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A brief introduction to stochastic resonance

What is stochastic resonance (SR)?

SR = mechanism to amplify weak signals in presence of noise

Requirements

⊲ (background) noise
⊲ weak input
⊲ characteristic barrier or threshold (nonlinear system)

Examples

⊲ periodic occurrence of ice ages (?)
⊲ Dansgaard–Oeschger events (?)
⊲ bidirectional ring lasers
⊲ visual and auditory perception
⊲ receptor cells in crayfish
⊲ . . .
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A brief introduction to stochastic resonance

Example: Dansgaard–Oeschger events

GISP2 climate record for the second half of the last glacial
[from: Rahmstorf, Timing of abrupt climate change: A precise clock , Geophys. Res. Lett. 30 (2003)]

⊲ Abrupt, large-amplitude shifts in global climate during last glacial
⊲ Cold stadials; warm Dansgaard–Oeschger interstadials
⊲ Rapid warming; slower return to cold stadial
⊲ 1 470-year cycle?
⊲ Occasionally a cycle is skipped

Stochastic climate models 23 May – 1 June 2005 3 (24)



A brief introduction to stochastic resonance

The paradigm

Figure 2. Nils Berglund and Barbara GentzMetastability in simple climate models:Pathwise analysis of slowly driven Langevin equations
2

Overdamped motion of a Brownian particle . . .

dxt =
[
−x3

t + xt + A cos(εt)
]

︸ ︷︷ ︸

= − ∂

∂x
V (xt, εt)

dt + σ dWt

. . . in a periodically modulated double-well potential

V (x, s) =
1

4
x4 − 1

2
x2 − A cos(s)x , A < Ac
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A brief introduction to stochastic resonance

Sample paths

A = 0.00, σ = 0.30, ε = 0.001 A = 0.10, σ = 0.27, ε = 0.001

A = 0.24, σ = 0.20, ε = 0.001 A = 0.35, σ = 0.20, ε = 0.001
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A brief introduction to stochastic resonance

Different parameter regimes

Synchronisation I

⊲ For matching time scales: 2π/ε = Tforcing = 2TKramers ≍ e2H/σ2

⊲ Quasistatic approach: Transitions twice per period with high probability
(physics’ literature; [Freidlin ’00], [Imkeller et al , since ’02])

⊲ Requires exponentially long forcing periods

Synchronisation II

⊲ For intermediate forcing periods: Trelax ≪ Tforcing ≪ TKramers

and close-to-critical forcing amplitude: A ≈ Ac

⊲ Transitions twice per period with high probability
⊲ Subtle dynamical effects: Effective barrier heights [Berglund & G ’02]

SR outside synchronisation regimes

⊲ Only occasional transitions
⊲ But transition times localised within forcing periods

Unified description / understanding of transition between regimes ?
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First-passage-time distributions as a qualitative measure for SR

Qualitative measures for SR

How to measure combined effect of periodic and random perturbations?

Spectral-theoretic approach

⊲ Power spectrum
⊲ Spectral power amplification
⊲ Signal-to-noise ratio

Probabilistic approach

⊲ Distribution of interspike times
⊲ Distribution of first-passage times
⊲ Distribution of residence times

Look for periodic component in density of these distributions
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First-passage-time distributions as a qualitative measure for SR

Interspike times for Dansgaard–Oeschger events

Histogram for “waiting times”
[from: Alley, Anandakrishnan, Jung, Stochastic resonance in the North Atlantic, Paleoceanography 16 (2001)]
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First-passage-time distributions as a qualitative measure for SR

Interwell transitions

Deterministic motion in a periodically modulated double-well potential

⊲ 2 stable periodic orbits tracking bottoms of wells
⊲ 1 unstable periodic orbit tracking saddle
⊲ Unstable periodic orbit separates basins of attraction

Brownian particle in a periodically modulated double-well potential

⊲ Interwell transitions characterised by crossing of unstable orbit

x

t

well

periodic orbit

saddle

well
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Diffusion exit from a domain

Exit problem

Deterministic ODE ẋdet
t = f(xdet

t ) x0 ∈ R
d

Small random perturbation dxt = f(xt) dt+σ dWt (same initial cond. x0)

Bounded domain D ∋ x0 (with smooth boundary)

⊲ first-exit time τ = τD = inf{t > 0 : xt 6∈ D}
⊲ first-exit location xτ ∈ ∂D

Distribution of τ and xτ ? D x0x�D
1

Interesting case

D positively invariant under deterministic flow

Approaches

⊲ Mean first-exit times and locations via PDEs
⊲ Exponential asymptotics via Wentzell–Freidlin theory
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Diffusion exit from a domain

Exponential asymptotics: Wentzell–Freidlin theory I

Assumptions (for this slide)

⊲ D positively invariant
⊲ unique, asympt. stable equilibrium point at 0 ∈ D
⊲ ∂D ⊂ basin of attraction of 0

Concepts

⊲ Rate function / action functional :

I[0,t](ϕ) =
1

2

∫ t

0

‖ϕ̇s − f(ϕs)‖2 ds for ϕ ∈ H1 , I[0,t](ϕ) = +∞ otherwise

Probability ∼ exp{−I(ϕ)} to observe sample paths close to ϕ (LDP)

⊲ Quasipotential: Cost to go against the flow from 0 to z

V (0, z) = inf
t>0

inf{I[0,t](ϕ) : ϕ ∈ C([0, t],R d), ϕ0 = 0, ϕt = z}

⊲ Minimum of quasipotential on boundary ∂D :

V := min
z∈∂D

V (0, z)
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Diffusion exit from a domain

Exponential asymptotics: Wentzell–Freidlin theory II

Theorem [Wentzell & Freidlin > ’70]

For arbitrary initial condition in D
⊲ Mean first-exit time

Eτ ∼ eV /σ
2

as σ → 0

⊲ Concentration of first-exit times

P

{

e(V−δ)/σ2
6 τ 6 e(V+δ)/σ2

}

→ 1 as σ → 0 (for arbitrary δ > 0 )

⊲ Concentration of exit locations near minima of quasipotential

Gradient case (reversible diffusion)

Drift coefficient deriving from potential: f = −∇V
⊲ Cost for leaving potential well: V = 2H

⊲ Attained for paths going against the flow: ϕ̇t = −f(ϕt)
H
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Diffusion exit from a domain

Refined results in the gradient case

x0x1 z
1

Simplest case: V double-well potential

First-hitting time τhit of deeper well

⊲ Ex1 τ
hit = c(σ) e2 [V (z)−V (x1)] / σ

2

⊲ lim
σ→0

c(σ) =
2π

λ1(z)

√

|det∇2V (z)|
det∇2V (x1)

exists !

λ1(z) unique negative e.v. of ∇2V (z)

(Physics’ literature: [Eyring ’35], [Kramers ’40]; [Bovier, Gayrard, Eckhoff, Klein ’02])

⊲ Subexponential asymptotics known !
Related to geometry at well and saddle / small eigenvalues of the generator
([Bovier et al ’02], [Helffer, Klein, Nier ’04])

⊲ τhit ≈ exp. distributed: lim
σ→0

P
{
τhit > tE τhit

}
= e−t ([Day ’82], [Bovier et al ’02])
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Noise-induced passage through an unstable periodic orbit

New phenomena for drift not deriving from a potential?

Simplest situation of interest

Nontrivial invariant set which is a single periodic orbit

Assume from now on

d = 2, ∂D = unstable periodic orbit

⊲ Eτ ∼ eV /σ
2

still holds [Day ’90]

⊲ Quasipotential V (0, z) ≡ V is constant on ∂D :
Exit equally likely anywhere on ∂D (on exp. scale)

⊲ Phenomenon of cycling [Day ’92]:
Distribution of xτ on ∂D generally does not converge as σ → 0.
Density is translated along ∂D proportionally to |log σ|.

⊲ In stationary regime: (obtained by reinjecting particle)

Rate of escape
d

dt
P
{
xt ∈ D

}
has |log σ|-periodic prefactor [Maier & Stein ’96]
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Noise-induced passage through an unstable periodic orbit

Back to SR

dxt = − ∂

∂x
V (xt, εt) dt + σ dWt

where V (x, s) is a periodically modulated double-well potential

V (x, s) =
1

4
x4 − 1

2
x2 − A cos(s)x , A < Ac

⊲ Time t as auxiliary variable → 2-dimensional system
⊲ Deterministic system: 3 periodic orbits tracking bottoms of wells and saddle
⊲ 2 stable, 1 unstable
⊲ Unstable periodic orbit separates basins of attraction
⊲ Choose D as interior of unstable periodic orbit
⊲ ∂D is unstable periodic orbit

Degenerate case: No noise acting on auxiliary variable
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The first-passage time density

Density of the first-passage time at an unstable periodic orbit

Taking number of revolutions into account

Idea

Density of first-passage time at unstable orbit

p(t) = c(t, σ) e−V /σ
2 × transient term × geometric decay per period

Identify c(t, σ) as periodic component in first-passage density

Notations

⊲ Value of quasipotential on unstable orbit: V

⊲ Period of unstable orbit: T = 2π/ε

⊲ Curvature at unstable orbit: a(t) = − ∂2

∂x2
V (xunst(t), t)

⊲ Lyapunov exponent of unstable orbit: λ =
1

T

∫ T

0

a(t) dt
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The first-passage time density

Universality in first-passage-time distributions

Theorem ([Berglund & G ’04], [Berglund & G ’05], work in progress)

Using a (model dependent) “natural” parametrisation of the boundary:

For any ∆ >
√
σ and all t > t0

P{τ ∈ [t, t + ∆]} =

∫ t+∆

t

p(s, t0) ds
[
1 + O(

√
σ)

]

where

⊲ p(t, t0) =
1

N QλT

(
t− |log σ|

) 1

λTK(σ)
e−(t−t0) / λTK(σ) ftrans(t, t0) is the “density”

⊲ QλT (y) is a universal λT -periodic function

⊲ TK(σ) is the analogue of Kramers’ time: TK(σ) =
C

σ
eV /σ

2

⊲ ftrans grows from 0 to 1 in time t− t0 of order |log σ|
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The first-passage time density

The different regimes

p(t, t0) =
1

N QλT

(
t− |log σ|

) 1

λTK(σ)
e−(t−t0) / λTK(σ) ftrans(t, t0)

Transient regime

ftrans is increasing from 0 to 1; exponentially close to 1 after time t−t0 > 2|log σ|

Metastable regime

QλT (y) = 2λT
∞∑

k=−∞
P (y − kλT ) with peaks P (z) =

1

2
e−2z exp

{

−1

2
e−2z

}

kth summand: Path spends
⊲ k periods near stable periodic orbit
⊲ the remaining [(t− t0)/T ] − k periods near unstable periodic orbit

Periodic dependence on |log σ| : Peaks rotate as σ decreases

Asymptotic regime

Significant decay only for t− t0 ≫ TK(σ)
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The first-passage time density

The universal profile

y 7→ QλT (λTy)/2λT

�T = 1
�T = 2�T = 5�T = 10 xFigure 1. Nils Berglund and Barbara GentzOn the noise-indu
ed passage through an unstable periodi
 orbit

1
⊲ Profile determines concentration of first-passage times within a period
⊲ The larger λT , the more pronounced the peaks
⊲ For smaller values of λT , the peaks overlap more
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The first-passage time density

Density of the first-passage time V = 0.5, λ = 1

(a) (b)

σ = 0.4, T = 2 σ = 0.4, T = 20

(c) (d)

σ = 0.5, T = 2 σ = 0.5, T = 5
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The residence-time density

Definition of residence-time distributions

xt crosses unstable periodic orbit xper(t) at time s
τ : time of first crossing back after time s

s τ

⊲ First-passage-time density:

p(t, s) =
∂

∂t
Ps,xper(s)

{
τ < t

}

⊲ Asymptotic transition-phase density: (stationary regime)

ψ(t) =

∫ t

−∞
p(t|s)ψ(s− T/2) ds = ψ(t + T )

⊲ Residence-time distribution:

q(t) =

∫ T

0

p(s + t|s)ψ(s− T/2) ds
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The residence-time density

Computation of residence-time distributions

Without forcing (A = 0)
p(t, s) ∼ exponential, ψ(t) uniform =⇒ q(t) ∼ exponential

With forcing (A≫ σ2)
⊲ First-passage-time density:

p(t, s) ≃ 1

NQλT (t− |log σ|) 1

λTK
e−(t−s)/λTK ftrans(t, s)

⊲ Asymptotic transition-phase density:

ψ(s) ≃ 1

λT
QλT (s− |log σ|)

[
1 + O(T/TK)

]

⊲ Residence-time distribution: (no cycling)

q(t) ≃ f̃trans(t)
e−t/λTK

λTK

λT

2

∞∑

k=−∞

1

cosh2(t + λT/2 − kλT ))

Stochastic climate models 23 May – 1 June 2005 22 (24)



The residence-time density

Density of the residence-time distribution V = 0.5, λ = 1

(a) (b)

σ = 0.2, T = 2 σ = 0.4, T = 10

⊲ Peaks symmetric
⊲ No cycling
⊲ σ fixed, λT increasing: Transition into synchronisation regime

⊲ Picture as for Dansgaard–Oeschger events:
Periodically perturbed asymmetric double-well potential
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Concluding remarks

Concluding remarks . . .
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