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Motivation: Two coupled oscillators
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Synchronization of two coupled oscillators

First observed by Huygens; see e.g. [Pikovsky, Rosenblum, Kurths 2001]

Motion of pendulums x; = (9;,9,-)

x1 = fi(x1)
X = fh(x2)

For a good parametrisation ¢; of the limit cycles

rz:51 =uw
P2 = w>

where w; denotes the natural frequencies
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Synchronization of two coupled oscillators

First observed by Huygens; see e.g. [Pikovsky, Rosenblum, Kurths 2001]

Motion of pendulums x; = (6;, ;) with coupling

x1 = f(x1) + ehi(x1, x2)
X = Fh(x2) + eha(x1, x2)

For a good parametrisation ¢; of the limit cycles

$2 = wo + £g2(x1, x2)

{(1:51 = wy +egi(x1, x)

where w; denotes the natural frequencies
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Coupled oscillators with slightly different frequencies

¥ = ¢1 — ¢o P =—v+eq(,p) with v =uw, —w;
_ $1td = PR : _ witws
p =93 p=w+ O(e) with w = “15#2

/2

Assume
> Detuning v = wy — wy small

> Coupling strength € > ¢q

Observation

> Synchronization
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Coupled oscillators subject to noise
Averaging

d
w% ~ —v+eq(v)

Adler equation (special choice of coupling) N
a(w) = sin

Observations

> Fixed points at siny) = £

> Synchronization
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Coupled oscillators subject to noise

Averaging
w—w ~ —v +eg(¢)) + noise
de
noise
Adler equation (special choice of coupling) N

4(¢) = sin

Observations
> Fixed points at siny) = £
> Synchronization

> In the presence of noise: occasional transitions (— phase slips)
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Without averaging

P
. N unstable
Y = —v +eq(¢, p) + noise
¢ =w—+ O(e) + noise | stable
/ ®

Observations
> Synchronization
> In the presence of noise: occasional transitions (— phase slips)
> Phase slips correspond to passage through unstable orbit

Question
> Distribution of phase ¢ when crossing unstable periodic orbit?

To tackle
> Stochastic exit problem
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Exit problem:
Wentzell-Freidlin theory and beyond
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Transition probabilities and generators

dx; = f(x¢)dt + og(x;) dW; , x eR"

v

Transition probability density p:(x, y)

v

Markov semigroup T;: For measurable ¢ € L*°,

(Te0)(x) = E*{(x)} = / pe(x, y)e(y) dy

> Infinitesimal generator Ly = iTtgp\tzo of the diffusion:
e
L =
(09 = 10057 + 5 Slas o)
> Adjoint semigroup: For probability measures p

(HTe)(y) = P#{x; = dy} = / pe(x, y) 1(dx)

with generator L*
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Stochastic exit problem

> D C R" bounded domain
> First-exit time 7p = inf{t > 0: x; ¢ D}
> First-exit location x,,, € 0D

> Harmonic measure u(A) = P*{x., € A}

Facts (following from Dynkin's formula — see textbooks on stochastic analysis)

> u(x) = EX{rp} satisfies

Lu(x)=—-1 forxeD
u(x)= 0 forxedD

> For ¢ € L>(0D,R), h(x) = E*{p(x:p )} satisfies

Lh(x) =0 for x € D
o(x) for x € 9D

>

—_~
>

z
I
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Wentzell-Freidlin theory

dx; = f(x)dt + og(x;) dW; , x e R"

> Large-deviation rate function / action funtional

1T 1
10) =5 | Be= FGITD0) e FO0]de . where D = gg
> Large-deviation principle: For a set I of paths v : [0, T] — R"

P{(Xt)ogth c r} ~e~ infrl/az

Consider first exit from D contained in basin of attraction of an attractor A

> Quasipotential

V(y) = inf{l(7): 7 connects A to y in arbitrary time} , y € 0D

dic orbi

T
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Wentzell-Freidlin theory

V(y) = inf{l(7): v connects A to y in arbitrary time} , y € 0D
Facts
> ||m o?logE{rp} =V = inf V(y) [Wentzell, Freidlin 1969]
yedD

> If infimum is attained in a single point y* € D then
|imOIP’{||XTD —y*|>6}=0 ¥5>0 [Wentzell, Freidlin 1969]
o—r

> Minimizers of /| are optimal transition paths; found from Hamilton equations
> Limiting distribution of 7p is exponential
Iim0 P{rp >sE{rp}} =e~° [Day 1983; Bovier et al 2005]
o—r
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Exit problem

The reversible case
dx; = — VV(x)dt +odW, x eR"”

b L=2A-VV(x)- V=52V V.e 2/ ¥ is self-adjoint in
L2(]R”,e_2v/”2 dX)

> Reversibility (detailed balance): e2V)/o?

pe(x,y) = e V0V p(y, x)
Facts
Assume V has N local minima
> —L has N exponentially small ev's 0 = A\g < - -+ < Ay_1 + spectral gap
> Precise expressions for the \; (Kramers’ law)
> /\71 are the expected transition times between neighbourhoods of minima,
i=1,...,N—1 (in specific order)

Methods

Large deviations [Wentzell, Freidlin, Sugiura, ...]; Semiclassical analysis [Mathieu,
Miclo, Kolokoltsov, . ..]; Potential theory [Bovier, Gayrard, Eckhoff, Klein]; Witten
Laplacian [Helffer, Nier, Le Peutrec, Viterbo]; Two-scale approach, using transport
techniques [Menz, Schlichting 2012]
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The irreversible case
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Irreversible case

If fis not of the form —VV

> Large-deviation techniques still work, but . ..
> L not self-adjoint, analytical approaches harder

> not reversible, standard potential theory does not work

Nevertheless,

> Results exist on the Kramers—Fokker—Planck operator

) 5 a)

L_2 2 o 7(_077
o 2 Jy

oc 0 o° ,
2Vax ~ 2 VMg, ol

[Hérau, Hitrik, Sjostrand, ...]
> Question

What is the harmonic measure for the exit through an unstable periodic orbit?
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The irreversible case & periodic orbits

Random Poincaré maps

Near a periodic orbit, in appropriate coordinates

dor = f(pr, x¢) dt + o F (s, x¢) dW, peR
dXt:g(@t,xt)dt+0'G(90t,Xt)th XEECR”71
> All functions periodic in ¢ (e.g. period 1)
> f > ¢ >0 and o small = ¢ likely to increase
> Process may be killed when x leaves E
X
E gl
=t I Lg%
Hor 1 By
XO e T Y
¥
1 2

Random variables Xy, X1, ... form (substochastic) Markov chain
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Random Poincaré map and harmonic measures

X
E
Mmfww Xl
I XO QD
—ML 1

First-exit time 7 of z; = (¢, x;) from D = (—M,1) x E

v

v

pz(A) =P?{z, € A} is harmonic measure (w.r.t. generator L)

v

> admits (smooth) density h(z, y) w.r.t. arclength on 9D
(under hypoellipticity condition) [Ben Arous, Kusuoka, Stroock 1984]

v

Remark: Lh(-,y) = 0 (kernel is harmonic)
For Borel sets B C E

v

PX{X, € B} = K(Xo,B):= | K(Xo,dy)
B

where K(x,dy) = h((0,x),(1,y))dy =: k(x,y)dy

e periodic orbi
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Fredholm theory
Consider integral operator K acting

> on L via f — (Kf)(x) = /Ek(x,y)f(y) dy = EX{f(X1)}

> on L' via m— (mK)(:) = /Em(x)k(x, Jdx =PH{X; € -}

[Fredholm 1903]

> If k € L2, then K has eigenvalues ), of finite multiplicity
> Eigenfunctions Kh, = A\ph,, hiK = A,h% form a complete ONS

[Perron; Frobenius; Jentzsch 1912; Krein—Rutman 1950; Birkhoff 1957]

> Principal eigenvalue Xg is real, simple, |\, < Ao Yn>1and hy >0

Spectral decomposition:  k (x,y) = Agho(x)h§(y) + A (x)hi(y) + ...
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Fredholm theory
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The irreversible case & periodic orbits

Fredholm theory
Consider integral operator K acting
> on L via f — (Kf)(x) = / k(x,y)f(y)dy = EX{f(X1)}
E

> on L' via m— (mK)(:) = /Em(x)k(x, Jdx =PH{X; € -}

[Fredholm 1903]

> If k € L2, then K has eigenvalues ), of finite multiplicity
> Eigenfunctions Kh, = A\ph,, hiK = A h}, form a complete ONS

[Perron; Frobenius; Jentzsch 1912; Krein—Rutman 1950; Birkhoff 1957]
Anl < Ao Vn>=1and hg >0

> Principal eigenvalue Aq is real, simple,
Spectral decomposition:  k"(x,y) = Agho(x)hg(y) + AThi(x)hi(y) + ...

= PY{X, edy|X, € E} = mo(dy) + O((|A1]/X0)")

where mo = hg / [ hg is the quasistationary distribution (QSD)
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How to estimate the principal eigenvalue ?

> Trivial bounds: VA C E with Lebesgue(A) > 0,

inf K(x,A) < Ao < sup K(x, E)

XEA x€E
Proof
x* = argmax hy = Ao = / k(x*,y) o) dy < K(x*,E)
E ho(x*)
Yo [ Bi)dy = [ B5(K G AYdx > inf K(x,A) [ hi(x)dy
A E xEA A

> Donsker-Varadhan-type bound:

1
MMl - ——————— h = inf 0: X E
0 b EX{ra] where 7ao = inf{n > n & E}

> Bounds using Laplace transforms (see below)
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How to estimate \;?
Theorem [Birkhoff 1957]
Uniform positivity condition
s(x)v(A) < K(x,A) < Ls(x)v(A) Vxe EVACE
implies spectral-gap-type estimate
M|/ <1 —L72

Localized version
Assume 3A C E and 3m: A — (0,00) such that

m(y) < k(x,y) <Lm(y) Vx,ye€A

Then

M <L—1+ O(§ZE K(x, E\ A)) + O(i';ﬁ[l ~ K(x, E)])

To apply localized version
> For initial conditions x,y € A: XX — XY decreases exponentially fast
> Use Harnack inequality once X} — X¥ = O(c?)
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Application:
Exit through an unstable periodic orbit
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Exit through an unstable periodic orbit
> Planar SDE
dXt = f(Xt) dt + Ug(Xt) th
> D C R2: interior of unstable periodic orbit

> First-exit time 7p = inf{t > 0: x; &€ D}

P
Law of first-exit location x,, € 9D 7 . P

> Large-deviation principle with rate function

17 1
10) =5 [ B = FGNTD0O0) e~ a0l de, where D — g
0
> Quasipotential
V(y) = inf{l(7): 7 connects A to y in arbitrary time}

Theorem [Freidlin, Wentzell 1969]
If V attains its min at a unique y* € 9D, then x., concentrates in y* as ¢ — 0

Problem: V is constant on 9D!
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Most probable exit paths

Minimizers of | obey Hamilton equations with Hamiltonian

H(3 ) = 50T DO + ()T
where ¢ = D(7) (¥ — f(7))

Generically optimal path (for infinite time) is isolated
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Random Poincaré map
In polar-type coordinates (r, )

or

—
/)/‘_r

——

PR(R, € A} = \iho(Ro) / By (y) dy [1 + O((1Aa]/20)")]
If t=n+s,

P {or € de} = Mho(Ro) [ BB s € dshay[1+ O((IAul/Ao)")]

Periodically modulated exponential distribution
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Exit through an unstable periodic orbit

Computing the exit distribution

T or

- T
1-6 -~

S —

5

vt

Ry

4 A A —

Split into two Markov chains:

> First chain killed upon r reaching 1 — 4 in ¢ = ¢,

P{p, € [p1, 1 + A]} = (A)# e o)/

> Second chain killed at r =1 — 2§ and on unstable orbit r =1
> Principal eigenvalue: \j = e 2 T+(1 4 O(6))

A+ = Lyapunov exponent, T, = period of unstable orbit
> Using LDP

P {or € [, o+ A} o (N)7 91 e telem Ty

23 /29



Motivation Exit problem The irreversible case iodic orbits Exit through an unstable periodic orbit

Main result: Cycling

Theorem [Berglund & G 2014]
VA>0Vd>0dog>0V0< o0 <oy

P, € [p, 0+ Al = C(0)(20)*V () AQN, 7. ( e _Ai(%) : 0(5)>

x [1+ O(e=<#/I*e7ly 1 O(5|log d])]
> Cycling profile, periodicized Gumbel distribution
(oo}

Qar(x)= > A\T(n—x)) with A(x) = }exp{—2x — Je >}

n=—oo

Qxyr. ()

ATy =1
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Main result: Cycling

Theorem [Berglund & G 2014]
VA>0Vd>0dog>0V0 <o <oy

PO € oo+ Al) = Co)0a)H(e)A0s, 7. (A1 A0

% [1+0(e=<#/1Pe 71y 4 O(610g )]
> Cycling profile periodicized Gumbel distribution

Qat(x Z AT (n—x)) with A(x) = Lexp{—2x—1e 2}
> 0(p) explicit function of D, (1,¢), (¢ + 1) = 0(p) + AL T4

(A+ = Lyapunov exponent, T, = period of unstable orbit)
> Ao principal eigenvalue, \p =1 — e~ VI’
> C(0) = Oe™¥/7")
> P {p, € [p, 0 + A} ~ 0/ ()2

Periodic in |log o|: [Day 1990, Maier & Stein 1996, Getfert & Reimann 2009]
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Density of the first-passage time (for v =05 A, =1)

(b)
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Dependence of exit distribution on the noise intensity

Author: Nils Berglund

> o decreasing from 1 to 0.0001 -
> Parameter values: A\, =1, T, =4,V =1

Modifications

> System starting in quasistationary distribution (no transitional phase)
> Maximum is chosen to be constant (area under the curve not constant)
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cycling.avi
Media File (video/avi)


Motivation Exit problem The irreversible case & periodic orbits Exit through an unstable periodic orbit

Why |log o|-periodic oscillations?

P
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Exit through an unstable periodic orbit

Concluding remarks

Warning
Naive WKB expansion may suggest absence of cycling, despite of
|log o|-dependence of the exit distribution

Origin of Gumbel distribution

> Extreme-value distribution
> Connection with residual lifetimes [Bakhtin 2013]

> Connection with transition-paths theory
[Cerou, Guyader, Leligvre & Malrieu 2013]

(see also [Berglund 2014])

Open questions

> Proof involving only spectral theory, without using large-deviation principle
> More precise estimates on spectrum and eigenfunctions of K
> Link between spectra of K and of L (with Dirichlet b.c.)
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Thank you for your attention!
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