mers Law Proving Kramers Law Multiwell potentials Non-quadratic saddles SPDEs Cycling

SIAM Conference on Nonlinear Waves and Coherent Structures

The University of Washington, Seattle, WA 13–16 June 2012

Kramers Law – validity and generalizations

Barbara Gentz

University of Bielefeld, Germany

Nils Berglund (Université d'Orléans, France)

mers Law Proving Kramers Law Multiwell potentials Non-quadratic saddles SPDEs Cycling

SIAM Conference on Nonlinear Waves and Coherent Structures

The University of Washington, Seattle, WA 13–16 June 2012

Kramers Law – validity and generalizations

Barbara Gentz

University of Bielefeld, Germany

Nils Berglund (Université d'Orléans, France)

Outline

- Metastability and the Brownian particle in a potential
- Mean first-transition times: Arrhenius and Kramers Law
- Proving Kramers Law: Exponential asymptotics via large deviations
- Proving Kramers Law: Subexponential asymptotics
- ▶ Generalizations: Multiwell potentials, non-quadratic saddles, SPDEs
- ▶ Limitations: Non-reversible systems

Metastability and Kramers Law

Metastability: A common phenomenon

- Observed in the dynamical behaviour of complex systems
- Related to first-order phase transitions in nonlinear dynamics

Characterization of metastability

- ▶ Existence of quasi-invariant subspaces Ω_i , $i \in I$
- Multiple timescales
 - \triangleright A short timescale on which local equilibrium is reached within the Ω_i
 - \triangleright A longer metastable timescale governing the transitions between the Ω_i

Important feature

High free-energy barriers to overcome

Consequence

▶ Generally very slow approach to the (global) equilibrium distribution

Brownian particle in a potential landscape

Gradient dynamics (ODE)

$$\dot{x}_t^{\mathsf{det}} = -\nabla V(x_t^{\mathsf{det}})$$

Random perturbation by Gaussian white noise (SDE)

$$\mathrm{d} x_t^arepsilon(\omega) = -
abla V(x_t^arepsilon(\omega)) \; \mathrm{d} t + \sqrt{2arepsilon} \; \mathrm{d} B_t(\omega)$$

Equivalent notation

$$\dot{x}_t^{\varepsilon}(\omega) = -\nabla V(x_t^{\varepsilon}(\omega)) + \sqrt{2\varepsilon}\xi_t(\omega)$$

with

- ${}^{ee}\ V:\mathbb{R}^d o\mathbb{R}$: confining potential, growth condition at infinity
- $\triangleright \{B_t(\omega)\}_{t\geq 0}$: d-dimensional standard Brownian motion
- $\triangleright \{\xi_t(\omega)\}_{t\geq 0}$: Gaussian white noise, $\langle \xi_t \rangle = 0$, $\langle \xi_t \xi_s \rangle = \delta(t-s)$

 $hd Solution \ \{x_t^{arepsilon}(\omega)\}_t$ is a (time-homogenous) Markov process

- ▷ Solution $\{x_t^{\varepsilon}(\omega)\}_t$ is a (time-homogenous) Markov process
- Kolmogorov's forward or Fokker–Planck equation: Transition probability densities $(x, t) \mapsto p(x, t|y, s)$ satisfy

$$\frac{\partial}{\partial t}p = \mathcal{L}_{\varepsilon}p = \nabla \cdot \left[\nabla V(x)p\right] + \varepsilon \Delta p$$

- ▷ Solution $\{x_t^{\varepsilon}(\omega)\}_t$ is a (time-homogenous) Markov process
- Kolmogorov's forward or Fokker–Planck equation: Transition probability densities $(x, t) \mapsto p(x, t|y, s)$ satisfy

$$\frac{\partial}{\partial t}p = \mathcal{L}_{\varepsilon}p = \nabla \cdot \left[\nabla V(x)p\right] + \varepsilon \Delta p$$

Equilibrium distribution or invariant measure

$$\mu_{\varepsilon}(dx) = \frac{1}{Z_{\varepsilon}} e^{-V(x)/\varepsilon} dx$$

- \triangleright Solution $\{x_t^{\varepsilon}(\omega)\}_t$ is a (time-homogenous) Markov process
- Kolmogorov's forward or Fokker–Planck equation: Transition probability densities $(x, t) \mapsto p(x, t|y, s)$ satisfy

$$\frac{\partial}{\partial t}p = \mathcal{L}_{\varepsilon}p = \nabla \cdot \left[\nabla V(x)p\right] + \varepsilon \Delta p$$

Equilibrium distribution or invariant measure

$$\mu_{\varepsilon}(dx) = \frac{1}{Z_{\varepsilon}} e^{-V(x)/\varepsilon} dx$$

 \triangleright System is reversible w.r.t. μ_{ε} (detailed balance)

$$p(y, t|x, 0) e^{-V(x)/\varepsilon} = p(x, t|y, 0) e^{-V(y)/\varepsilon}$$

- \triangleright Solution $\{x_t^{\varepsilon}(\omega)\}_t$ is a (time-homogenous) Markov process
- Kolmogorov's forward or Fokker–Planck equation: Transition probability densities $(x, t) \mapsto p(x, t|y, s)$ satisfy

$$\frac{\partial}{\partial t}p = \mathcal{L}_{\varepsilon}p = \nabla \cdot \left[\nabla V(x)p\right] + \varepsilon \Delta p$$

Equilibrium distribution or invariant measure

$$\mu_{\varepsilon}(dx) = \frac{1}{Z_{\varepsilon}} e^{-V(x)/\varepsilon} dx$$

 \triangleright System is reversible w.r.t. μ_{ε} (detailed balance)

$$p(y, t|x, 0) e^{-V(x)/\varepsilon} = p(x, t|y, 0) e^{-V(y)/\varepsilon}$$

▶ For small ε , invariant measure μ_{ε} concentrates in the minima of V

- \triangleright Solution $\{x_t^{\varepsilon}(\omega)\}_t$ is a (time-homogenous) Markov process
- Kolmogorov's forward or Fokker–Planck equation: Transition probability densities $(x, t) \mapsto p(x, t|y, s)$ satisfy

$$\frac{\partial}{\partial t}p = \mathcal{L}_{\varepsilon}p = \nabla \cdot \left[\nabla V(x)p\right] + \varepsilon \Delta p$$

Equilibrium distribution or invariant measure

$$\mu_{\varepsilon}(dx) = \frac{1}{Z_{\varepsilon}} e^{-V(x)/\varepsilon} dx$$

▷ System is reversible w.r.t. μ_{ε} (detailed balance)

$$p(y, t|x, 0) e^{-V(x)/\varepsilon} = p(x, t|y, 0) e^{-V(y)/\varepsilon}$$

▶ For small ε , invariant measure μ_{ε} concentrates in the minima of V

- \triangleright Solution $\{x_t^{\varepsilon}(\omega)\}_t$ is a (time-homogenous) Markov process
- Kolmogorov's forward or Fokker–Planck equation: Transition probability densities $(x, t) \mapsto p(x, t|y, s)$ satisfy

$$\frac{\partial}{\partial t}p = \mathcal{L}_{\varepsilon}p = \nabla \cdot \left[\nabla V(x)p\right] + \varepsilon \Delta p$$

Equilibrium distribution or invariant measure

$$\mu_{\varepsilon}(dx) = \frac{1}{Z_{\varepsilon}} e^{-V(x)/\varepsilon} dx$$

 \triangleright System is reversible w.r.t. μ_{ε} (detailed balance)

$$p(y, t|x, 0) e^{-V(x)/\varepsilon} = p(x, t|y, 0) e^{-V(y)/\varepsilon}$$

▶ For small ε , invariant measure μ_{ε} concentrates in the minima of V

(Random) first-hitting time τ_{V} of a small ball $B_{\delta}(y)$

$$au_y = au_y^{arepsilon}(\omega) = \inf\{t \geq 0 \colon x_t^{arepsilon}(\omega) \in B_\delta(y)\}$$

(Random) first-hitting time τ_v of a small ball $B_{\delta}(y)$

$$au_y = au_y^{arepsilon}(\omega) = \inf\{t \geq 0 \colon x_t^{arepsilon}(\omega) \in B_\delta(y)\}$$

Arrhenius Law [van't Hoff 1885, Arrhenius 1889]

$$\mathbb{E}_{x}\tau_{v}\simeq const\ \mathrm{e}^{[V(z)-V(x)]/arepsilon}$$

(Random) first-hitting time τ_{ν} of a small ball $B_{\delta}(\nu)$

$$au_y = au_y^{arepsilon}(\omega) = \inf\{t \geq 0 \colon x_t^{arepsilon}(\omega) \in B_\delta(y)\}$$

$$\mathbb{E}_{x}\tau_{v}\simeq const\ \mathrm{e}^{[V(z)-V(x)]/arepsilon}$$

Eyring-Kramers Law [Eyring 1935, Kramers 1940]

$$\triangleright \ d = 1 : \quad \mathbb{E}_{\mathsf{x}} \tau_{\mathsf{y}} \simeq \frac{2\pi}{\sqrt{V''(\mathsf{x})|V''(\mathsf{z})|}} \, \mathsf{e}^{[V(\mathsf{z}) - V(\mathsf{x})]/\varepsilon}$$

(Random) first-hitting time τ_{V} of a small ball $B_{\delta}(y)$

$$au_y = au_y^{arepsilon}(\omega) = \inf\{t \geq 0 \colon x_t^{arepsilon}(\omega) \in B_\delta(y)\}$$

Arrhenius Law [van't Hoff 1885, Arrhenius 1889]

$$\mathbb{E}_{\mathbf{x}} \tau_{\mathbf{v}} \simeq const \ \mathrm{e}^{[V(z)-V(x)]/\varepsilon}$$

Eyring-Kramers Law [Eyring 1935, Kramers 1940]

$$> d = 1: \quad \mathbb{E}_{\mathbf{x}} \tau_{\mathbf{y}} \simeq \frac{2\pi}{\sqrt{V''(\mathbf{x})|V''(\mathbf{z})|}} e^{[V(\mathbf{z})-V(\mathbf{x})]/\varepsilon}$$

$$> d \geq 2 : \quad \mathbb{E}_{x} \tau_{y} \simeq \frac{2\pi}{|\lambda_{1}(z)|} \sqrt{\frac{|\det \nabla^{2} V(z)|}{\det \nabla^{2} V(x)}} e^{[V(z) - V(x)]/\varepsilon}$$

where $\lambda_1(z)$ is the unique negative eigenvalue of $\nabla^2 V$ at saddle z

Proving Kramers Law

Exponential asymptotics via large deviations

- Probability of observing sample paths being close to a given function $\varphi: [0, T] \to \mathbb{R}^d$ behaves like $\sim \exp\{-2I(\varphi)/\varepsilon\}$
- Large-deviation rate function

$$I(\varphi) = I_{[0,T]}(\varphi) = \begin{cases} \frac{1}{2} \int_0^T ||\dot{\varphi}_s - (-\nabla V(\varphi_s))||^2 ds & \text{for } \varphi \in \mathcal{H}_1 \\ +\infty & \text{otherwise} \end{cases}$$

Large deviation principle reduces est. of probabilities to variational principle: For any set Γ of paths on [0, T]

$$-\inf_{\Gamma^\circ} I \leq \liminf_{\varepsilon \to 0} 2\varepsilon \log \mathbb{P}\{\big(x_t^\varepsilon\big)_t \in \Gamma\} \leq \limsup_{\varepsilon \to 0} 2\varepsilon \log \mathbb{P}\{\big(x_t^\varepsilon\big)_t \in \Gamma\} \leq -\inf_{\overline{\Gamma}} I \leq -\inf_{\Gamma} I = -\inf_{\Gamma} I \leq -\inf_{\Gamma} I \leq -\inf_{\Gamma} I = -\inf_{\Gamma} I \leq -\inf_{\Gamma} I = -\inf_$$

Quasipotential with respect to x = "cost to reach z against the flow"

$$V(x,z) := \inf_{t>0} \inf \{I_{[0,t]}(\varphi) \colon \varphi \in \mathcal{C}([0,t],\mathcal{D}), \ \varphi_0 = x, \ \varphi_t = z\}$$

(domain \mathcal{D} with unique asymptotically stable equilibrium point x)

Wentzell-Freidlin theory

Theorem [Wentzell & Freidlin, 1969-72, 1984]

Mean first-exit time from \mathcal{D} satisfies

$$2\varepsilon \log \mathbb{E} au_{\mathcal{D}}^{arepsilon} o \overline{V} \coloneqq \inf_{z \in \partial \mathcal{D}} V(x,z) \qquad \text{ as } arepsilon o 0$$

Gradient case with isotropic noise (reversible diffusion)

- ▷ Quasipotential V(x, z) = 2[V(z) V(x)]
- Cost for leaving potential well is

$$\overline{V} = \inf_{z \in \partial \mathcal{D}} V(x, z) = 2H$$

▶ Attained for paths going against the flow:

$$\dot{\varphi}_t = +\nabla V(\varphi_t)$$

Implies Arrhenius Law!

Proving Kramers Law

- Low-lying spectrum of generator of the diffusion
 [Helffer & Sjöstrand 1985; Holley, Kusuoka & Stroock 1989; Mathieu 1995;
 Miclo 1995; Kolokoltsov 1996; . . .]
- Potential theoretic approach: Relating mean exit times to capacities [Bovier, Eckhoff, Gayrard & Klein 2004]
- ▶ Two-scale approach and transport techniques [Menz & Schlichting 2012]
- Full asymptotic expansion of prefactor [Helffer, Klein & Nier 2004; Hérau, Hitrik & Sjöstrand 2008, 2012; . . .]

Generalization: Multiwell potentials

Multiwell potentials: Metastable hierarchy

- \triangleright Order $x_1 \prec x_2 \prec \cdots \prec x_n$ of local minima of V according to "depth" $V(x_i)$
- Metastable hierarchy $\mathcal{M}_k = \{x_1, \dots, x_k\}$
- Kramers Law holds for first-hitting time $\mathbb{E}_{x_k} \tau_{\mathcal{M}_{k-1}}$ of neighbourhood of \mathcal{M}_{k-1} [Bovier, Eckhoff, Gayrard & Klein 2004]
- Requires non-degeneracy condition

Example: $3 \prec 1 \prec 2$

- $\triangleright \mathbb{E}_1 \tau_3 \simeq C_1 e^{h_1/\varepsilon}$
- $imes \mathbb{E}_2 au_{\{1,3\}} \simeq \mathit{C}_2\,\mathrm{e}^{\mathit{h}_2/arepsilon}$
- $ho \ \mathbb{E}_2 au_3 \simeq C' \, \mathrm{e}^{H/\varepsilon} \gg C_2 \, \mathrm{e}^{h_2/\varepsilon}$

Generalization: Non-quadratic saddles

Non-quadratic saddles

What happens if det $\nabla^2 V(z) = 0$?

$$\det \nabla^2 V(z) = 0$$

- $\det \nabla^2 V(z) = 0 \implies \text{At least one vanishing eigenvalue at saddle } z$
 - ⇒ Saddle has at least one non-quadratic direction
 - Kramers Law not applicable

Why do we care about this non-generic situation?

Occurs at bifurcations in parameter-dependent systems

Non-quadratic saddles

Example: Two harmonically coupled particles

$$V_{\gamma}(x_1, x_2) = U(x_1) + U(x_2) + \frac{\gamma}{2}(x_1 - x_2)^2$$

Change of variable: Rotation by $\pi/4$ yields

$$\widehat{V}_{\gamma}(y_1, y_2) = -\frac{1}{2}y_1^2 - \frac{1 - 2\gamma}{2}y_2^2 + \frac{1}{8}(y_1^4 + 6y_1^2y_2^2 + y_2^4)$$

Note: $\det \nabla^2 \widehat{V}_{\gamma}(0,0) = 1 - 2\gamma \implies \text{Pitchfork bifurcation at } \gamma = 1/2$

Subexponential asymptotics: Non-quadratic saddles

- $\triangleright x = \text{quadratic local minimum of } V \text{ (non-quadratic minima possible)}$
- $\triangleright y =$ another local minimum of V
- \triangleright 0 = the relevant saddle for passage from x to y
- Normal form near saddle

$$V(z) = -u_1(z_1) + u_2(z_2) + \frac{1}{2} \sum_{i=3}^{d} \lambda_i z_i^2 + \dots$$

 \triangleright Assume growth conditions on u_1 , u_2

Theorem [Berglund & G 2010]

$$\mathbb{E}_{\mathbf{x}} \tau_{\mathbf{y}} = \frac{(2\pi\varepsilon)^{d/2} e^{-V(\mathbf{x})/\varepsilon}}{\sqrt{\det \nabla^{2} V(\mathbf{x})}} \left/ \varepsilon \frac{\int_{-\infty}^{\infty} e^{-u_{2}(\mathbf{z}_{2})/\varepsilon} dy_{2}}{\int_{-\infty}^{\infty} e^{-u_{1}(\mathbf{z}_{1})/\varepsilon} dy_{1}} \prod_{j=3}^{d} \sqrt{\frac{2\pi\varepsilon}{\lambda_{j}}} \right.$$

$$\times \left[1 + \mathcal{O}(\varepsilon^{\alpha} |\log \varepsilon|^{1+\alpha}) \right]$$

where $\alpha > 0$ is explicitly known (depends on the growth conditions on u_1, u_2)

Non-quadratic saddles

Corollary: From quadratic saddles to pitchfork bifurcation

Pitchfork bifurcation:
$$V(z) = -\frac{1}{2}|\lambda_1|z_1^2 + \frac{1}{2}\lambda_2z_2^2 + C_4z_2^4 + \frac{1}{2}\sum_{i=2}^d \lambda_iz_i^2 + \dots$$

▶ For $\lambda_2 > 0$ (possibly small wrt. ε):

$$\mathbb{E}_{\mathbf{x}}\tau_{\mathbf{y}} = 2\pi\sqrt{\frac{(\lambda_{2} + \sqrt{2\varepsilon C_{4}})\lambda_{3}\dots\lambda_{d}}{|\lambda_{1}|\det\nabla^{2}V(\mathbf{x})|}} \frac{e^{[V(0)-V(\mathbf{x})]/\varepsilon}}{\Psi_{+}(\lambda_{2}/\sqrt{2\varepsilon C_{4}})} [1 + R(\varepsilon)]$$

where

$$\Psi_{+}(\alpha) = \sqrt{\frac{\alpha(1+\alpha)}{8\pi}} e^{\alpha^2/16} \, K_{1/4}\left(\frac{\alpha^2}{16}\right)$$

$$\lim_{\alpha \to \infty} \Psi_+(\alpha) = 1$$

 $K_{1/4}$ = modified Bessel fct. of 2nd kind

▶ For λ_2 < 0: Similar (involving eigenvalues at new saddles and $I_{\pm 1/4}$)

Generalization:

Stochastic partial differential equations

Allen-Cahn SPDE

$$\partial_t u(x,t) = \partial_{xx} u(x,t) + u(x,t) - u(x,t)^3 + \sqrt{2\varepsilon} \, \xi(t,x)$$

- $\triangleright x \in [0, L] \text{ and } u(x, t) \in \mathbb{R}$
- ▶ Neumann b.c.: $\partial_{\times}u(0,t) = \partial_{\times}u(L,t) = 0$
- ▷ Energy functional $V(u) = V_L(u) = \int_0^L \left[\left(\frac{1}{4} u(x)^4 \frac{1}{2} u(x)^2 \right) + \frac{1}{2} u'(x)^2 \right] dx$
- ▶ Stationary states for $L < \pi$:
 - $u_{\pm}(x) \equiv \pm 1$ (uniform and stable; global minima)
 - $u_0(x) \equiv 0$ (uniform and unstable; transition state)
 - ▶ Activation energy $V(u_0) V(u_{\pm}) = L/4$
- ▶ Stationary states for $L > \pi$:
 - $u_{\pm}(x) \equiv \pm 1$ (uniform and stable; still global minima)
 - $u_0(x) \equiv 0$ (uniform and unstable; no longer transition state)
 - $v_{\text{inst},\pm}(x)$ of instanton shape (pair of unstable states; transition states)
 - ▶ Additional stationary states as *L* increases; not transition states
- \triangleright As $L \nearrow \pi$: Pitchfork bifurcation

Stationary states (Neumann b.c.)

For $k = 1, 2, \ldots$ and $L > \pi k$:

$$u_{k,\pm}(x) = \pm \sqrt{\frac{2m}{m+1}} \operatorname{sn}(\frac{kx}{\sqrt{m+1}} + \mathsf{K}(m), m)$$
 where $2k\sqrt{m+1}\mathsf{K}(m) = L$

Allen-Cahn SPDE: Kramers Law

Results

- ▶ Large deviation principle [Faris & Jona-Lasinio 1982] implies Arrhenius Law
- ▶ Formal computation of subexponential asymptotics [Maier & Stein 2001]
- Kramers Law away from bifurcation points
 [Barret, Bovier & Méléard 2010, Barret 2012]
- ▶ Kramers Law for all finite L [Berglund & G 2012]

Idea of the proof

- Spectral Galerkin approximation
- Control of error terms uniformly in dimension
- Use large deviation principle to obtain a priori bounds

Limitations of Kramers Law

Cycling

New phenomenon in non-reversible case: Cycling

Planar vector field: d = 2, $\mathcal{D} \subset \mathbb{R}^2$ s.t. $\partial \mathcal{D} = unstable$ periodic orbit

- $\triangleright \mathbb{E} \tau_{\mathcal{D}} \sim e^{\overline{V}/2\varepsilon}$ still holds
- ▶ Quasipotential $V(\Pi, z) \equiv \overline{V}$ is constant on $\partial \mathcal{D}$
- Phenomenon of cycling [Day '90]: Distribution of $x_{\tau D}$ on $\partial \mathcal{D}$ does not converge as $\varepsilon \to 0$ Density is *translated* along $\partial \mathcal{D}$ proportionally to $|\log \varepsilon|$.
- In stationary regime: (obtained by reinjecting particle) Rate of escape $\frac{d}{dt} \mathbb{P}\{x_t \notin \mathcal{D}\}$ has $|\log \varepsilon|$ -periodic prefactor [Maier & Stein '96]

Universality in cycling

Theorem [Berglund & G '04, '05, work in progress]

There exists an explicit parametrization of $\partial \mathcal{D}$ s.t. the exit time density is given by

$$p(t,t_0) = \frac{f_{\mathsf{trans}}(t,t_0)}{\mathcal{N}} \ Q_{\lambda T} \left(\theta(t) - \frac{1}{2} |\log \varepsilon| \right) \frac{\theta'(t)}{\lambda T_{\mathsf{K}}(\varepsilon)} \, \mathrm{e}^{-(\theta(t) - \theta(t_0)) \, / \, \lambda T_{\mathsf{K}}(\varepsilon)}$$

Universality in cycling

Theorem [Berglund & G '04, '05, work in progress]

There exists an explicit parametrization of $\partial \mathcal{D}$ s.t. the exit time density is given by

$$p(t, t_0) = \frac{f_{\mathsf{trans}}(t, t_0)}{\mathcal{N}} \ Q_{\lambda T} \left(\theta(t) - \frac{1}{2} |\log \varepsilon| \right) \frac{\theta'(t)}{\lambda T_{\mathsf{K}}(\varepsilon)} \, \mathrm{e}^{-(\theta(t) - \theta(t_0)) \, / \, \lambda T_{\mathsf{K}}(\varepsilon)}$$

 f_{trans} grows from 0 to 1 in time $t-t_0$ of order $|\log \varepsilon|$

Universality in cycling

Theorem [Berglund & G '04, '05, work in progress]

$$p(t,t_0) = \frac{f_{\mathsf{trans}}(t,t_0)}{\mathcal{N}} \ Q_{\lambda T}(\theta(t) - \frac{1}{2}|\log \varepsilon|) \frac{\theta'(t)}{\lambda T_{\mathsf{K}}(\varepsilon)} \, \mathrm{e}^{-(\theta(t) - \theta(t_0)) / \lambda T_{\mathsf{K}}(\varepsilon)}$$

- riangleright f_{trans} grows from 0 to 1 in time $t-t_0$ of order $|\log arepsilon|$
- $\triangleright Q_{\lambda T}(y)$ is a universal λT -periodic function

Universality in cycling

Theorem [Berglund & G '04, '05, work in progress]

$$p(t, t_0) = \frac{f_{\mathsf{trans}}(t, t_0)}{\mathcal{N}} \ Q_{\lambda T} \left(\theta(t) - \frac{1}{2} |\log \varepsilon| \right) \frac{\theta'(t)}{\lambda T_{\mathsf{K}}(\varepsilon)} \, \mathrm{e}^{-(\theta(t) - \theta(t_0)) / \lambda T_{\mathsf{K}}(\varepsilon)}$$

- riangleright f_{trans} grows from 0 to 1 in time $t-t_0$ of order $|\logarepsilon|$
- $\triangleright Q_{\lambda T}(y)$ is a universal λT -periodic function
- \triangleright T is the period of the unstable orbit, λ its Lyapunov exponent

Universality in cycling

Theorem [Berglund & G '04, '05, work in progress]

$$p(t,t_0) = \frac{f_{\mathsf{trans}}(t,t_0)}{\mathcal{N}} \ Q_{\lambda T}(\theta(t) - \frac{1}{2}|\log \varepsilon|) \frac{\theta'(t)}{\lambda T_{\mathsf{K}}(\varepsilon)} e^{-(\theta(t) - \theta(t_0))/\lambda T_{\mathsf{K}}(\varepsilon)}$$

- riangleright f_{trans} grows from 0 to 1 in time $t-t_0$ of order $|\logarepsilon|$
- $\triangleright Q_{\lambda T}(y)$ is a *universal* λT -periodic function
- \triangleright T is the period of the unstable orbit, λ its Lyapunov exponent
- ho $\theta(t)$ is a "natural" parametrisation of the boundary:
 - $\theta'(t) > 0$ is an explicitely known model-dependent, T-periodic function;

$$\theta(t+T) = \theta(t) + \lambda T$$

Universality in cycling

Theorem [Berglund & G '04, '05, work in progress]

$$p(t,t_0) = \frac{f_{\mathsf{trans}}(t,t_0)}{\mathcal{N}} \ Q_{\lambda T} \big(\theta(t) - \frac{1}{2} |\log \varepsilon| \big) \frac{\theta'(t)}{\lambda T_{\mathsf{K}}(\varepsilon)} \, \mathrm{e}^{-(\theta(t) - \theta(t_0)) / \lambda T_{\mathsf{K}}(\varepsilon)}$$

- riangleright f_{trans} grows from 0 to 1 in time $t-t_0$ of order $|\logarepsilon|$
- $\triangleright Q_{\lambda T}(y)$ is a *universal* λT -periodic function
- \triangleright *T* is the period of the unstable orbit, λ its Lyapunov exponent
- $\theta(t)$ is a "natural" parametrisation of the boundary: $\theta'(t) > 0$ is an explicitely known *model-dependent*, T-periodic function; $\theta(t+T) = \theta(t) + \lambda T$
- $T_{\mathsf{K}}(\varepsilon) \text{ is the analogue of Kramers' time: } T_{\mathsf{K}}(\varepsilon) = \frac{C}{\sqrt{\varepsilon}} \, e^{\overline{V}/2\varepsilon}$

The universal profile

$$y \mapsto Q_{\lambda T}(\lambda Ty)/2\lambda T$$

- ▶ Profile determines concentration of first-passage times within a period
- ▷ Shape of peaks: Gumbel distribution $P(z) = \frac{1}{2} e^{-2z} \exp\{-\frac{1}{2} e^{-2z}\}$
- ▶ The larger λT , the more pronounced the peaks
- \triangleright For smaller values of λT , the peaks overlap more

Density of the first-passage time for $\overline{V}=0.5,\ \lambda=1$

 $\varepsilon = 0.5, T = 2$

Thank you for your attention!

$$\mathrm{d} x_t^\varepsilon = b(x_t^\varepsilon) \; \mathrm{d} t + \sqrt{2\varepsilon} g(x_t^\varepsilon) \, \mathrm{d} W_t \;, \qquad x_0 \in \mathbb{R}^{d}$$

Infinitesimal generator $\mathcal{A}^{\varepsilon}$ of diffusion $x_{\varepsilon}^{\varepsilon}$ (adjoint of Fokker–Planck operator)

$$\mathcal{A}^{\varepsilon} v(t,x) = \varepsilon \sum_{i,j=1}^{d} a_{ij}(x) \frac{\partial^{2}}{\partial x_{i} \partial x_{j}} v(t,x) + \langle b(x), \nabla v(t,x) \rangle$$

Theorem

- Poisson problem: $\mathbb{E}_{\mathbf{x}}\{\tau_{\mathcal{D}}^{\varepsilon}\} \text{ is the unique solution of } \begin{cases} \mathcal{A}^{\varepsilon} \, u = -1 & \text{in } \mathcal{D} \\ u = 0 & \text{on } \partial \mathcal{D} \end{cases}$
- Dirichlet problem:
 $$\begin{split} \mathbb{E}_{\mathbf{x}} \{ f \big(\mathbf{x}_{\tau_{\mathcal{D}}^{\varepsilon}}^{\varepsilon} \big) \} \text{ is the unique solution of } & \left\{ \begin{array}{ll} \mathcal{A}^{\varepsilon} \ w = 0 & \text{ in } \mathcal{D} \\ w = f & \text{ on } \partial \mathcal{D} \end{array} \right. \end{split}$$

$$\int_{0}^{\infty} A^{\varepsilon} u = -1 \quad \text{in } \mathcal{D}$$

$$u = 0 \quad \text{on } \partial \mathcal{T}$$

$$\begin{cases} \mathcal{A}^{\varepsilon} w = 0 & \text{in } \mathcal{D} \\ w = f & \text{on } \partial \mathcal{D} \end{cases}$$

Potential theory for Brownian motion I

First-hitting time $\tau_A = \inf\{t > 0 \colon B_t \in A\}$ of $A \subset \mathbb{R}^d$

Fact I: The expected first-hitting time $w_A(x) = \mathbb{E}_x \tau_A$ is a solution to the Dirichlet problem

$$\begin{cases} \Delta w_A(x) = -1 & \text{for } x \in A^c \\ w_A(x) = 0 & \text{for } x \in A \end{cases}$$

and can be expressed with the help of the Green function $G_{A^c}(x,y)$ as

$$w_A(x) = -\int_{A^c} G_{A^c}(x, y) dy$$

Potential theory for Brownian motion II

The equilibrium potential (or capacitor) $h_{A,B}$ is a solution to the Dirichlet problem

$$\begin{cases} \Delta h_{A,B}(x) = 0 & \text{for } x \in (A \cup B)^c \\ h_{A,B}(x) = 1 & \text{for } x \in A \\ h_{A,B}(x) = 0 & \text{for } x \in B \end{cases}$$

Fact II:
$$h_{A,B}(x) = \mathbb{P}_x[\tau_A < \tau_B]$$

The equilibrium measure (or surface charge density) is the unique measure $\rho_{A,B}$ on ∂A s.t.

$$h_{A,B}(x) = \int_{\partial A} G_{B^c}(x,y) \, \rho_{A,B}(\mathrm{d}y)$$

Key observation: For a small ball $C = B_{\delta}(x)$,

$$\int_{A^{c}} h_{C,A}(y) dy = \int_{A^{c}} \int_{\partial C} G_{A^{c}}(y,z) \rho_{C,A}(dz) dy$$
$$= -\int_{\partial C} w_{A}(z) \rho_{C,A}(dz) \simeq w_{A}(x) \operatorname{cap}_{C}(A)$$

where $cap_C(A) = -\int_{\partial C} \rho_{C,A}(dy)$ denotes the capacity

$$\Rightarrow \quad \mathbb{E}_{x}\tau_{A} = w_{A}(x) \simeq \frac{1}{\mathsf{cap}_{B_{\delta}(x)}(A)} \int_{A^{c}} h_{B_{\delta}(x),A}(y) \, \, \mathrm{d}y$$

Variational representation via Dirichlet form

$$cap_{C}(A) = \int_{(C \cup A)^{c}} \|\nabla h_{C,A}(x)\|^{2} dx = \inf_{h \in \mathcal{H}_{C,A}} \int_{(C \cup A)^{c}} \|\nabla h(x)\|^{2} dx$$

where $\mathcal{H}_{C,A} = \text{set of sufficiently smooth functions } h$ satisfying b.c.

General case

$$dx_t^{\varepsilon} = -\nabla V(x_t^{\varepsilon}) dt + \sqrt{2\varepsilon} dB_t$$

What changes as the generator Δ is replaced by $\varepsilon \Delta - \nabla V \cdot \nabla$?

$$\operatorname{cap}_{C}(A) = \varepsilon \inf_{h \in \mathcal{H}_{C,A}} \int_{(C \cup A)^{c}} \|\nabla h(x)\|^{2} e^{-V(x)/\varepsilon} dx$$

$$\mathbb{E}_{x} \tau_{A} = w_{A}(x) \simeq \frac{1}{\operatorname{cap}_{B_{\varepsilon}(x)}(A)} \int_{A^{c}} h_{B_{\delta}(x),A}(y) e^{-V(y)/\varepsilon} dy$$

It remains to investigate capacity and integral.

Assume, x is a quadratic minimum. Use rough a priori bounds on h for cap and

$$\int_{\mathcal{A}^c} h_{B_\delta(x),\mathcal{A}}(y) \, \operatorname{e}^{-V(y)/\varepsilon} \operatorname{d}\! y \simeq \frac{(2\pi\varepsilon)^{d/2} \operatorname{e}^{-V(x)/\varepsilon}}{\sqrt{\det \nabla^2 V(x)}}$$

Non-quadratic saddles: Worse than quartic . . .

Parameter Quartic unstable direction: $V(z) = -C_4 z_1^4 + \frac{1}{2} \sum_{i=2}^{a} \lambda_i z_i^2 + \dots$

$$\mathbb{E}_{\mathbf{x}}\tau_{\mathbf{y}} = \frac{\Gamma(1/4)}{2C_4^{1/4}\varepsilon^{1/4}}\sqrt{\frac{2\pi\lambda_2\dots\lambda_d}{\det\nabla^2V(\mathbf{x})}}\,\mathrm{e}^{[V(0)-V(\mathbf{x})]/\varepsilon}[1+\mathcal{O}(\varepsilon^{1/4}|\log\varepsilon|^{5/4})]$$

Degenerate unstable direction: $V(z) = -C_{2p}z_1^{2p} + \frac{1}{2}\sum_{i=2}^{q}\lambda_i z_j^2 + \dots$

$$\mathbb{E}_{x}\tau_{y} = \frac{\Gamma(1/2p)}{pC_{2p}^{1/2p}} \sqrt{\frac{2\pi\lambda_{2}\dots\lambda_{d}}{\det \nabla^{2}V(x)}} e^{[V(0)-V(x)]/\varepsilon}$$
$$\times [1 + \mathcal{O}(\varepsilon^{1/2p}|\log \varepsilon|^{1+1/2p})]$$

Allen-Cahn equation with noise

$$\begin{cases} \partial_t u(x,t) = \partial_{xx} u(x,t) + u(x,t) - u(x,t)^3 + \sqrt{2\varepsilon} \xi(t,x) \\ u(\cdot,0) = \varphi(\cdot) \\ \partial_x u(0,t) = \partial_x u(L,t) = 0 \end{cases}$$
 (Neumann b.c.)

- \triangleright Space–time white noise $\xi(t,x)$ as formal derivative of Brownian sheet
- Mild / evolution formulation, following [Walsh 1986]:

$$u(x,t) = \int_0^L G_t(x,z)\varphi(z) \, dz + \int_0^t \int_0^L G_{t-s}(x,z) [u(s,z) - u(s,z)^3] \, dz \, ds$$
$$+ \sqrt{2\varepsilon} \int_0^t \int_0^L G_{t-s}(x,z) W(ds,dz)$$

where

- ▶ G is the heat kernel
- W is the Brownian sheet

Existence and a.s. uniqueness [Faris & Jona-Lasinio 1982]

Stability of the stationary states: Neumann b.c.

Consider linearization of AC equation at stationary solution $u:[0,L]\to\mathbb{R}$

$$\partial_t v = A[u]v$$
 where $A[u] = \frac{d^2}{dx^2} + 1 - 3u^2$

Stability is determined by the eigenvalues of A[u]

- $u_{\pm}(x) \equiv \pm 1$: $A[u_{\pm}]$ has eigenvalues $-(2 + (\pi k/L)^2)$, k = 0, 1, 2, ...
- $u_0(x) \equiv 0$: $A[u_0]$ has eigenvalues $1 (\pi k/L)^2$, k = 0, 1, 2, ...

Counting the number of positive eigenvalues: None for u_+ and ...

Question

How long does a noise-induced transition from the global minimum $u_-(x) \equiv -1$ to (a neighbourhood of) $u_+(x) \equiv 1$ take?

 $au_{u_+} = ext{first hitting time of such a neighbourhood}$

Metastability: We expect $\mathbb{E}_{u_-} au_{u_+} \sim \mathrm{e}^{\mathsf{const}/arepsilon}$

We seek

- ▶ Activation energy △W
- \triangleright Transition rate prefactor Γ_0^{-1}
- ightharpoonup Exponent lpha of error term

such that

$$\mathbb{E}_{u_-} au_{u_+} = \Gamma_0^{-1}\,\mathrm{e}^{\Delta W/arepsilon}[1+\mathcal{O}(arepsilon^lpha)]$$

Formal computation of the prefactor for the AC equation

Consider $L < \pi$ (and Neumann b.c.)

- ▷ Transition state: $u_0(x) \equiv 0$, $V[u_0] = 0$
- ▷ Activation energy: $\Delta W = V[u_0] V[u_-] = L/4$
- ▶ Eigenvalues at stable state $u_{-}(x) \equiv -1$: $\mu_{k} = 2 + (\pi k/L)^{2}$
- Eigenvalues at transition state $u_0 \equiv 0$: $\lambda_k = -1 + (\pi k/L)^2$

Thus formally [Maier & Stein 2001, 2003]

$$\Gamma_0 \simeq rac{|\lambda_0|}{2\pi} \sqrt{\prod_{k=0}^{\infty} rac{\mu_k}{|\lambda_k|}} = rac{1}{2^{3/4}\pi} \sqrt{rac{\sinh(\sqrt{2}L)}{\sin L}}$$

For $L > \pi$: Spectral determinant computed by Gelfand's method

Questions

- \triangleright What happens when $L \nearrow \pi$? (Approaching bifurcation)
- ▶ Is the formal computation correct in infinite dimension?

Allen-Cahn equation: Introducing Fourier variables

Fourier series

$$u(x,t) = \frac{1}{\sqrt{L}}y_0(t) + \frac{2}{\sqrt{L}}\sum_{k=1}^{\infty}y_k(t)\cos(\pi kx/L) = \frac{1}{\sqrt{L}}\sum_{k\in\mathbb{Z}}\tilde{y}_k(t)e^{\mathrm{i}\,k\pi x/L}$$

Rewrite energy functional V in Fourier variables

$$V(y) = \frac{1}{2} \sum_{k=0}^{\infty} \lambda_k y_k^2 + V_4(y) , \quad \lambda_k = -1 + (\pi k/L)^2$$

where

$$V_4(y) = \frac{1}{4L} \sum_{k_1 + k_2 + k_3 + k_4 = 0} \tilde{y}_{k_1} \tilde{y}_{k_2} \tilde{y}_{k_3} \tilde{y}_{k_4}$$

Resulting system of SDEs

$$\dot{y}_k = -\lambda_k y_k - \frac{1}{L} \sum_{k_1 + k_2 + k_3 = k} \tilde{y}_{k_1} \tilde{y}_{k_2} \tilde{y}_{k_3} + \sqrt{2\varepsilon} \dot{W}_t^{(k)}$$

with i.i.d. Brownian motions $W_t^{(k)}$

Truncating the Fourier series

Truncate Fourier series (projected equation)

$$u_d(x,t) = \frac{1}{\sqrt{L}}y_0(t) + \frac{2}{\sqrt{L}}\sum_{k=1}^{d}y_k(t)\cos(\pi kx/L)$$

Retain only modes $k \leq d$ in the energy functional V

$$V^{(d)}(y) = \frac{1}{2} \sum_{k=0}^{d} \lambda_k y_k^2 + V_4^{(d)}(y)$$

where

$$V_4^{(d)}(y) = \frac{1}{4L} \sum_{\substack{k_1 + k_2 + k_3 + k_4 = 0\\k_i \in \{-d, \dots, 0, \dots, +d\}}} \tilde{y}_{k_1} \tilde{y}_{k_2} \tilde{y}_{k_3} \tilde{y}_{k_4}$$

Resulting d-dimensional system of SDEs

$$\dot{y}_{k} = -\lambda_{k} y_{k} - \frac{1}{L} \sum_{\substack{k_{1} + k_{2} + k_{3} = k \\ k_{i} \in \{-d, \dots, 0, \dots, +d\}}} \tilde{y}_{k_{1}} \tilde{y}_{k_{2}} \tilde{y}_{k_{3}} + \sqrt{2\varepsilon} \dot{W}_{t}^{(k)}$$

Reduction to finite-dimensional system

▶ Show the following result for the projected finite-dimensional systems

$$\varepsilon^{\gamma} C(d) e^{\Delta W^{(d)}/\varepsilon} [1 - R_d^-(\varepsilon)] \leq \mathbb{E}_{u_-^{(d)}} \tau_{u_+^{(d)}} \leq \varepsilon^{\gamma} C(d) e^{\Delta W^{(d)}/\varepsilon} [1 + R_d^+(\varepsilon)]$$

(The contribution ε^{γ} is only present at bifurcation points / non-quadratic saddles)

The following limits exist and are finite

$$\lim_{d\to\infty} C(d) =: C(\infty) \qquad \text{and} \qquad \lim_{d\to\infty} \Delta W^{(d)} =: \Delta W^{(\infty)}$$

▶ Important: Uniform control of error terms (uniform in d):

$$R^{\pm}(\varepsilon) := \sup_{d} R_{d}^{\pm}(\varepsilon) \to 0 \quad \text{as} \quad \varepsilon \to 0$$

Away from bifurcation points, c.f. [Barret, Bovier & Méleard 09]

Taking the limit $d \to \infty$

- ▶ For any ε , distance between u(x,t) and solution $u^{(d)}(x,t)$ of the projected equation becomes small on any finite time interval [0,T] [Liu 2003; Blömker & Jentzen 2009]
- $\,{}^{\triangleright}$ Uniform error bounds and large deviation results allow to decouple limits of small ε and large d
- Yielding

$$\varepsilon^{\gamma} C(\infty) e^{\Delta W^{(\infty)}/\varepsilon} [1 - R^{-}(\varepsilon)] \leq \mathbb{E}_{u_{-}} \tau_{u_{+}} \leq \varepsilon^{\gamma} C(\infty) e^{\Delta W^{(\infty)}/\varepsilon} [1 + R^{+}(\varepsilon)]$$

Result for the Allen-Cahn equation (Neumann b.c.)

Theorem [Berglund & G 2012]

For $L < \pi$

$$\mathbb{E}_{u_{-}}\tau_{u_{+}} = \frac{1}{\Gamma_{0}(L)}\,\mathrm{e}^{L/4\varepsilon}[1 + \mathcal{O}((\varepsilon|\log\varepsilon|)^{1/4})]$$

where the rate prefactor satisfies (recall: $\lambda_1 = -1 + (\pi/L)^2$)

$$\begin{split} \Gamma_0(L) &= \frac{1}{2^{3/4}\pi} \sqrt{\frac{\sinh(\sqrt{2}L)}{\sin L}} \sqrt{\frac{\lambda_1}{\lambda_1 + \sqrt{3\varepsilon/4L}}} \Psi_+ \Big(\frac{\lambda_1}{\sqrt{3\varepsilon/4L}}\Big) \\ &\longrightarrow \frac{\Gamma(1/4)}{2(3\pi^7)^{1/4}} \sqrt{\sinh(\sqrt{2}\pi)} \, \varepsilon^{-1/4} \qquad \text{as } L \nearrow \pi \end{split}$$

Allen-Cahn equation with periodic b.c.

- Periodic b.c.: u(0,t) = u(L,t) and $\partial_x u(0,t) = \partial_x u(L,t)$
- \triangleright For $k=1,2,\ldots$ and $L>2\pi k$:

Additional continuous one-parameter family of stationary states, given in terms of Jacobi's elliptic sine by

$$u_{k,\varphi}(x) = \sqrt{\frac{2m}{m+1}} \operatorname{sn}\left(\frac{kx}{\sqrt{m+1}} + \varphi, m\right)$$
 where $4k\sqrt{m+1} \operatorname{K}(m) = L$

▶ For $L > 2\pi$: Rate prefactor $\Gamma_0(L) \sim L/\sqrt{\varepsilon}$