %(Ap)Q



Stommel’s box model as a slow—fast system

Separation of time scales: 7 < 74
Rescaling: © = Ap/0, y = (ag/ap)(AS/0), s = 14t
ex = —(x—1) —ex[l+ 7]2(33 — y)z]
g =n—yll+n°(z—y)°]
e=Tr/Tg K 1
Slow manifold (ez = 0): A v[1+72(1—y)°]
z=az"(y) =1+ O(¢)

Reduced equation on slow manifold:

g=p—y[l+n°(1 —y)%+ 0(e)]

<Y

1 or 2 stable equilibria, depending on freshwater flux p (and n)
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Geometric singular perturbation theory

General slow—fast system

ex = f(x,y) (fast variables € R")
y=g(xz,y) (slow variables € R™)

> Slow manifold: f =0 for x = 2*(y)
> Stability: e.v. of 9,f(x*(y),y) have real parts ®(\;(y)) <O

Assume R(N\;(y)) < -6 <0 Wy

Theorem [Tihonov '52, Fenichel '79]

3 adiabatic manifold x = z(y,¢)
S.t.
> Z(y,e) is invariant
> x(y,e) attracts nearby solutions
> z(y,e) = x*(y) + O(e)




Random dynamical systems



Random perturbations: One-dim. slowly driven systems

1 o
dz; = = f(zp, 1) dt + -2 dW.
T 6f(wt ) ‘|‘\/g t

Stable slow manifold / stable equilibrium branch z*(t):

fl@*(®),t) =0, a*(t) = 0z f(z"(t),t) < —ag

Adiabatic solution: z*(t)
z(t,e) = x*(t) + O(e)

B(h): strip around Z(t,¢)
of width ~ h/|a*(%)]

Theorem [Berglund & G '02], [Berglund & G '05]

| 21|t
IP’{a;t leaves B(h) before time t} ~ 4 — _/o a™(s) ds

e

E e—h2/202
o




Random perturbations: General slow—fast systems

dxy = %f(:z;t, yy) dt + %F(:pt, yy) AWy (fast variables € R™)
dy; = g(x¢,yr) dt + 0’ Gz, yr) AWy (slow variables € R™)

Stable slow manifold: f(z*(y),y) = 0, A*(y) = 0-f(«*(y),y) stable

T
Y2 Y1

B(h) :={(z,v): {|z - 2(y,e)|, X*@W) 7|z — 2(y,0)]) < n?}

X*(y) sol. of A*(y)X*+ X*A*(y) " + F(2*(y),y) F(z*(y),y) ' =0
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Random perturbations: General slow—fast systems

dx; = %f(:ct, yt) dt + \/—F(CL‘t, yp) dWy (fast variables € R™)
dy; = g(z¢,yp) dt + 0’ G(z¢,yr) dWy (slow variables € R™)

Theorem [Berglund & G '03]

> ]P’{(:Ut,yt) leaves B(h) before time t} ~ Ch,m(t,€) e—rh?/20°
with Kk = 1 — O(h) — O(¢)
(provided vy does not drive the system away from the region where
assumptions are satisfied)

> Reduction to adiabatic manifold z(y,¢):

dyP = g(Z(v?,e),v?) dt + o' G(Z(yP, €),yP) dW;

yt approximates y; to order o/ up to Lyapunov time
of ydet — g(aj(ydet €)ydet)

EXx. of inertial manifolds for slow—fast RDS [SchmalfuB & Schneider '06]
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Stommel’s box model with Ornstein—Uhlenbeck noise

1
day = —[—(x¢ = 1) — exyQ(ar — yr)| dt + dg;

Y1 .1 o 1
del = — el gr 4 = dw
& . & + NG h

dy; = [M — ytQ(xt — yt)] dt + d¢?
déf = —o€7 dt + o’ dW?

Cross section of B(h) is controlled by matrix

1 1
X 2(1 +7v1) 2(1+7)
X" (y) = . . + O(e)

\2(1+11) 21/

> Variance of z; — 1 ~ 02/(2(1 + 1))
> Reduced system for (y, £7) is bistable (for suitable choice of 1)
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Modelling the freshwater flux

d 1
AT = (AT —0) — Q(Ap)AT
ds Tr

d _So
&AS = ﬁF(S) — Q(Ap)AS

> Feedback: F or F depending on AT and AS
= relaxation oscillations, excitability

> External periodic forcing
= stochastic resonance, hysteresis

> Internal periodic forcing of ocean—atmosphere system
= stochastic resonance, hysteresis
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Case I. Feedback (with Gaussian white noise)
1 o
dip =~ |~ (r — 1) — e Q(ar — w)| dt + — = AW

e
dy = [Mt — ytQ(wy — yt)} dt + o1 dW}
dur = Eh(zt, ye, ue) dt + Véos thQ (slow change in freshwater flux)

Reduced equation (after time change t — &t)

1 O']_ 1
dy = — — 1 — dt + —= dW.
Yt = - [Mt Y1 Q( yt)} 7z Wi

d:ut — h(laytalu't) dt + g2 th2

Relaxation Excitability |7

oscillations

h|< O

h >0

p=1yQ(1—y) Iz
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Saddle—node bifurcation

Deterministic solutions stay at distance £1/3 above the bifurcation
point (—fi, ) until time —u = —f + £2/3

Theorem [Berglund & G '02]

> o < /2. Paths likely to remain in B(o) until time ¢2/3 after
bifurcation, with maximal spreading o/1/6
> o > y/e. Paths likely to escape at time o4/3 pefore bifurcation

14



Case II: Periodic forcing

Assume periodic freshwater flux pu(t) (centred w.r.t. bifurcation diagram)

(a) w (b) @ 1 (©)

\ \
\ \
N N
N N
N N
~

/

Theorem [Berglund & G '02]

> Small amplitude, small noise: Transitions unlikely during one
cycle (However: Concentration of transition times within each period)

> Large amplitude, small noise: Hysteresis cycles
Area = static area 4+ O(£2/3) (as in deterministic case)

> Large noise: Stoch. resonance / noise-induced synchronization
Area = static area — O(o*/3) (reduced due to noise)
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Density of the first-passage time through the unstable branch
Theorem [Berglund & G '05], work in progress

After a model-dependent time change:

b
ATk (o)

1

p(t,tg) = N

e_(t_tO) [ AT (@) ftrans(¢, o)

Q)\T(t — |log 0|)

> N is the normalization

> Tk(o) is the analogue of Kramers’ time: Tk(o) = 967/02
> ftrans 9rows from O to 1 in time ¢t — tg of order |log aJ|

> Qx7(y) is a universal XT-periodic function

Periodic dependence on |logo|: Peaks rotate as o decreases
Rate of escape (in quasistat. regime) does not converge for o — 0O |
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oo

Qxr(y) =2XT > P(y—kAT)

k=—o0

1 1
with double-exponential (Gumbel) peaks P(z) = Ee_zz exp{—a e_zz}

17



At approximately 78°55' N
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