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Metastability and Kramers Law
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Metastability: A common phenomenon

> Observed in the dynamical behaviour of complex systems
> Related to first-order phase transitions in nonlinear dynamics

Characterization of metastability
> Existence of quasi-invariant subspaces €;, i € |
> Multiple timescales

> A short timescale on which local equilibrium is reached within the Q;
> A longer metastable timescale governing the transitions between the Q;

Important feature

> High free-energy barriers to overcome

Consequence

> Generally very slow approach to the (global) equilibrium distribution
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Brownian particle in a potential landscape

Gradient dynamics (ODE)

K = TV ()

Random perturbation by Gaussian white noise (SDE)

dx(w) = —V V(x5 (w)) dt + V2 dBy(w)

Equivalent notation
x§ (W) = =VV(x (@) + V2e6e(w)
with
> V :R? — R: confining potential, growth condition at infinity

> {B¢(w)}e>0: d-dimensional standard Brownian motion
> {&(w)}e>0: Gaussian white noise, (&¢) =0, (§:&s) = 6(t —s)
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SDEs of gradient type: Properties

> Solution {x{(w)}¢ is a (time-homogenous) Markov process
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SDEs of gradient type: Properties

> Solution {x{(w)}¢ is a (time-homogenous) Markov process

> Kolmogorov's forward or Fokker—Planck equation:
Transition probability densities (x, t) — p(x, t|y,s) satisfy

%p =L.p=V-[VV(x)p] +elp
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SDEs of gradient type: Properties

> Solution {x{(w)}¢ is a (time-homogenous) Markov process

> Kolmogorov's forward or Fokker—Planck equation:
Transition probability densities (x, t) — p(x, t|y,s) satisfy

%p =L.p=V-[VV(x)p] +elp

> Equilibrium distribution or invariant measure

1
e (dx) = 7e_ VEI/e dx

€
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SDEs of gradient type: Properties

v

Solution {x;(w)}: is a (time-homogenous) Markov process

v

Kolmogorov's forward or Fokker—Planck equation:
Transition probability densities (x, t) — p(x, t|y,s) satisfy

%p =L.p=V-[VV(x)p] +elp

v

Equilibrium distribution or invariant measure

1
e (dx) = 7e_ VEI/e dx

€

> System is reversible w.r.t. . (detailed balance)

p(y, t|x,0) e V/e = p(x, tly, o)e—V(y)/s
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SDEs of gradient type: Properties

Solution {x;(w)}: is a (time-homogenous) Markov process

Kolmogorov's forward or Fokker—Planck equation:
Transition probability densities (x, t) — p(x, t|y,s) satisfy

%p =L.p=V-[VV(x)p] +elp

Equilibrium distribution or invariant measure

1
e (dx) = ?e7 V()/e dx

€

System is reversible w.r.t. yi. (detailed balance)

p(y, t|x,0) e V/e = p(x, tly, o)e*V(y)/s

For small €, invariant measure p. concentrates
in the minima of V
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SDEs of gradient type: Properties

> Solution {x{(w)}¢ is a (time-homogenous) Markov process

> Kolmogorov's forward or Fokker—Planck equation:
Transition probability densities (x, t) — p(x, t|y,s) satisfy

%p =L.p=V-[VV(x)p] +elp

> Equilibrium distribution or invariant measure

1
e (dx) = ?e7 VEI/e dx
e=1/4 29

> System is reversible w.r.t. . (detailed balance)

p(y, t|x,0)e= V(I = p(x, t|y,0) e/ o

> For small ¢, invariant measure p. concentrates
in the minima of V
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SDEs of gradient type: Properties

> Solution {x{(w)}¢ is a (time-homogenous) Markov process

> Kolmogorov's forward or Fokker—Planck equation:
Transition probability densities (x, t) — p(x, t|y,s) satisfy

%p =L.p=V-[VV(x)p] +elp

> Equilibrium distribution or invariant measure

1
e (dx) = ?e7 VEI/e dx
e =1/10 20

> System is reversible w.r.t. . (detailed balance)

p(y, t|x,0)e= V(I = p(x, t|y,0) e/ o

> For small ¢, invariant measure p. concentrates
in the minima of V
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Transition times between potential wells ?

(Random) first-hitting time 7, of a small ball B;s(y)

7, =7, (w) = inf{t > 0: x; (w) € Bs(y)}
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Transition times between potential wells ?

(Random) first-hitting time 7, of a small ball B;s(y)

7, =7, (w) = inf{t > 0: x; (w) € Bs(y)}

Arrhenius Law [van't Hoff 1885, Arrhenius 1889]

E,7, =~ const elV(®~V(l/e
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Transition times between potential wells ?

(Random) first-hitting time 7, of a small ball B;s(y)

7, =7, (w) = inf{t > 0: x; (w) € Bs(y)}

Arrhenius Law [van't Hoff 1885, Arrhenius 1889]

E,7, =~ const elV(®~V(l/e

Eyring—Kramers Law [Eyring 1935, Kramers 1940]

s d=1 B~ 2T VG-V

Vv (x)[v"(z)]
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Transition times between potential wells ?
(Random) first-hitting time 7, of a small ball B;s(y)

7y =75 (w) =inf{t > 01 x (w) € Bs(y))

Arrhenius Law [van't Hoff 1885, Arrhenius 1889]

E,7, =~ const elV(®~V(l/e

Eyring—Kramers Law [Eyring 1935, Kramers 1940]

> d=1E,7, ~ 2 Vv

Vv (x)[v"(z)]

2n_ [|det V2V(2)] 1v(s)-vix)/e

>2: Eyr, ~
»d2 YENE detvav(x)

where \1(z) is the unique negative eigenvalue of V2V at saddle z
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Proving Kramers Law
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Exponential asymptotics via large deviations

> Probability of observing sample paths being close to a given function
¢ : [0, T] — RY behaves like ~ exp{—2/(p)/c}

> Large-deviation rate function

1 Ty - 2

= s — (=VV(ps ds forpeH
1(¢) = ho.71() = {2 fo [[6s = ( ()l ¥ . 1

+00 otherwise

> Large deviation principle reduces est. of probabilities to variational principle:
For any set I' of paths on [0, T]

—infl <liminf2elog P{(x;): € '} < limsup2elogP{(x;): € '} < —inf/
e =0 e—0 r
> Quasipotential with respect to x = “cost to reach z against the flow”

V(sz) = 1!2{;) mf{/[Ot]((p) Y e C([O> t]7D)7 Yo = X, Yt = Z}

(domain D with unique asymptotically stable equilibrium point x)

Kramers Law — validity and generalizations Barbara Gentz 14 June 2012 8 /27
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Wentzell-Freidlin theory

Theorem [Wentzell & Freidlin, 1969-72, 1984]
Mean first-exit time from D satisfies

2clogEry — V= Zlerbe V(x, z) ase —0

Gradient case with isotropic noise (reversible diffusion)
> Quasipotential V/(x,z) = 2[V(z) — V(x)]
> Cost for leaving potential well is
V = inf,eop V(x,z) = 2H

> Attained for paths going against the flow:
¢r =+VV(pr)

Implies Arrhenius Law !

Kramers Law — validity and generalizations Barbara Gentz 14 June 2012 9 /27



Proving Kramers Law

Proving Kramers Law

v

Low-lying spectrum of generator of the diffusion
[Helffer & Sjostrand 1985; Holley, Kusuoka & Stroock 1989; Mathieu 1995;
Miclo 1995; Kolokoltsov 1996; . ..]

Potential theoretic approach: Relating mean exit times to capacities
[Bovier, Eckhoff, Gayrard & Klein 2004]

Two-scale approach and transport techniques

[Menz & Schlichting 2012]

Full asymptotic expansion of prefactor
[Helffer, Klein & Nier 2004; Hérau, Hitrik & Sjéstrand 2008, 2012; .. .]

v

v

v

Kramers Law — validity and generalizations Barbara Gentz 14 June 2012 10 / 27



Kramers Law Proving Kramers Law Multiwell potentials Non-quadratic saddles SPDEs Cycling

Generalization: Multiwell potentials
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Multiwell potentials: Metastable hierarchy

> Order x; < x» < -+ < x, of local minima of V according to “depth” V/(x;)

v

v

Metastable hierarchy My = {x1,...,xx}
Kramers Law holds for first-hitting time E,, 71, , of neighbourhood of M _;

[Bovier, Eckhoff, Gayrard & Klein 2004]
> Requires non-degeneracy condition

Example: 3 <1<2
> Eym3 ~ CeM/e
> Eor(13) = Cre/e
> Bors ~ C'ell/e > G, e/

Kramers Law — validity and generalizations

Barbara Gentz 14 June 2012 12 / 27
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Generalization: Non-quadratic saddles
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Non-quadratic saddles

What happens if det V2V(z) =07

det V2V(z) =0 = At least one vanishing eigenvalue at saddle z
= Saddle has at least one non-quadratic direction
= Kramers Law not applicable

Why do we care about this
non-generic situation?

Occurs at bifurcations in

Quartic unstable direction Quartic stable direction

Kramers Law — validity and generalizations Barbara Gentz 14 June 2012
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Example: Two harmonically coupled particles

V. (x1, %) = UGa) + Ulx) + 3(x1 — x)?

Change of variable: Rotation by 7 /4 yields

V) =%-7%

~ 1 1-2y 1

Vilyiye) = =598 = =5 —vi + g (v +6y1y3 +7)
Note: det V2 VV(O, 0) =1—2v = Pitchfork bifurcation at v = 1/2

v>1 3>v>1 I>v>0
O O
@, O

Kramers Law — validity and generalizations Barbara Gentz 14 June 2012
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Subexponential asymptotics: Non-quadratic saddles

> x = quadratic local minimum of V' (non-quadratic minima possible)

> y = another local minimum of V

v

0 = the relevant saddle for passage from x to y

v

Normal form near saddle

V(z) = —u1(z1) + wa(22) Zx\z +.

> Assume growth conditions on vy, s

Theorem [Berglund & G 2010]

7uz(22)/a

d
(2me)/? e vz g
Eiry = 5 | I
\/det V2V/(x / o—tn(z1)/e dy; J=3

x [14 O(e*|loge[*t)]

where a > 0 is explicitly known (depends on the growth conditions on w1, t)

Kramers Law — validity and generalizations Barbara Gentz 14 June 2012 16 / 27
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Corollary: From quadratic saddles to pitchfork bifurcation

d
: : . 1 1 1
Pitchfork bifurcation: V(z) = —§|)\1|212 + 5)\2222 + Cizs + 3 Z )\J-ZJ-2 +...

Jj=3
> For A\, > 0 (possibly small wrt. ¢):
Mo +V2eC)A3.. . Ag  elVO-Vl/e
Eyr, = 2y | Q2T V2ECAs- A e 1+ RE)]
[A1]det V2V(x) W, (\/V2e(y)
where
a(l+a) a?
V(o) = /00t a/16K ( )
+(a) 8 1/4\ 16 .
Ki/sa = modified Bessel fct. of 2nd kind S — T

> For \» < 0: Similar

A2 — prefactor
(involving eigenvalues at new saddles and /11 /4)

e =0.5, € =0.1, € =0.01

Kramers Law — validity and generalizations Barbara Gentz 14 June 2012 17 / 27
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Generalization:

Stochastic partial differential equations

Kramers Law — validity and generalizations Barbara Gentz 14 June 2012 18 / 27
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Allen—Cahn SPDE

dru(x, t) = Dueu(x, t) + u(x, t) — u(x, t)> + V2 £(t, x)

> x €[0,L] and u(x,t) eR

> Weak space—time white noise /2 ¢

> Neumann b.c.: d,u(0,t) = dvu(L,t) =0

L
> Energy functional V(u) = Vi (u) = / [(2u(x)* = Lu(x)?) + Lu/(x)?] dx
0

> Stationary states for L < 7
> ug(x) = £1 (uniform and stable; global minima)
> up(x) = 0 (uniform and unstable; transition state)
> Activation energy V(up) — V(u+) = L/4

> Stationary states for L > 7

> ug(x) = £1 (uniform and stable; still global minima)

> up(x) = 0 (uniform and unstable; no longer transition state)

> Uinst, + (x) of instanton shape (pair of unstable states; transition states)
> Additional stationary states as L increases; not transition states

> As L / 7: Pitchfork bifurcation

Kramers Law — validity and generalizations Barbara Gentz 14 June 2012 19 / 27
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Stationary states (Neumann b.c.)

For k=1,2,... and L > 7k:

2 k
U, (x) = £4/ m—Tl sn( -4 K(m),m) where 2kyvm+1K(m

m+41

=1L

~—

uy = +1
4+
U+

us,+

Usg 4

UoEO

Ug, —

N

\A2S 25/

uz —

uz —
ui,—
u-=-1
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Allen—Cahn SPDE: Kramers Law

Results

Large deviation principle [Faris & Jona-Lasinio 1982] implies Arrhenius Law

v

Formal computation of subexponential asymptotics [Maier & Stein 2001]

v

v

Kramers Law away from bifurcation points
[Barret, Bovier & Méléard 2010, Barret 2012]
Kramers Law for all finite L [Berglund & G 2012]

v

Idea of the proof

> Spectral Galerkin approximation
> Control of error terms uniformly in dimension

> Use large deviation principle to obtain a priori bounds

Kramers Law — validity and generalizations Barbara Gentz 14 June 2012 21 /27
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Limitations of Kramers Law
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New phenomenon in non-reversible case: Cycling

Planar vector field: d =2, D C R? s.t. 9D = unstable periodic orbit

> Erp ~ eV/2 still holds
> Quasipotential V/(I1,z) = V is constant on 9D
> Phenomenon of cycling [Day '90]:
Distribution of x.,, on 0D does not converge as € — 0
Density is translated along 0D proportionally to |log|.
> In stationary regime: (obtained by reinjecting particle)

Rate of escape cht P{Xt ¢ D} has |log ¢|-periodic
prefactor [Maier & Stein '96]

Kramers Law — validity and generalizations Barbara Gentz 14 June 2012 23 /27
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Universality in cycling

Theorem [Berglund & G '04, '05, work in progress]
There exists an explicit parametrization of 0D s.t. the exit time density is given by

ﬂrans(t- tO) 1 el(t) —(0(t)—
— ftrans\® "0) _ 1y I\ = (0(t)—0(t0)) / ATk(e)
p(t, to) N QAT(O(t) 5|log 5\) NP0 e
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Universality in cycling

Theorem [Berglund & G '04, '05, work in progress]
There exists an explicit parametrization of 0D s.t. the exit time density is given by

ﬂrans(t- tO) 1 el(t) —(0(t)—
— ftrans\® "0) _ 1y I\ = (0(t)—0(t0)) / ATk(e)
p(t, to) N QAT(O(t) 5|log 5\) NP0 e

> firans grows from 0 to 1 in time t — ty of order |log ¢|
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Universality in cycling

Theorem [Berglund & G '04, '05, work in progress]
There exists an explicit parametrization of 0D s.t. the exit time density is given by

ﬂrans(t- tO) 1 el(t) —(6(t)—
) = —ramsi B/ — 1 TN = (0(t)=0(t0)) / ATk(e)
p(t, to) N QAT(O(t) 5|log 5\) NPD e

> firans grows from 0 to 1 in time t — ty of order |log ¢|

> Qa7(y) is a universal \T-periodic function
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Universality in cycling

Theorem [Berglund & G '04, '05, work in progress]
There exists an explicit parametrization of 0D s.t. the exit time density is given by

ﬂrans(t- tO) 1 el(t) —(6(t)—
) = —ramsi B/ — 1 TN = (0(t)=0(t0)) / ATk(e)
p(t, to) N QAT(O(t) 5|log e)) NPD e

> firans grows from 0 to 1 in time t — ty of order |log ¢|
> Qx7(y) is a universal \T-periodic function
> T is the period of the unstable orbit, A its Lyapunov exponent
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Universality in cycling

Theorem [Berglund & G '04, '05, work in progress]
There exists an explicit parametrization of 0D s.t. the exit time density is given by

p(t, to) = W Q7 (0(t) — %log 5))\97{2) e (0(t)=0(t0)) / ATk(e)
firans grows from 0 to 1 in time t — tp of order [log <]

Qx7(y) is a universal \T-periodic function

T is the period of the unstable orbit, A its Lyapunov exponent

O(t) is a "natural” parametrisation of the boundary:

0'(t) > 0 is an explicitely known model-dependent, T-periodic function;

O(t+ T)=06(t)+ T

v

v

v

v
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Universality in cycling

Theorem [Berglund & G '04, '05, work in progress]
There exists an explicit parametrization of 0D s.t. the exit time density is given by

p(t, to) = W Q7 (0(t) — %log 5))\97{2) e (0(t)=0(t0)) / ATk(e)
firans grows from 0 to 1 in time t — tp of order [log <]

Qx7(y) is a universal \T-periodic function

T is the period of the unstable orbit, A its Lyapunov exponent

O(t) is a "natural” parametrisation of the boundary:

0'(t) > 0 is an explicitely known model-dependent, T-periodic function;

O(t+ T)=06(t)+ T

v

v

v

v

. . C v
> Tk(e) is the analogue of Kramers' time: Tk(e) = 7 eV/%
€
Barbara Gentz 14 June 2012 24 /27
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The universal profile
y — QAT()\Ty)/2)\T

AT =1

> Profile determines concentration of first-passage times within a period
> Shape of peaks: Gumbel distribution P(z) = e *?exp{—1e %}
> The larger AT, the more pronounced the peaks

> For smaller values of AT, the peaks overlap more

Kramers Law — validity and generalizations Barbara Gentz 14 June 2012
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Density of the first-passage time for V = 0.5, A =1

(d)

/ N
/ \
\
\
[ \
! \
|
N
! N
| ~
f N
) N
T T T T T T

e=05T=2 e=05T=5
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Thank you for your attention!
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Relation of first-exit times to PDEs
dxf = b(xF) dt + V2eg(xf)dW;,  xp € R?
Infinitesimal generator A° of diffusion x; (adjoint of Fokker—Planck operator)

v(t,x)=¢ Z ajj(x ax,ax, v(t,x) + ( b(x), Vv(t,x))

ij=1

Theorem

> Poisson problem:

Au=-1 inD
E.{75} is the unique solution of u n
u= on 0D

> Dirichlet problem:
A w=0 inD

<{f th lution of
Ex{f(x: )} is the unique solution o w—f ondD

(for £ : 81? — R continuous)

Kramers Law — validity and generalizations Barbara Gentz 14 June 2012 27 /27
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Potential theory for Brownian motion |

First-hitting time 74 = inf{t > 0: B; € A} of A C R?

Fact I: The expected first-hitting time wa(x) = E,74 is a solution to the Dirichlet
problem

Awp(x) = —1 for x € A€
wa(x) =0 forx € A

and can be expressed with the help of the Green function Ga<(x,y) as

wa(x) = — | Gac(x,y) dy
AC

Kramers Law — validity and generalizations Barbara Gentz 14 June 2012 27 /27
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Potential theory for Brownian motion Il

The equilibrium potential (or capacitor) ha g is a solution to the Dirichlet problem

AhAB(X) =0 forxe (A U B)C
hag(x)=1 forxe A
hag(x)=0 forxeB

Fact Il: ha g(x) = Py[ta < 78]

The equilibrium measure (or surface charge density) is the unique measure ps g on
0A s.t.

ha,g(x) = A Ge<(x,y) pas(dy)
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Key observation: For a small ball C = B;(x),

AC hc.a(y) dy = / /{;C Gac(y, z) pc,a(dz) dy
. / wa(2) pe.a(dz) ~ wa(x) capc(A)
JOC

where cap(A) = —/

pc.a(dy) denotes the capacity
ac

1
B, 74 = ~—= | hg d
= Ta = wa(x) Cade(x)(A) /AC Bs(x),A(Y) dy

Variational representation via Dirichlet form

capc(A) :/ [Vhc a(x)||> dx = inf / [Vh(x)|? dx
(CUA)e (CUA)e

heHc. a

where Hc a = set of sufficiently smooth functions h satisfying b.c.
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General case
dx¢ = —VV(x{) dt + V2e dB;

What changes as the generator A is replaced by eA —VV -V ?

A)=c inf Vh(x)|]> e V)/ed
capclA) =<, inf [ IV eV

1
E, 14 = ~— = —V/e g
T4 = wa(x) capg, (x)(A) /A Bs(.aly) € Y

It remains to investigate capacity and integral.

Assume, x is a quadratic minimum. Use rough a priori bounds on h for cap and

2 d/2 .—V(x)/e
/ his(x).4(Y) e V/e gy ~ (2me)?/? e

det V2V/(x)
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Non-quadratic saddles: Worse than quartic . ..

d
1
> Quartic unstable direction: V(z) = — Gz} + 5 Z)\jzjz +...
j=2

o T(@/4) J2mda Ad v(o)-vin)/e 1/4 5/4
BTy = St 17s\| detvav(x) © [+ O log e )]
2C, e

d
1
> Degenerate unstable direction: V(z) = —Cpz,” + 5 Z:)\jzj2 +...
j=2

r(1/2p) 2mA2 - Ad_[v(0)-V(x))/=
pC§;2P61/2(171/p) det V2V/(x)

Eyry =

% [L+ O(V/??|loge|F1/2)]
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Allen—Cahn equation with noise

Oru(x,t) = Ou(x,t) + u(x,t) — u(x, t)* +v/2e£(t, x)

u(-,0) = ¢()
0xu(0,t) = Owu(L,t)=0 (Neumann b.c.)

o

> Space—time white noise £(t, x) as formal derivative of Brownian sheet

> Mild / evolution formulation, following [Walsh 1986]:

u(x,t) = '/OL Gi(x,z)p(z) dz + ./O.t /OL Ge—s(x, 2)[u(s, z) — u(s, 2)*] dzds
+V2¢e /0 t /O L G:_s(x, z)W(ds, dz)

where
> G is the heat kernel
> W is the Brownian sheet

Existence and a.s. uniqueness [Faris & Jona-Lasinio 1982]
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Stability of the stationary states: Neumann b.c.

Consider linearization of AC equation at stationary solution v : [0, L] — R
42
Orv = Alu]lv  where  Alu] = o +1— 30
Stability is determined by the eigenvalues of A[u]
> us(x) = £1: Alus] has eigenvalues —(2 + (mk/L)?), k =0,1,2,...
> up(x) = 0: Alug] has eigenvalues 1 — (7k/L)?, k =0,1,2,...
Counting the number of positive eigenvalues: None for vy and ...
0 T 2 3r . tL U
U+
us,+

uz,+
ui,+
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Question

How long does a noise-induced transition from the global minimum v_(x) = —1
to (a neighbourhood of) vy (x) = 1 take?

T4, = first hitting time of such a neighbourhood

Metastability: We expect E,,_ Tu, ~ geonst/e

We seek
> Activation energy AW
> Transition rate prefactor ;"
> Exponent « of error term

such that
By, 7u, = g teAW/E[1 4+ O(%)]
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Formal computation of the prefactor for the AC equation

Consider L < 7 (and Neumann b.c.)
> Transition state: up(x) =0, V[up] =0
> Activation energy: AW = V[ug] — V[u_] = L/4
> Eigenvalues at stable state u_(x) = —1: juy = 2+ (7k/L)?
> Eigenvalues at transition state up = 0: A\, = —1 + (7k/L)?
Thus formally [Maier & Stein 2001, 2003]

|)\0| H 1 sinh(v/2L)
- \ T 23/4g sin L

For L > m: Spectral determinant computed by Gelfand’s method

Questions
> What happens when L 7~ 7?7 (Approaching bifurcation)

> |Is the formal computation correct in infinite dimension?
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Allen—Cahn equation: Introducing Fourier variables

> Fourier series

u(x, t) = \1[ nyk cos(mkx/L) = fZYk el kmx/L

keZ
> Rewrite energy functional V in Fourier variables

1o 2 2
V(y) = E;)\k)/k + Valy), M= -1+(mk/L)
where
1 [
Valy) = 7 > TS
ki+ko+k3+ks=0
> Resulting system of SDEs

1 oo .
yk:—)\k)/k—z Z Ykl)/kz)’k3+ v2E‘/Vt(k)
kitko+ks=k

with i.i.d. Brownian motions Wt(k)
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Truncating the Fourier series

> Truncate Fourier series (projected equation)

d
ua(x, £) = %yo(t) + \% S yi(t) cos(rkx/1L)

> Retain only modes k < d in the energy functional V

v@(y Z MyE + Vily)
where

d ~ o~~~

V4( )(}/) =71 Z Yk Yko Yks Yka
ki+ko+ks+ks=0
kie{—d,....0,....+d}

> Resulting d-dimensional system of SDEs

. 1 S ;
Vi = =AYk = 7 > T Tho s + V25 W
ki-+hoks=k
kie€{—d,....0,...,+d}
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Reduction to finite-dimensional system

> Show the following result for the projected finite-dimensional systems
e1C(d) AW /E[1 - Ry ()] < E oy < €7 C(d) AW /5[1+ RE ()]
- +
(The contribution ¢” is only present at bifurcation points / non-quadratic saddles)
> The following limits exist and are finite

lim C(d)=: C(c0)  and lim AW = AW

d—o0 d—o0

> Important: Uniform control of error terms (uniform in d):

R*(e) :=supRi(e) =0 as e—0
d

Away from bifurcation points, c.f. [Barret, Bovier & Méleard 09]
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Taking the limit d — oo

> For any ¢, distance between u(x, t) and solution u(?)(x, t) of the projected
equation becomes small on any finite time interval [0, T]
[Liu 2003; Blémker & Jentzen 2009]

> Uniform error bounds and large deviation results allow to decouple limits of
small € and large d

> Yielding

e7C(00) AW 1 - R(2)] < Ey_ 1y, <e€7C(00) eAWE (1 4 RY(2)]
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Result for the Allen—Cahn equation (Neumann b.c.)

Theorem [Berglund & G 2012]

For L<m
::' To | e=00003
1 104 ‘\
E = ———el/*[1+0((e]loge|)/* o] |
oo = FoD) [1+O((e[log £)/*)] § |
| o
where the rate prefactor satisfies N I\ =
(recall: Ay = —1+ (7/L)?) £ /
0 L/m

T T T T T T T T T T
03 04 05 06 0.7 08 09 1.0 1.1 1.2 1.3 14 1.5 16 1.7

Fo(L)

1 [sinh(v2L) A1 " ( A1 )
T 3/4g sin L A1 +/3¢/4L +

\/3e/4AL

m sinh(v/2r) e~/ as L Mm
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Allen—Cahn equation with periodic b.c.

> Periodic b.c.: u(0,t) = u(L,t) and d,u(0, t) = d,u(L,t)
> For k=1,2,... and L > 27k:

Additional continuous one-parameter family of stationary states,
given in terms of Jacobi’s elliptic sine by

2 k
U, (x) =4/ mrl sn(\/,71)(7_~_1 + o, m) where 4kv/m+ 1K(m) = L
> For L > 2m: Rate prefactor Mo(L) ~ L/+/e
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