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A brief introduction to stochastic resonance

What is stochastic resonance (SR)?

SR = mechanism to amplify weak signals in presence of noise

Requirements

> (background) noise

> weak input

> characteristic barrier or threshold (nonlinear system)

Examples
> periodic occurrence of ice ages (?)
> Dansgaard—Oeschger events (?)
> bidirectional ring lasers
> visual and auditory perception
> receptor cells in crayfish
> ...
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A brief introduction to stochastic resonance

Example: Dansgaard-Oeschger events
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GISP2 climate record for the second half of the last glacial
[from: Rahmstorf, Timing of abrupt climate change: A precise clock, Geophys. Res. Lett. 30 (2003)]

> Abrupt, large-amplitude shifts in global climate during last glacial
> Cold stadials; warm Dansgaard—Oeschger interstadials

> Rapid warming; slower return to cold stadial

> 1470-year cycle?

> Occasionally a cycle is skipped
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A brief introduction to stochastic resonance

The paradigm

Overdamped motion of a Brownian particle . ..

dzy = [—2) + 2 + Acos(et)] dt + o dW,

0
= —£V(xt, et)

... In a periodically modulated double-well potential

1 1
V(x,s)= 1x4 — §x2 — Acos(s)x A< Ae
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A brief introduction to stochastic resonance

Sample paths
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A =0.24, 0 =0.20, e = 0.001 A =0.35, 0 =0.20, e = 0.001
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A brief introduction to stochastic resonance

Different parameter regimes

Synchronisation |

> For matching time scales: 27/c = Tiorcing = 2 Tkramers = €27/
> Quasistatic approach: Transitions twice per period with high probability

(physics’ literature; [Freidlin "00], [Imkeller et al, since '02])
> Requires exponentially long forcing periods

Synchronisation I
> For intermediate forcing periods: Trelax < Tiorcing < Tkramers
and close-to-critical forcing amplitude: A ~ Ag
> Transitions twice per period with high probability
> Subtle dynamical effects: Effective barrier heights [Berglund & G '02]

SR outside synchronisation regimes
> Only occasional transitions
> But transition times localised within forcing periods

Unified description / understanding of transition between regimes ?
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First-passage-time distributions as a qualitative measure for SR

Qualitative measures for SR

it
e

How to measure combined effect of periodic and random perturbations?

Spectral-theoretic approach Probabilistic approach
> Power spectrum > Distribution of interspike times
> Spectral power amplification > Distribution of first-passage times
> Signal-to-noise ratio > Distribution of residence times

Look for periodic component in density of these distributions
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First-passage-time distributions as a qualitative measure for SR

Interspike times for Dansgaard-Oeschger events

[from: Alley, Anandakrishnan, Jung, Stochastic resonance in the North Atlantic, Paleoceanography 16 (2001)]
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First-passage-time distributions as a qualitative measure for SR

Interwell transitions

Deterministic motion in a periodically modulated double-well potential
> 2 stable periodic orbits tracking bottoms of wells
> 1 unstable periodic orbit tracking saddle
> Unstable periodic orbit separates basins of attraction

Brownian particle in a periodically modulated double-well potential

> Interwell transitions characterised by crossing of unstable orbit

A x
well

‘ M
J W
N,

Stochastic climate models 23 May — 1 June 2005 9 (24) lwlilals



Diffusion exit from a domain

Exit problem
Deterministic ODE gt = f(zdeY) xo € R
Small random perturbation dey = f(xy) dt+o AW, (same initial cond. z)

Bounded domain D > x( (with smooth boundary)

> first-exit time T=71p=inf{t >0: 2, & D}
> first-exit location z. € 0D

Distribution of 7 and - ?

Interesting case
D positively invariant under deterministic flow

Approaches
> Mean first-exit times and locations via PDEs
> Exponential asymptotics via Wentzell-Freidlin theory
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Diffusion exit from a domain

Exponential asymptotics: Wentzell-Freidlin theory |

Assumptions (for this slide)
> D positively invariant
> unique, asympt. stable equilibrium pointat 0 € D
> 0D C basin of attraction of 0

Concepts
> Rate function/action functional :

I (@ / s — flo)||* ds for ¢ € Hy Ijp4(p) = +oc otherwise

Probability ~ exp{—1I(y)} to observe sample paths close to ¢ (LDP)
> Quasipotential: Cost to go against the flow from 0 to =

V(0,2) = inf inf{Tpn(¢): ¢ € C[0,4],R?), @0 =0, ¢ = 2}

>0
> Minimum of quasipotential on boundary 9D

V == min V(0, 2)
2€0D
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Diffusion exit from a domain

Exponential asymptotics: Wentzell-Freidlin theory I

Theorem [Wentzell & Freidlin > '70]
For arbitrary initial condition in D
> Mean first-exit time

V/UQ

Er ~ e aso — 0

> Concentration of first-exit times
P{e(7_5)/02 <7< e(v+5)/02} — 1 asoc — 0 (for arbitrary § > 0)

> Concentration of exit locations near minima of quasipotential

Gradient case (reversible diffusion)
Drift coefficient deriving from potential: f = —-VV

> Cost for leaving potential well: V' =2H
> Attained for paths going against the flow: ¢, = —f(¢;
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Diffusion exit from a domain
Refined results in the gradient case

Simplest case: 1V double-well potential

First-hitting time 7"* of deeper well

> B, it = (o) VOV o

o \/ det V2V ()]

exists !

> lim c(o) =

o—0 B )\1(,2) det VZV(5131>

Lo

A1 (z) unigue negative e.v. of V2V (z2)
(Physics’ literature: [Eyring '35], [Kramers '40]; [Bovier, Gayrard, Eckhoff, Klein '02])

> Subexponential asymptotics known !
Related to geometry at well and saddle / small eigenvalues of the generator

([Bovier et al '02], [Helffer, Klein, Nier '04])

> 70t~ exp. distributed: lim P{Thit > tEThit} — ¢ ' ([Day '82], [Bovier et al '02])

o—0
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Noise-induced passage through an unstable periodic orbit

New phenomena for drift not deriving from a potential?

Simplest situation of interest
Nontrivial invariant set which is a single periodic orbit

Assume from now on
d = 2, 0D = unstable periodic orbit
> E7 ~ ¢/ still holds [Day '90]

> Quasipotential (0, z) = V is constant on 9D :
Exit equally likely anywhere on 0D (on exp. scale)

> Phenomenon of cycling [Day '92]: T -
Distribution of x, on 9D generally does not converge as o — 0.
Density is translated along 0D proportionally to |log o|.

> |In stationary regime: (obtained by reinjecting particle)

Rate of escape &P{xt € D} has |logo|-periodic prefactor [Maier & Stein '96]
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Noise-induced passage through an unstable periodic orbit

Back to SR
dxy = —QV(x et) dt + o dW,
t — @m ty t
where V (z, s) is a periodically modulated double-well potential
1 1
Vix,s)= Zm4 — §$2 — Acos(s)x A< Ac

> Time t as auxiliary variable — 2-dimensional system

> Deterministic system: 3 periodic orbits tracking bottoms of wells and saddle
> 2 stable, 1 unstable

> Unstable periodic orbit separates basins of attraction

> Choose D as interior of unstable periodic orbit

> 0D Is unstable periodic orbit

Degenerate case: No noise acting on auxiliary variable
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The first-passage time density

Density of the first-passage time at an unstable periodic orbit

Taking number of revolutions into account

Idea
Density of first-passage time at unstable orbit

. —V/o? : : :
p(t) =c(t,o) e X transient term X geometric decay per period
ldentify c(¢, o) as periodic component in first-passage density
Notations
> Value of quasipotential on unstable orbit: 1/
> Period of unstable orbit: T = 27 /e
. 0?
> Curvature at unstable orbit: a(t) = —573 V(z""SY(t), 1)
i
| I
> Lyapunov exponent of unstable orbit: \ = T/ a(t) dt
0
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The first-passage time density

Universality in first-passage-time distributions

Theorem ([Berglund & G '04], [Berglund & G '05], work in progress)

Using a (model dependent) “natural” parametrisation of the boundary:
Forany A > /o andall t >t

P{r e [t,t + A]} = / p(s, o) ds [1+O(\F>}

where

> p(t, tg) = 7 QAT(t — |log a|) e~ (=) [ATk(o) £ s(t, 1) is the “density”

( )

> Qxr(y) IS a universal \T-periodic function

: _ C -
> Tx(o) is the analogue of Kramers' time: Tx(o) = —¢"/”
o

> firans grows from O to 1 in time ¢ — ¢, of order |log o]
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The first-passage time density

The different regimes

1

>\TK< )e ~(t=to) [ M Tk(o ftrans(t to)

t,1 t — |logo
p(t, to) = NQAT( log o])
Transient regime

frans is increasing from O to 1; exponentially close to 1 after time ¢—t, > 2|log 0|

Metastable regime

— i _ 1 —2z _1 —2z
Qxr(y) = 2T kz P(y — kEXT) with peaks P(z) = 5 e exp{ 5 e }
kth summand: Path spends

> k periods near stable periodic orbit
> the remaining |(t — ty) /1] — k periods near unstable periodic orbit

Periodic dependence on |log o| : Peaks rotate as o decreases
Asymptotic regime
Significant decay only for ¢t — t, > Tk(o)
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The first-passage time density

The universal profile
y — Qur(ATy)/2AT

AT =10

AT =1

N N
AT =2

AT =5

> Profile determines concentration of first-passage times within a period
> The larger \T', the more pronounced the peaks
> For smaller values of \T', the peaks overlap more
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The first-passage time density

Density of the first-passage time V=05\=1

oc=051T=2 oc=05T=5
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The residence-time density

Definition of residence-time distributions

x; crosses unstable periodic orbit zP*(¢) at time s
7. time of first crossing back after time s

> First-passage-time density:

0

p(tv 8) - Eps,xper(s){T < t}

> Asymptotic transition-phase density: (stationary regime)

ww=/ p(t]s)(s — T/2)ds = (¢ +T)

—00

> Residence-time distribution:

qwzlpwwmm%fmw
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The residence-time density

Computation of residence-time distributions

Without forcing (A = 0)
p(t,s) ~ exponential, ¢ (t) uniform = ¢(¢) ~ exponential

With forcing (A > 0?)
> First-passage-time density:

1

1
p(t, s) = NQAT(t — [log OD)\—TK e~ (1=9)/ Mk frans(t, 5)

> Asymptotic transition-phase density:
1
P(s) ~ )\—TQ)\T<8 — |logal) [1 — C’)(T/TK)}
> Residence-time distribution: (no cycling)

q(t) ~ ]EtranS(@

e /A Tk \T & 1
Nk 2 Z coshz(t + ANT'/2 — kEXT))

k=—00
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The residence-time density

Density of the residence-time distribution

V=05\=1

(@

(b)

, ~
/

AU

]\J\A]\\/X‘N

oc=02T=2

> Peaks symmetric
> No cycling

oc=04,T =10

> o fixed, \T" increasing: Transition into synchronisation regime

> Picture as for Dansgaard—Oeschger events:
Periodically perturbed asymmetric double-well potential
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Concluding remarks

Concluding remarks ...
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