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Abstract

These lectures will provide an introduction to the mathematics of random per-
turbations. We will start by discussing some examples arising in climate mod-
elling, namely simple conceptual climate models where noise is used to model
fluctuations on short time scales such as given by the weather. Typically, these
models are multistable and evolve on several well-separated time scales. We
shall see that many interesting questions in noisy dynamical systems can be
viewed as diffusion exit from a domain or as noise-induced passage through a
boundary.

We will than proceed to reviewing the basic mathematical tools for the study of
noisy dynamical systems: Ito calculus, stochastic differential equations and the
classical Wentzell–Freidlin theory for diffusion exit from a domain. Less well-
known but useful tools include results on the distribution of the first-passage
time of Brownian motion to a (curved) boundary and so-called small-ball prob-
abilities.

Finally, we will turn to the multitude of interesting phenomena arising in slowly
driven systems with noise such as reduction of bifurcation delay, stochastic
resonance, noise-induced synchronisation, the effect of noise on the size of
hysteresis cycles. Using a constructive method developed by Berglund and the
lecturer, we will describe the typical behaviour of a slowly-driven random system
by specifying space-time sets in which the system’s sample paths are typically
concentrated. At the same time, we obtain precise bounds on the probability of
atypical paths. We shall conclude by extending this method to general slow-fast
systems and applying it to a conceptual model for the thermohaline circulation
in the North-Atlantic.
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Topics

I Motivation: Climate models

. Three examples of conceptual (i.e., simple !) climate models

II Review

. Brownian motion, stochastic integration, stochastic differ-
ential equations

III The paradym

. The overdamped motion of a Brownian particle in a poten-
tial

. Time scales

IV Diffusion exit from a domain

. Exponential asymptotics: Wentzell–Freidlin theory

. Refined results for gradient dynamics

. New phenomena for non-gradient systems: Cycling

. The density of the time of first passage through an unstable
periodic orbit
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V Small-ball probabilities for Brownian motion

VI First-passage of Brownian motion to a (curved) boundary

VII The simplest class of slow–fast systems: Slowly driven sys-
tems

. Concentration of sample paths near the bottom of a well

. Stochastic resonance

. Hysteresis cycles

. Bifurcation delay

VIII Random perturbations of general slow–fast systems

. Controlling the random fluctuations of the fast variables

. Reduced dynamics

The results on random perturbations of slow–fast systems were
obtained in joint work with Nils Berglund (Université d’Orléans;
previously CPT–CNRS, Marseille)

Slides available at
http://www.math.uni-bielefeld.de/˜gentz/files/Paris August07.pdf
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This course will focus on (the mathematics of)
random perturbations . . .
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PART I

Motivation: Climate models

. Different classes of climate models

. Examples of conceptual climate models

I Ice Ages: An energy-balance model

II Dansgaard–Oeschger events

III North-Atlantic thermohaline circulation: Stommel’s box model

. Examples I & II: Stochastic resonance

. Example III: Relaxation oscillations, excitability, stochastic res-

onance, hysteresis

. Random perturbations of general slow-fast systems
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Motivation: Climate models

Task: Describe the evolution of the Earth’s climate over time

spans of several millennia

Seems impossible?

Numerous models have been developed

Goal: Capture the dynamics of the more relevant quantities

(such as atmosphere and ocean temperatures averaged over long time intervals

and large volumes)
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Types of climate models

One distinguishes

General Circulation Models (GCMs): Discretised versions of

PDEs governing the atmospheric and oceanic dynamics

(including the effect of land masses, ice sheets, etc.)

Earth Models of Intermediate Complexity (EMICs): Focus on

certain parts of the climate system, using a more coarse-

grained description of the rest of the system

Simple conceptual models (such as box models): Variables are

quantities averaged over large volumes. Dynamics based on

global conservation laws
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Climate models

. GCMs and EMICs can only be analysed numerically

. Simple conceptual models are usually chosen such that they are

accessible to analytic methods

. They can provide some insight into the basic mechanisms gov-

erning the climate system

. Even the most refined GCMs have limited resolution, with high-

frequency and short-wavelength modes being neglected

. How to include the effect of unresolved degrees of freedom?
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Climate models

Parametrisation assumes that the unresolved degrees of freedom
can be expressed as a function of the resolved ones
(like fast variables enslaved by the slow ones on a stable slow manifold of a

slow–fast system)

The parametrisation is chosen on more or less empirical grounds

Averaging means that the equations for the resolved degrees of
freedom are averaged over the unresolved ones, using (if pos-
sible) an invariant measure of the unresolved system in the
averaging process

Modelling unresolved degrees of freedom by a noise term [Hassel-

mann 1976 (for climate models)]

Approach not yet rigorously justified (partial results by [Khasminskii

1966], [Kifer 1999–], [Bakhtin & Kifer 2004], [Just et al 2003])

Deviations from the averaged equations often have Gaussian
fluctuations (CLT)
Approach provides a plausible model for rapid transition phe-
nomena observed in the climate system
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Examples for conceptual climate models

. Ice Ages

. Dansgard–Oeschger events

. Thermohaline circulation of the North-Atlantic (Gulf stream)

Riss Ice Age, 110.000 years ago
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Example I: Ice Ages

. During the last 2 million years: more than 20 glacier advances

. During the last 750.000 years: 8 glacier advances

. Period: 92.000–100.000 years

How do we know?

Several ways to estimate the amount of ice on Earth

Investigate sediments

. Type of plankton:

Indicator for water temperature

. Oxygen isotopes:

Allows conclusions about ice volume

Plankton: Helenina anderseni

(Diameter 1/20–1/10 mm)
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Ice Ages

G: Glacier advance in the Middle West of the US
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Ice Ages

Various proxies indicate that during the last 700 000 years, the

Earth’s climate has repeatedly experienced dramatic transitions

between “warm” phases (with average temperatures comparable

to today’s values), and Ice Ages (with temperatures about ten

degrees lower)

Transitions occured with a striking, though not perfect, regularity

Average period of about 92 000 years

How to explain this regularity?
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Milankovitch factors

James Croll

(1821–1890)

Milutin Milankovitch

(1879–1958)
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Milankovitch factors

Idea: Regularity of transitions between warm and cold phases
might be related to (quasi-)periodic variations of the Earth’s or-
bital parameters [Croll 1864]

Milankovitch (≈1920): Theoretical considerations and calculations

Changes in the eccentricity of the Earth’s orbit
(→ Distance Earth–Sun)

Periods: 90.000–100.000 years and 400.000 years
Large excentricity −→ large seasonal contrast on one hemisphere
Effect: 0,1–0,2 % variation in insolation

Changes in the tilt of the Earth’s axis (22,1◦–24,5◦)

Period: 41.000 years
more tilt −→ enhanced seasonal contrast

The precession of the equinoxes (−→ Dates of equinox)

Periods: 19 000 years and 23.000 years
−→ seasonal contrast
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Energy-balance model

Simplest model for the variation of the average climate is an

energy-balance model

Sole dynamic variable: Mean temperature T of the atmosphere

Its time evolution is described by

c
dT

ds
= Rin(s)−Rout(T, s)

where

. s denotes time

. c is the heat capacity
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Energy-balance model

c
dT

ds
= Rin(s)−Rout(T, s)

. Rin(s) is the incoming solar radiation, modelled by the periodic

function

Rin(s) = Q
(
1 +K cosωs

)
. Constant Q is called solar constant

. Amplitude K of the modulation is small (of order 5× 10−4)

. Period 2π/ω = 92 000 years

. Rout(T, s) is the outgoing radiation, decomposing into directly

reflected radiation and thermal emission:

Rout(T, s) = α(T )Rin(s) + E(T )

. α(T ) is called the Earth’s albedo

. E(T ) is called emissivity
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Energy-balance model

Approximate emissivity E(T ) by the Stefan–Boltzmann law of black-
body radiation: E(T ) ∼ T4

E(T ) varies little in the range of interest: Replace by constant E0

Richness of the model lies in modelling the albedo’s temperature-
dependence (which is influenced by factors such as size of ice sheets and

vegetation coverage)

The evolution equation can be rewritten as

dT

ds
=
E0

c

[
γ(T )(1 +K cosωs) +K cosωs

]

where

γ(T ) = Q(1− α(T ))/E0 − 1
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Energy-balance model

For two stable climate regimes to coexist, γ(T ) should have three
roots, the middle root corresponding to an unstable state

Following [Benzi, Parisi, Sutera & Vulpiani 1983], we model γ(T )
by the cubic polynomial

γ(T ) = β

(
1−

T

T1

)(
1−

T

T2

)(
1−

T

T3

)

where

. T1 = 278.6 K and T3 = 288.6 K are the representative temper-
atures of the two stable climate regimes

. T2 = 283.3 K represents an intermediate, unstable regime

. β determines the relaxation time τ of the system in the “tem-
perate climate” state, taken to be 8 years, by

1

τ
= (curvature at T3) ' −

E0

c
γ′(T3)
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Energy-balance model

Introduce

. slow time t = ωs

. “dimensionless temperature” x = (T − T2)/∆T
with ∆T = (T3 − T1)/2 = 5 K

Rescaled equation of motion

ε
dx

dt
= −x(x−X1)(x−X3)(1 +K cos t) +A cos t

with X1 = (T1 − T2)/∆T ' −0.94 and X3 = (T3 − T2)/∆T ' 1.06

Adiabatic parameter ε = ωτ
2(T3 − T2)

∆T
' 1.16× 10−3

Effective driving amplitude A =
K

β

T1T2T3

(∆T )3
' 0.12

(according to the value E0/c = 8.77 × 10−3/4000 Ks−1 given in [Benzi, Parisi,

Sutera & Vulpiani 1983])
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Energy-balance model

For simplicity, replace X1 by −1, X3 by 1, and neglect the term
K cos 2πt

This yields the equation

ε
dx

dt
= x− x3 +A cos t

The right-hand side derives from a double-well potential, and
therefore has two stable equilibria and one unstable equilibrium,
for all A < Ac = 2/3

√
3 ' 0.38

Overdamped particle in a periodically forced double-well potential
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Energy-balance model

Overdamped particle in a periodically forced double-well potential

In our simple climate model, the two potential wells represent Ice

Age and temperate climate

The periodic forcing is subthreshold and thus not sufficient to allow

for transitions between the stable equilibria

Model too simple? The slow variations of insolation can only ex-

plain the rather drastic changes between climate regimes if some

powerful feedbacks are involved, for example a mutual enhance-

ment of ice cover and the Earth’s albedo
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Energy-balance model

New idea in [Benzi, Sutera & Vulpiani 1981] and [Nicolis & Nicolis
1981]: Incorporate the effect of short-timescale atmospheric fluc-
tuations, by adding a noise term, as suggested by [Hasselmann
1976]

This yields the SDE

ẋt =
1

ε

[
xt − x3

t +A cos t
]

+ σ̃(ε) Ẇt

(considered on the slow timescale, σ̃ = σ/
√
ε)

For adequate parameter values, typical solutions are likely to cross
the potential barrier twice per period, producing the observed sharp
transitions between climate regimes. This is a manifestation of
stochastic resonance (SR).

Whether SR is indeed the right explanation for the appearance of
Ice Ages is controversial, and hard to decide.
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Sample paths

A = 0.00, σ = 0.30, ε = 0.001 A = 0.10, σ = 0.27, ε = 0.001

A = 0.24, σ = 0.20, ε = 0.001 A = 0.35, σ = 0.20, ε = 0.001
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Example II: Dansgaard–Oeschger events

GISP2 climate record for the second half of the last glacial
[Rahmstorf, Timing of abrupt climate change: A precise clock, Geophys. Res. Lett. 30 (2003)]

. Abrupt, large-amplitude shifts in global climate

during last glacial

. Cold stadials; warm Dansgaard–Oeschger interstadials

. Rapid warming; slower return to cold stadial

. 1 470-year cycle?

. Occasionally a cycle is skipped
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Interspike times for Dansgaard–Oeschger events

Histogram for “waiting times” between transitions

[from: Alley, Anandakrishnan & Jung, Stochastic resonance
in the North Atlantic, Paleoceanography 16 (2001)]
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Sample paths

A = 0.00, σ = 0.30, ε = 0.001 A = 0.10, σ = 0.27, ε = 0.001

A = 0.24, σ = 0.20, ε = 0.001 A = 0.35, σ = 0.20, ε = 0.001
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Stochastic resonance

What is stochastic resonance (SR)?

SR = mechanism to amplify weak signals in presence of noise

Requirements

. (background) noise

. weak input

. characteristic barrier or threshold (nonlinear system)

Examples

. periodic occurrence of ice ages (?)

. Dansgaard–Oeschger events (?)

. bidirectional ring lasers

. visual and auditory perception

. receptor cells in crayfish

. . . .

28



Stochastic resonance: The paradigm model

Overdamped motion of a Brownian particle . . .

dxs =
[
−x3

s + xs +A cos(εs)
]

︸ ︷︷ ︸
= −

∂

∂x
V (xt, εs)

ds+ σ dWs

. . . in a periodically modulated double-well potential

V (x, t) =
1

4
x4 −

1

2
x2 −A cos(t)x with A < Ac
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SR: Different parameter regimes

Synchronisation I

. Matching time scales 2π/ε = Tforcing = 2TKramers � e2H/σ2

. Quasistatic approach: Transitions twice per period likely
(physics’ literature; [Freidlin ’00], [Imkeller et al, since ’02])

. Requires exponentially long forcing periods

Synchronisation II

. Intermediate forcing periods Trelax � Tforcing � TKramers
and close-to-critical forcing amplitude A ≈ Ac

. Transitions twice per period with high probability

. Subtle dynamical effects: Effective barrier heights [Berglund & G ’02]

SR outside synchronisation regimes

. Only occasional transitions

. But transition times localised within forcing periods

Unified description / understanding of transition between regimes ?
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Example III: North-Atlantic thermohaline circulation

. “Realistic”models (GCMs, EMICs): Numerical analysis

. Simple conceptual models: Analytical results

. In particular: Box models
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North-Atlantic THC: Stommel’s Box Model (’61)

Ti: Temperatures

Si: Salinities

F : Freshwater flux

Q(∆ρ): Mass exchange

∆ρ = αS∆S − αT∆T

∆T = T1 − T2

∆S = S1 − S2

T1, S1

low latitudes
10◦N – 35◦N

Q(∆ρ)
T2, S2

high latitudes
35◦N – 75◦N


d

ds
∆T = −

1

τr
(∆T − θ)−Q(∆ρ)∆T

d

ds
∆S =

S0

H
F −Q(∆ρ)∆S

Model for Q [Cessi ’94]: Q(∆ρ) =
1

τd
+

q

V
(∆ρ)2
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Stommel’s box model as a slow–fast system

Separation of time scales: τr � τd

Rescaling: x = ∆T/θ, y = (αS/αT )(∆S/θ), s = τdt
εẋ = −(x− 1)− εx[1 + η2(x− y)2]

ẏ = µ− y[1 + η2(x− y)2]

ε = τr/τd � 1

Slow manifold (εẋ = 0):

x = x?(y) = 1 +O(ε)

Reduced equation on slow manifold:

ẏ = µ− y[1 + η2(1− y)2 +O(ε)]

y[1 + η2(1− y)2]

µ

y

1 or 2 stable equilibria, depending on freshwater flux µ (and η)
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Stommel’s box model with Ornstein–Uhlenbeck noise

dxt =
1

ε

[
−(xt − 1)− εxtQ(xt − yt)

]
dt+ dξ1

t

dξ1
t = −

γ1

ε
ξ1
t dt+

σ
√
ε

dW1
t

dyt =
[
µ− ytQ(xt − yt)

]
dt+ dξ2

t

dξ2
t = −γ2ξ

2
t dt+ σ′ dW2

t

. Variance of xt − 1 ' σ2/(2(1 + γ1))

. Reduced system for (yt, ξ2
t ) is bistable (for suitable choice of µ)

How to choose µ, i. e., how to model the freshwater flux?
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Modelling the freshwater flux

d

ds
∆T = −

1

τr
(∆T − θ)−Q(∆ρ)∆T

d

ds
∆S =

S0

H
F (s)−Q(∆ρ)∆S

. Feedback: F or Ḟ depending on ∆T and ∆S

⇒ relaxation oscillations, excitability

. External periodic forcing

⇒ stochastic resonance, hysteresis

. Internal periodic forcing of ocean–atmosphere system

⇒ stochastic resonance, hysteresis

35



Case I: Feedback (with Gaussian white noise)

dxt =
1

ε

[
−(xt − 1)− εxtQ(xt − yt)

]
dt+

σ
√
ε

dW0
t

dyt =
[
µt − ytQ(xt − yt)

]
dt+ σ1 dW1

t

dµt = ε̃h(xt, yt, µt) dt+
√
ε̃σ2 dW2

t (slow change in freshwater flux)

Reduced equation (after time change t 7→ ε̃t)

dyt =
1

ε̃

[
µt − ytQ(1− yt)

]
dt+

σ1√
ε̃

dW1
t

dµt = h(1, yt, µt) dt+ σ2 dW2
t

Relaxation

oscillations

y

µ

h > 0

h < 0

µ = yQ(1− y)

Excitability
y

µ

h > 0

h < 0

µ = yQ(1− y)
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Case II: Periodic forcing

Assume periodic freshwater flux µ(t) (centred w.r.t. bifurcation diagram)

�����

�

� ���	�

�

� ��
��

�

�

Theorem [Berglund & G ’02]

. Small amplitude, small noise: Transitions unlikely during one
cycle (However: Concentration of transition times within each period)

. Large amplitude, small noise: Hysteresis cycles
Area = static area + O(ε2/3) (as in deterministic case)

. Large noise: Stoch. resonance / noise-induced synchronization
Area = static area − O(σ4/3) (reduced due to noise)
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General slow–fast systems

Stommel’s box model with noise

dxt =
1

ε

[
−(xt − 1)− εxtQ(xt − yt)

]
dt+ dξ1

t

dξ1
t = −

γ1

ε
ξ1
t dt+

σ
√
ε

dW1
t

dyt =
[
µ− ytQ(xt − yt)

]
dt+ dξ2

t

dξ2
t = −γ2ξ

2
t dt+ σ′ dW2

t

is a special case of a randomly perturbed slow–fast system
dxt = 1

εf(xt, yt) dt+ σ√
ε
F (xt, yt) dWt (fast variables ∈ R n)

dyt = g(xt, yt) dt+σ′ G(xt, yt) dWt (slow variables ∈ Rm)
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General slow–fast systems

For deterministic slow–fast systems εẋ = f(x, y) (fast variables ∈ Rn)

ẏ = g(x, y) (slow variables ∈ Rm)

geometric singular perturbation theory permits to study the re-

duced dynamics on a slow or centre manifold (under suitable assump-

tions)

Our goals:

. Analog for the case of random perturbations

. Effect of random perturbations near bifurcation points of the

deterministic system

We will focus on simple cases, in particular slowly driven systems
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I’m inviting you now to follow me onto a journey into prob-

ability theory.

In case you’re bored – I recommend . . .
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PART II

Review

. Brownian motion

. Stopping times

. Stochastic integration (Itô integrals)

. Stochastic differential equations

. Diffusion processes and Fokker–Planck equation
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Stochastic processes

A stochastic process is a collection {Xt(ω)}t≥0 of random (chance)
variables ω 7→ Xt(ω), indexed by time.

ω denotes the dependence on chance

More precisely:
ω denotes the realisation of chance / randomness / noise

View stochastic process as a random function of time: t 7→ Xt(ω)
(for fixed ω)

We call t 7→ Xt(ω) a sample path.
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Brownian motion

Physics’ literature:

Gaussian white noise Ẇt(ω) is a Gaussian stationary stochastic

process with autocorrelation function

C(s) := E(ẆtẆt+s) = δ(s)

. E denotes expectation (weighted average over all realizations

of the noise)

. δ(s) denotes the Dirac delta function

. Ẇt is completely uncorrelated

Brownian motion (BM): Wt =
∫ t

0
Ẇs ds

(In the sense that Gaussian white noise is the generalized mean-

square derivative of Brownian motion.)
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Sample-path view on Brownian motion

(in the spirit of this course)

BM can be constructed as a scaling limit of a symmetric random

walk

Wt(ω) = lim
n→∞

1
√
n

bntc∑
i=1

Xi(ω)

. Xi(ω) are independent, identically distributed (i.i.d.) random

variables (r.v.’s)

. EXi = 0, Var(Xi) = 1

Special case:

Nearest-neighbour random walk (Xi = ±1 with probability 1/2)

The limit is to be understood as convergence in distribution.
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Definition of Brownian motion

A one-dimensional standard Brownian motion (or Wiener process)
is a stochastic process {Wt}t≥0, satisfying

1. W0 = 0

2. Independent increments:
Wt −Ws is independent of {Wu}0≤u≤s (for all t > s ≥ 0)

3. Gaussian increments:
Wt −Ws ∼ N (0, t− s) (for all t > s ≥ 0)

That is:
Wt −Ws has (probability) density x 7→

1√
2π(t− s)

e−x
2/2(t−s)

(the famous bell-shape curve!)
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Properties of Brownian motion

. Continuity of sample paths
We may assume that the sample paths t 7→ Wt(ω) of BM are
continuous for almost all ω. (Kolmogorov’s continuity theorem)

. Non-differentiability of sample paths
The sample paths are nowhere differentiable for almost all ω.

. Markov property
BM is a Markov process

P
{
Wt+s ∈ A

∣∣∣Wu, u ≤ t
}

= P
{
Wt+s ∈ A

∣∣∣Wt

}
. Gaussian transition probabilities

P
{
Wt+s ∈ A

∣∣∣Wt = x
}

= Pt,x
{
Wt+s ∈ A

}
=
∫
A

e−(y−x)2/2s
√

2πs
dy

. Fokker–Planck equation (FPE)
The transition densities p(t, x) satiesfy the FPE / forward Kol-
mogorov equation

∂p

∂t
=

1

2

d∑
i,j=1

∂2

∂xi∂xj
p =

1

2
4p (in the d-dim. case)
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Properties of Brownian motion

. Gaussian process

{Wt}t≥0 is a Gaussian process (i.e., all its finite-dimensional

marginals are Gaussian random variables) with

– mean zero

– Cov{Wt,Ws} := E(WtWs) = t ∧ s
Conversely, any mean-zero Gaussian process with this covari-

ance structure is a standard Brownian motion.

. Scaling property

{cWt/c2}t≥0 is a standard Brownian motion (for any c > 0)

A k-dimensional standard Brownian motion is a vector

Wt = (W (1)
t , . . . ,W

(k)
t )

of k independent one-dimensional standard Brownian motions
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Stopping times

A random variable τ : Ω → [0,∞] is called a stopping time (with
respect to the BM {Wt}t) if

{τ ≤ t} = {ω ∈ Ω: τ(ω) ≤ t}

can be decided from the knowledge of Ws for s ≤ t alone.
(No need to “look into the future”.)

Formally, we request {τ ≤ t} ∈ Ft = σ{Ws, 0 ≤ s ≤ t} for all t > 0.

Example: First-exit time from a set

τA = inf{t > 0: Wt 6∈ A} ∈ [0,∞]

Note: The time

τ̃A = sup{t > 0: Wt ∈ A} ∈ [0,∞]

of the last visit to A is in general no stopping time.
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André’s reflection principle

Consider a Brownian motion {Wt}t, starting in −b < 0.
(Shift to whole sample path vertically by −b.)

First-passage time τ0 = inf{t > 0: Wt ≥ 0} at level x = 0

P0,−b{τ0 < t} = P0,−b{τ0 < t,Wt ≥ 0}+ P0,−b{τ0 < t,Wt < 0}

Now, for τ0 < t, Wt = Wt −Wτ0 depends (by the strong Markov
property) only on Wτ0 but not on the rest of the past of the sample
path.

We can restart Wt at time τ0 in Wτ0 = 0.

By symmetry of the distribution of the Brownian sample path,
starting in 0 at time τ0,

. . . = 2P0,−b{τ0 < t,Wt ≥ 0} = 2P0,−b{Wt ≥ 0} =
∫ ∞
b

e−y
2/2t

√
2πt

dy

Depends only on the endpoint at time t !
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Stochastic integrals (Itô integrals)

Goal: Give a meaning to stochastic differential equations (SDE’s)

ẋt = f(xt, t) + F (xt, t)Ẇt

Consider the discrete-time version

xtk+1 − xtk = f(xtk, tk)∆tk + F (xtk, tk)∆Wk, k ∈ {0, . . . ,K − 1}

with

. a partition 0 = t0 < t1 < · · · < tK = T

. ∆tk = tk+1 − tk

. Gaussian increments ∆Wk = Wtk+1 −Wtk

Observe that

K−1∑
k=0

f(xtk, tk)∆tk →
∫ t

0
f(xs, s) ds as the partition is chosen finer and finer
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Stochastic integrals (Itô integrals)

This suggests to interpret the SDE as an integral equation

xt = x0 +
∫ t

0
f(xs, s) ds+

∫ t
0
F (xs, s) dWs

provided the second integral can be defined as∫ t
0
F (xs, s) dWs = lim

∆tk→0

K−1∑
k=0

F (xtk, tk)∆Wk

in some suitable sense

Thus we want to define (stochastic) integrals of the type∫ t
0
h(s, ω) dWs(ω)

for suitable integrands h(s, ω)
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A heuristic approach to stochastic integrals

Assume for the moment:
s 7→ h(s, ω) continuous and of bounded variation for (almost) all ω

Were the paths of the Brownian motion s 7→ Ws(ω) also of finite
variation, we could apply integration by parts:∫ t

0
h(s, ω) dWs(ω) = h(t)Wt(ω)− h(0)W0(ω)−

∫ t
0
Ws(ω)h(ds, ω)

= h(t)Wt(ω)−
∫ t

0
Ws(ω)h(ds, ω)

The integral on the right-hand side is defined as a Stieltjes integral
for each fixed ω.
We can use this equation to define

∫ t
0
h(s, ω) dWs(ω) ω-wise

Unfortunately, the paths of BM are almost surely not of finite
variation, and we can not expect s 7→ h(s, ω) = F (xs(ω), s) to be
of finite variation either. Thus the class of possible integrands is
not large enough for our purpose!
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Elementary functions

Let Ft = σ{Ws, s ≤ t} be the σ-algebra generated by the Brownian
motion up to time t. We think of Ft as the past of the BM up to
time t

We start by defining the stochastic integral for a class of particu-
larly simple functions:

h : [0, T ] × Ω → R is called elementary if there exists a partition
0 = t0 < t1 < . . . tK = T such that

. h(t, ω) =
K−1∑
k=0

hk(ω)1(tk,tk+1](t)

. ω 7→ hk(ω) is Ftk-measurable for all k

For such elementary integrands h, define∫ t
0
h(s, ω) dWs(ω) =

K−1∑
k=0

hk(ω)[Wtk+1(ω)−Wtk(ω)]
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Stochastic integrals: L2-theory

To extend this definition, we use the following isometry

Itô isometry

Let h be elementary with hk ∈ L2(Ω) for all k. Then,

E
{(∫ t

0
h(s) dWs

)2}
=
∫ t

0
E{h(s)2}ds

Importance of the Itô isometry

The map h 7→
∫ T

0
h(s) dWs which maps (elementary) h to the

stochastic integral of h is an isometry between L2([0, T ]×Ω) and

L2(Ω)
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Stochastic integrals: L2-theory

Class of possible integrands h : [0, T ]×Ω→ R :

. (t, ω) 7→ h(t, ω) jointly measurable

. ω 7→ h(t, ω) Ft-measurable for any fixed t (Not looking into future!)

.
∫ T

0
E{h(t)2}dt <∞.

Such h can be approximated by elementary functions e(n)∫ T
0

E{(h(s)− e(n)(s))2}ds→ 0, as n→∞

By Itô isometry∫ t
0
h(s) dWs = L2- lim

n→∞

∫ t
0
e(n)(s) dWs

is well-defined (its value does not depend on the choice of the

sequence of elementary functions)
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Stratonovich integral

By our definition of elementary functions, h is approximated by

(random) step functions, where the value of such a step function

at all times t ∈ [t(n)
k , t

(n)
k+1] is F

t
(n)
k

-measurable.

If h is a bounded function and continuous in t for (almost) all ω, the

elementary functions e(n) can be chosen by setting e(n)(t) = h(t(n)
k )

for all t ∈ [t(n)
k , t

(n)
k+1].

If we were to choose e(n)(t) = h(t?) on [t(n)
k , t

(n)
k+1] for some differ-

ent t? ∈ [t(n)
k , t

(n)
k+1], the definition of the stochastic integral would

yield a different value. For instance, choosing t? as the midpoint

the interval would yield the so-called Stratonovich integral.
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Properties of the Itô integral

For [a, b] ⊂ [0, T ], define∫ b
a
h(s) dWs =

∫ T
0

1[a,b](s)h(s) dWs

. Splitting∫ t
s
h(s) dWs =

∫ u
s
h(s) dWs +

∫ t
u
h(s) dWs for 0 ≤ s ≤ u ≤ t ≤ T

. Linearity∫ t
0

(ch1(s) + h2(s)) dWs = c
∫ t

0
h1(s) dWs +

∫ t
0
h2(s) dWs

. Expectation

E
{∫ t

0
h(s) dWs

}
= 0;

. Covariance / Itô isometry

E
{(∫ t

0
h1(s) dWs

)(∫ t
0
h2(s) dWs

)}
=
∫ t

0
E{h1(s)h2(s)}ds
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Itô integrals as stochastic processes

Consider Xt =
∫ t

0
h(s) dWs as a function of t

. Xt is Ft-measurable (not looking into the future)

. Xt is an Ft-martingale: E{Xt|Fs} = Xs for 0 ≤ s ≤ t ≤ T

. We may assume that t 7→ Xt(ω) is continuous for allmost all ω
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Extending the definition

The definition of the Itô integral can be extended to integrands

h satisfying the same measurability assumptions as before but a

weaker integrability assumption. It is sufficient to assume that

P
{∫ t

0
h(s, ω)2 ds <∞ for all t ≥ 0

}
= 1.

The stochastic integral is then defined as the limit in probability

of integrals of elementary functions.

Keep in mind that for such h, those of the above properties of the

stochastic integral which involve expectations may fail.
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Examples

(a) Calculate
∫ t

0
Ws dWs directly from the definition by approximat-

ing Ws by elementary functions. (Homework!)

Note that the result∫ t
0
Ws dWs =

1

2
W2
t −

1

2
t

contains an unexpected term −t/2, which shows that Itô inte-

grals can not be calculated like ordinary integrals.

(The stochastic integral is a martingale, and the Itô correction −t is the

quadratic variation of Wt which makes W 2
t − t a martingale.)

Below we will state Itô’s formula which replaces the chain rule

for Riemann integrals. Useful for calculating Itô integrals.

(b) Case of deterministic integrands (h not depending on ω):∫ t
0
h(s) dWs is Gaussian with mean zero and variance

∫ t
0
h(s)2 ds
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Itô’s formula

Assume

. h and f satisfy the standard measurability assumptions

. P
{∫ t

0
h(s, ω)2 ds <∞ for all t ≥ 0

}
= 1

. P
{∫ t

0
|f(s, ω)|ds <∞ for all t ≥ 0

}
= 1

Itô process

Xt = X0 +
∫ t

0
f(s) ds+

∫ t
0
h(s) dWs

Let g : R × [0, T ]→ R be continuous with cont. partial derivatives

gt =
∂

∂t
g(x, t), gx =

∂

∂x
g(x, t), gxx =

∂2

∂x2
g(x, t)
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Itô’s formula

Then Yt = g(Xt, t) is again an Itô process, given by

Yt = g(X0,0) +
∫ t

0

[
gt(Xs, s) + gx(Xs, s)f(s) +

1

2
gxx(Xs, s)h(s)2

]
ds

+
∫ t

0
gx(Xs, s)h(s) dWs

Using the shorthand

dXt = f dt+ hdWt

Itô’s formula can be written as

dYt = gt dt+ gx dXt +
1

2
gxx(dXt)

2

where (dXt)2 is calculated according to the scheme

(dt)2 = (dt)(dWt) = (dWt)(dt) = 0, (dWt)
2 = dt
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Examples

(a) Using Itô’s formula, we can calculate
∫ t
0 sdWs:

Set g(x, t) = t · x and Yt = g(Wt, t).

Then dYt = Wt dt+ tdWt + 1
20 dt, and, therefore,∫ t

0
sdWs = Yt − Y0 −

∫ t
0
Ws ds = tWt −

∫ t
0
Ws ds.

Note that this is an integration-by-parts formula.

Similarly, by setting g(x, t) = h(t) · x, the integration-by-parts

formula from Slide 51 can be established for suitable h.

(b) Choosing g(x, t) = x2 and Yt = g(t,Wt), Itô’s formula gives a

much easier way to calculate
∫ t
0Ws dWs. (Homework!)

(c) Let Xt = Wt − t/2. Use Itô’s formula to show that Yt = eXt

satisfies

dYt = Yt dWt

Yt is called the Doléans exponential of Wt.
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The multidimensional case

Extension to R n is easy:

. Wt = (W (1)
t , . . . ,W

(k)
t ) k-dimensional standard BM

. h(s, ω) = (hij(s, ω))i≤n,j≤k a matrix-valued function,
taking values in the set of (n× k)-matrices

. Assume, each hij allows for stochastic integration in R

Define the ith component of the n-dim. stochastic integral by

k∑
j=1

∫ t
0
hij(s) dW (j)

s

The above mentioned properties of stochastic integrals carry over
in the natural way. In particular, the covariance of stochastic
integrals can be calculated as

E
{(∫ t

0
f(s) dWs

)(∫ t
0
g(s) dWs

)T}
=
∫ t

0
E{f(s)g(s)T}ds
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Itô’s formula: The multidimensional case

As the multidimensional integral can be defined componentwise, it
is sufficient to consider Yt = g(Xt, t) for multidimensional Xt and
one-dimensional Yt.

. h : [0,∞)×Ω→ R n×k

. f : [0,∞)×Ω→ R n

. g : R n × [0, T ]→ R

. Assumptions as before . . .

Let dXt = f(t) dt+ h(t) dWt and Yt = g(Xt, t)

Then

dYt = gt(Xt, t) dt+
n∑
i=1

gxi(Xt, t) dX(i)
t +

1

2

n∑
i,j=1

gxixj(Xt, t)(dX(i)
t )(dX(j)

t )

using the scheme

(dt)2 = (dt)(dW (µ)
t ) = (dW (µ)

t )(dt) = 0 and (dW (µ)
t )(dW (ν)

t ) = δµν dt
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Application of the multidimensional version of Itô’s formula

Integration-by-parts formula

Let dX(i)
t = fi dt+ hi dWt for i = 1,2

The multidimensional version of Itô’s formula shows

X
(1)
t X

(2)
t = X

(1)
0 X

(2)
0 +

∫ t
0
X

(1)
s dX(2)

s +
∫ t

0
X

(2)
s dX(1)

s +
∫ t

0
h1(s)h2(s) ds
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Stochastic differential equations

Goal: Give a meaning to SDE’s of the form

dxt = f(xt, t) dt+ F (xt, t) dWt

{xt}t∈[0,T ] is called a strong solution with initial condition x0 if

. For all t: xt is {Ws; s ≤ t}-measurable
(depends only on the past of the BM up to time t)

. Integrability condition:

P
{∫ T

0
‖f(xs, s)‖ ds <∞

}
= 1 , P

{∫ T
0
‖F (xs, s)‖2 ds <∞

}
= 1

. For all t:

xt = x0+
∫ t

0
f(xs, s) ds+

∫ t
0
F (xs, s) dWs holds for almost all ω

If the initial condition x0 is random, we assume that it does not
depend on the BM !
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Existence and uniqueness

Assume

. Lipschitz condition (local Lipschitz condition suffices)

‖f(x, t)− f(y, t)‖+ ‖F (x, t)− F (y, t)‖ ≤ K‖x− y‖
. Bounded-growth condition

‖f(x, t)‖+ ‖F (x, t)‖ ≤ K(1 + ‖x‖)
(Can be relaxed, f.e. to xf(x, t)+F (x, t)2 ≤ K2(1+x2) in the one-dim. case)

Then: The SDE has a (pathwise) unique almost surely continuous
solution xt

Uniqueness means:
For any two almost surely continuous solutions xt and yt

P
{

sup
0≤t≤T

‖xt − yt‖ > 0

}
= 0
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Existence and uniqueness: Remarks

. As in the deterministic case: Uniqueness requires only the Lip-

schitz condition

. As in the deterministic case: The bounded-growth condition

excludes explosions of the solution

. Conditions can be relaxed in many ways

. Proof by a stochastic version of Picard–Lindelöf iterations

. The solution xt satisfies the strong Markov property, meaning

that we can restart the process not only at fixed times s in xs

but even at any stopping time τ in xτ
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Example: Linear SDE’s

. We frequently approximate solutions of SDE’s locally by lin-
earizing

. Linear SDE’s can be solved easily

One-dimensional linear SDE

dxt =
[
a(t)xt + b(t)

]
dt+ F (t) dWt

Admits a strong solution

xt = x0 eα(t,t0) +
∫ t
t0

eα(t,s) b(s) ds+
∫ t
t0

eα(t,s) F (s) dWs

where

α(t, s) =
∫ t
s
a(u) du

(Use Itô’s formula to solve the equation! Hint: yt = e−α(t,t0) xt)
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Example: Linear SDE’s

. If the initial condition x0 is either deterministic of Gaussian,

then

xt = x0 eα(t,t0) +
∫ t
t0

eα(t,s) b(s) ds+
∫ t
t0

eα(t,s) F (s) dWs

is a Gaussian process

. For arbitrary initial conditions (independent of the BM):

E{xt} = E{x0} eα(t) +
∫ t

0
b(s) eα(t,s) ds,

Var {xt} = Var {x0} e2α(t) +
∫ t

0
F (s)2 e2α(t,s) ds,

If a(t) ≤ −a0, the effect of the initial condition is suppressed

exponentially fast in t
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Example: Ornstein–Uhlenbeck process

Consider the particular case

a(t) ≡ −γ , b(t) ≡ 0 , F (t) ≡ 1

leading to the SDE

dxt = −γxt dt+ dWt

Its solution

xt = x0 e−γ(t−t0) +
∫ t
t0

e−γ(t−s) dWs

is known as Ornstein–Uhlenbeck process, modelling the velocity
of a Brownian particle. In this context, −γxt is the damping or
frictional force

As soon as t � 1/2γ, xt relaxes quickly towards its equilibrium
distribution which is Gaussian with mean zero and variance

lim
t→∞

Var{xt} = lim
t→∞

∫ t
t0

e−2γ(t−s) ds = lim
t→∞

1

2γ

[
1− e−2γt

]
=

1

2γ
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Diffusion processes and Fokker–Planck equation

Diffusion process

dxt = f(xt, t) dt+ F (xt, t) dWt

The solution xt is an (inhomogenous) Markov process, and the
densities of the transition properties satisfy Kolmogorov’s forward
or Fokker–Planck equation

∂

∂t
ρ(y, t) = Lρ(y, t)

. Lϕ = −
n∑
i=1

∂

∂yi

(
fi(y, t)ϕ

)
+

1

2

n∑
i,j=1

∂2

∂yi∂yj

(
dij(y, t)ϕ

)
. dij(x, t) are the matrix elements of D(x, t) :=F (x, t)F (x, t)T

. ρ : (y, t) 7→ p(y, t|x, s) is the (time-dependent) density of the
transition probability, when starting in x at time s

Note: If xt admits an invariant density ρ0, then Lρ0 = 0
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Gradient systems and Fokker–Planck equation

Consider an (autonomous) SDE of the form

dxt = −∇U(x) dx+ σ dWt

Then

L = ∆U +∇U · ∇+
σ2

2
∆

If the potential grows sufficiently quickly at infinity, the stochastic
process admits an invariant density

ρ0(x) =
1

N
e−2U(x)/σ2

(Homework: Compute L and verify that Lρ0 = 0.)

For the Ornstein–Uhlenbeck process, U(x) is quadratic, and thus
the invariant density is indeed Gaussian.
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References for PART II

The covered material is pretty standard, and you can choose your favourite text
book. Standard references are for instance

. R. Durrett, Brownian motion and martingales in analysis, Wadswort (1984)

. I. Karatzas, and S. E. Shreve, Brownian motion and stochastic calculus,
Springer (1991)

. Ph. E. Protter, Stochastic integration and differential equations, Springer
(2003)

. B. K. Øksendal, Stochastic differential equations, Springer (2000)

For those who can read French, I’d like to recommend also the lecture notes
by Jean-François Le Gall, available at

. http://www.dma.ens.fr/˜legall
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PART III

The paradym

. The overdamped motion of a Brownian particle in a potential

. Time scales

. Metastability

. Slowly driven systems
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The motion of a particle in a double-well potential

Two-parameter family of ODEs

dxs
ds

= µxs − x3
s + λ

describes the overdamped motion of a particle in the potential

U(x) = −
1

2
µx2 +

1

4
x4 − λx

. µ3 > (27/4)λ2: Two wells, one saddle

. µ3 < (27/4)λ2: One well

. µ3 = (27/4)λ2 and λ 6= 0: Saddle–node bifurcation between

the saddle and one of the wells

. (x, λ, µ) = (0,0,0): Pitchfork bifurcation point

Notation

x?± for (the position of) the well bottoms and x?0 for the saddle
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The motion of a Brownian particle in a double-well potential

For a Brownian particle:

dxs =
[
µxs − x3

s + λ
]

ds+ σ dWs

xs has an invariant density

p0(x) =
1

N
e−2U(x)/σ2

. For small σ, p0(x) is strongly concentrated near the minima of

the potential

. If U(x) has two wells of different depths, the invariant density

favours the deeper well

The invariant density does not contain all the information needed

to describe the motion!
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Time scales

Assume : U double-well potential and x0 concentrated at the bot-
tom x?+ of the right-hand well

How long does it take, until we may safely assume that xt is well
described by the invariant distribution?

. If the noise is sufficiently weak, paths are likely to stay in the
right-hand well for a long time

. xt will first approach a Gaussian in a time of order

Trelax =
1

c
=

1

curvature at the bottom x?+ of the well

. With overwhelming probability, paths will remain inside the
same well, for all times significantly shorter than Kramers’ time
TKramers = e2H/σ2

, where H = U(x?0)− U(x?+) = barrier height

. Only on longer time scales, the density of xt will approach the
bimodal stationary density p0
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Time scales

Dynamics is thus very different on the different time scales

. t� Trelax

. Trelax � t� TKramers

. t� TKramers

Method of choice to study the SDE depends on the time scale we
are interested in

Hierarchical description

. On a coarse-grained level, the dynamics is described by a two-
state Markovian jump process, with transition rates e−2H±/σ2

. Dynamics between transitions (inside a well) can be approxi-
mated by ignoring the other well
Approximate local dynamics of the deviation xt − x?± by the
linearisation (OU process)

dys = −ω2
±ys ds+ σ dWs
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Metastability

The fact, that the double-well structure of the potential is not

visible on time scales shorter than TKramers is a manifestation of

metastability: The distribution concentrated near x?+ seems to be

invariant

The relevant time scales for metastability are related to the small

eigenvalues of the generator of the diffusion
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Slowly driven systems

Let us now turn to situations in which the potential U(x) = U(x, εs)
depends slowly on time:

dxs = −
∂U

∂x
(xs, εs) ds+ σ dWs

In slow time t = εs

dxt = −
1

ε

∂U

∂x
(xt, t) dt+

σ
√
ε

dWt

(dt = εds, dWt =
√
εdWs as Wεs and

√
εWs have the same distribution)

Note that the probability density of xt still obeys a Fokker–Planck
equation, but there will be no stationary solution in general
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Slowly driven systems

. Depths H± = H±(t) of the well may now depend on time, and

may even vanish if one of the bifurcation curves is crossed

. “Instantaneous” Kramers timescales e2H±(t)/σ2
no longer fixed

. If the forcing timescale ε−1, at which the potential changes

shape, is longer than the maximal Kramers time of the system,

one can expect the dynamics to be a slow modulation of the

dynamics for frozen potential

. Otherwise, the interplay between the timescales of modulation

and of noise-induced transitions becomes nontrivial

ε introduces additional timescale via the forcing speed Tforcing = 1/ε
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Slowly driven systems

Questions

. How long do sample paths remain concentrated near stable

equilibrium branches, that is, near the bottom of slowly mov-

ing potential wells?

. How fast do sample paths depart from unstable equilibrium

branches, that is, from slowly moving saddles?

. What happens near bifurcation points, when the number of

equilibrium branches changes?

. What can be said about the dynamics far from equilibrium

branches?
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PART IV

Diffusion exit from a domain

. Large deviations for Brownian motion

. Large deviations for diffusion processes

. Diffusion exit from a domain

. Relation to PDEs

. The concept of a quasipotential

. Asymptotic behaviour of first-exit times and locations

(small-noise asymptotics)

. Refined results for gradient systems

. Refined results for non-gradient systems: Passage through an

unstable periodic orbit

. Cycling
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Introduction: Small random perturbations

Consider a small random perturbation

dxεt = b(xεt) dt+
√
ε g(xεt) dWt, xε0 = x0

of ODE

ẋt = b(xt) (with same initial cond.)

We expect xεt ≈ xt for small ε

Depends on

. deterministic dynamics

. noise intensity ε

. time scale
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Introduction: Small random perturbations

Indeed, for b Lipschitz continuous and g = Id

‖xεt − xt‖ ≤ L
∫ t

0
‖xεs − xs‖ds+

√
ε ‖Wt‖

Gronwall’s lemma shows

sup
0≤s≤t

‖xεs − xs‖ ≤
√
ε sup

0≤s≤t
‖Ws‖ eLt

Remains to estimate sup
0≤s≤t

‖Ws‖

. d = 1: Use reflection principle

P
{

sup
0≤s≤t

|Ws| ≥ r
}
≤ 2 P

{
sup

0≤s≤t
Ws ≥ r

}
≤ 4 P

{
Wt ≥ r

}
≤ 2 e−r

2/2t

. d > 1: Reduce to d = 1 using independence

P
{

sup
0≤s≤t

‖Ws‖ ≥ r
}
≤ 2d e−r

2/2dt
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Introduction: Small random perturbations

For Γ ⊂ C = C([0, T ],R d) with Γ ⊂ B((xs)s, δ)c

P
{
xε ∈ Γ

}
≤ P

{
sup

0≤s≤t
‖xεs − xs‖ ≥ δ

}
≤ P

{
sup

0≤s≤t
‖Ws‖ ≥

δ
√
ε

e−Lt
}

and

P
{
xε ∈ Γ

}
≤ 2d exp

{
−
δ2 e−2Lt

2εdt

}
→ 0 as ε→ 0

. Event {xε ∈ Γ} is atypical: Occurrence a large deviation

. Question: Rate of convergence as a function of Γ?

. Generally not possible, but exponential rate can be found

Aim: Find functional I : C → [0,∞] s.t.

P
{
‖xε − ϕ‖∞ < δ

}
≈ e−I(ϕ)/ε for ε→ 0

. Provides local description
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Large deviations for Brownian motion: The endpoint

Special case: Scaled Brownian motion, d = 1

dW ε
t =

√
ε dWt, =⇒ W ε

t =
√
εWt

. Consider endpoint instead of whole path

P{W ε
t ∈ A} =

∫
A

1√
2πεt

exp
{
−x2/2εt

}
dx

. Use Laplace method to evaluate integral

ε log P{W ε
t ∈ A} ∼ −

1

2
inf
x∈A

x2

t
as ε→ 0

Caution

. |A| = 1: l.h.s. = −∞ < r.h.s. ∈ (−∞,0]

. Limit does not necessarily exit
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Large deviations for Brownian motion: The endpoint

Remedy: Use interior and closure =⇒ Large deviation principle

−
1

2
inf
x∈A◦

x2

t
≤ lim inf

ε→0
ε log P{W ε

t ∈ A}

≤ lim sup
ε→0

ε log P{W ε
t ∈ A} ≤ −

1

2
inf
x∈A

x2

t
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Large deviations for Brownian motion: Schilder’s theorem

Schilder’s Theorem (1966)
Scaled BM satisfies a (full) large deviation principle (LDP) with
good rate function

I(ϕ) = I[0,T ],0(ϕ) =


1

2
‖ϕ‖2H1

=
1

2

∫
[0,T ]
‖ϕ̇s‖2 ds if ϕ ∈ H1, ϕ0 = 0

+∞ otherwise

. I : C0 :={ϕ ∈ C : ϕ0 = 0} → [0,∞] is lower semi-continuous

. Good rate function: I has compact level sets

. Upper and lower large-deviation bound:

− inf
Γ◦
I ≤ lim inf

ε→0
ε log P{W ε ∈ Γ} ≤ lim sup

ε→0
ε log P{W ε ∈ Γ} ≤ − inf

Γ
I for all Γ ∈ B(C0)

. Infinite-dimensional version of Laplace method

. W ε 6∈ H1 =⇒ I(W ε) = +∞ (almost surely)

. I(0) = 0 reflects W ε → 0 (ε→ 0)
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Large deviations for Brownian motion: Examples

Example I: Endpoint again . . . (d = 1) Γ =
{
ϕ ∈ C0 : ϕt ∈ A

}
inf
Γ
I = inf

x∈A
1

2

∫ t
0

∣∣∣∣ d

ds

(
xs

t

)∣∣∣∣2 ds = inf
x∈A

x2

2t

inf
Γ
I = cost to force BM to be in A at time t

=⇒ P
{
W ε
t ∈ A

}
∼ exp

{
− inf
x∈A

x2/2tε
}

Note: Typical spreading of W ε
t is
√
εt

Example II: BM leaving a small ball Γ =
{
ϕ ∈ C0 : ‖ϕ‖∞ ≥ δ

}
inf
Γ
I = inf

0≤t≤T
inf

ϕ∈C0 : ‖ϕt‖=δ
I(ϕ) = inf

0≤t≤T
δ2

2t
=

δ2

2T

inf
Γ
I = cost to force BM to leave B(0, δ) before T

=⇒ P
{
∃ t ≤ T, ‖W ε

t ‖ ≥ δ
}
∼ exp

{
−δ2/2Tε

}
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Large deviations for Brownian motion: Examples

Example III: BM staying in a cone (similar . . . Homework!)
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Large deviations for Brownian motion: Lower bound

To show: Lower bound for open sets

lim inf
ε→0

ε log P{W ε ∈ G} ≥ − inf
G
I for all open G ⊂ C0

Lemma (local variant of lower bound)

lim inf
ε→0

ε log P{W ε ∈ B(ϕ, δ)} ≥ −I(ϕ)

for all ∀ ϕ ∈ C0 s.t. I(ϕ) <∞ and all δ > 0

. Lemma =⇒ lower bound

Rewrite (Ŵt = Wt − ϕt/
√
ε)

P{W ε ∈ B(ϕ, δ)} = P{‖W ε − ϕ‖∞ < δ} = P{Ŵ ∈ B(0, δ/
√
ε)}

. Proof of Lemma: via Cameron–Martin–Girsanov formula, al-
lows to transform away the drift
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Cameron–Martin–Girsanov formula (special case, d = 1)

{Wt}t P–BM =⇒ {Ŵt}t Q –BM

where

Ŵt = Wt −
∫ t

0
h(s) ds, h ∈ L2

dQ
dP

∣∣∣∣∣
Ft

= exp

{∫ t
0
h(s) dWs −

1

2

∫ t
0
h(s)2 ds

}
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Proof of Cameron–Martin–Girsanov formula

First step

Xt = exp

{∫ t

0
h(s) dWs −

1

2

∫ t

0
h(s)2 ds

}
h ∈ L2

Yt = exp

{∫ t

0
(γ + h(s)) dWs −

1

2

∫ t

0
(γ + h(s))2 ds

}
= Xt exp

{
γŴt −

1

2
γ2t

}
are exponential martingales wrt. P (for any γ > 0)

Second step

EQ{Z exp
{
γ(Ŵt − Ŵs)

}}
= EP{Z Xt exp

{
γ(Ŵt − Ŵs)

}}
= EP

{
Z exp

{
−γŴs +

1

2
γ2t

}
EP{Yt ∣∣ Fs}}

= EP
{
Z Xs exp

{
1

2
γ2(t− s)

}}
= EQ{Z} exp

{
1

2
γ2(t− s)

}
∀ Z ∈ Fs

. Ŵt − Ŵs is Q –independent of Fs =⇒ increments are independent

. Increments are Gaussian

=⇒ Ŵt is BM with respect to Q
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LDP for Brownian motion: Proof of the lower bound

d = 1, δ > 0, ϕ ∈ C0 with I(ϕ) <∞, Ŵt = Wt − ϕt/
√
ε

P{‖W ε − ϕ‖∞ < δ} = P{‖Ŵ‖∞ < δ/
√
ε }

=

∫
Ŵ∈B(0,δ/

√
ε)

exp

{
−

1
√
ε

∫ T

0
ϕ̇s dWs +

1

2ε

∫ T

0
ϕ̇2
s ds

}
dQ

Estimate integral by Jensen’s inequality

. . . = exp

{
−
I(ϕ)

ε

}
Q
{
Ŵ ∈ B(0, δ/

√
ε)
}

×
1

Q
{
. . .
} ∫

Ŵ∈B(0,δ/
√
ε)

exp

{
−

1
√
ε

∫ T

0
ϕ̇s dŴs

}
dQ

≥ exp

{
−
I(ϕ)

ε

}
P
{
W ∈ B(0, δ/

√
ε)
}
× exp

{
−

1
√
εP
{
. . .
} ∫

W∈B(0,δ/
√
ε)

∫ T

0
ϕ̇s dWs dP

}

= exp

{
−
I(ϕ)

ε

}
P
{
W ∈ B(0, δ/

√
ε)
}
× 1

Finally note

P
{
W ∈ B(0, δ/

√
ε)
}
↗ 1 ( ε↘ 0 ) =⇒ lim inf

ε→0
ε log P

{
‖W ε − ϕ‖∞ < δ

}
≥ −I(ϕ)
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LDP for Brownian motion: Approximation by polygons (up-

per bound)

Approximate W ε by the random polygon Wn,ε joining the random

points (0, W ε
0), (T/n, W ε

T/n), . . . , (T, W ε
T )

To show: Wn,ε is a good approximation to W ε

P
{
‖W ε −Wn,ε‖∞ ≥ δ

}
≤ nP

{
sup

0≤s≤T/n
‖W ε

s −Wn,ε
s ‖ ≥ δ

}

≤ nP
{

sup
0≤s≤T/n

‖W ε
s ‖ ≥

δ

2

}

= nP
{

sup
0≤s≤T/n

‖Ws‖ ≥
δ

2
√
ε

}
≤ 2nd exp

{
−
nδ2

8εdT

}
(standard estimate)

=⇒ Difference is negligible:

lim sup
n→∞

lim sup
ε→0

ε log P
{
‖W ε −Wn,ε‖∞ ≥ δ

}
= −∞ for all δ > 0
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LDP for Brownian motion: Proof of the upper bound

F ⊂ C0 closed, δ > 0, `δ = inf
F (δ)

I = inf
{
I(ϕ): ϕ ∈ F (δ)

}
, n ∈ N

P
{
W ε ∈ F

}
≤ P

{
Wn,ε ∈ F (δ)

}
+ P

{
‖W ε −Wn,ε‖∞ ≥ δ

}
≤ P

{
I(Wn,ε) ≥ `δ

}
+ negligible term

Wn,ε being a polygon yields

I(Wn,ε) =
1

2

∫ T
0
‖Ẇn,ε

s ‖2 ds =
1

2

n∑
k=1

T

n

∥∥∥∥nT
(
W
n,ε
kT/n

−Wn,ε
(k−1)T/n

)∥∥∥∥2

(D)
=

ε

2

nd∑
k=1

ξ2
i (ξi ∼ N (0,1) i.i.d.)
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LDP for Brownian motion: Proof of the upper bound

By Chebychev’s inequality, for γ < 1/2

P
{
I(Wn,ε) ≥ `δ

}
≤ P

{ nd∑
k=1

ξ2
i ≥

2`δ
ε

}
≤ exp

{
−

2γ`δ
ε

}(
E exp

{
γξ2

1

})nd
= exp

{
−

2γ`δ
ε

}(
1− 2γ

)−nd/2

γ < 1/2 being arbitrary and the lower semi-continuity of I show

lim sup
ε→0

ε log P
{
W ε ∈ F

}
≤ lim sup

n→∞
lim sup
ε→0

ε log P
{
I(Wn,ε) ≥ `δ

}
≤ −`δ = − inf

F (δ)
I ↘ − inf

F
I
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Large deviations for solutions of SDEs: Special case

Special case: g(x) ≡ identity matrix

dxεt = b(xεt) dt+
√
ε dWt , xε0 = x0

Define F : C0 → C by ϕ 7→ F (ϕ) = f , f the unique solution in C to

f(t) = x0 +
∫ t

0
b(f(s)) ds+ ϕ(t)

. F (W ε) = xε

. F is continuous (use Gronwall’s lemma)
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Large deviations for solutions of SDEs: Special case

Contraction principle (trivial version)

I is a good rate fct, governing LDP for W ε

=⇒ J(f) = inf
{
I(ϕ): ϕ ∈ C0, F (ϕ) = f

}
is a good rate fct, governing LDP for xε = F (W ε)

Identify J

J(f) = J[0,T ],x0
(f) =


1

2

∫
[0,T ]
‖ḟs − b(fs)‖2 ds if f ∈ H1, f0 = x0

+∞ otherwise
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Large deviations for solutions of SDEs: General case

dxεt = b(xεt) dt+
√
ε g(xεt) dWt, xε0 = x0

Assumptions

. b, g Lipschitz continuous

. bounded growth:
‖b(x)‖ ≤M (1 + ‖x‖2)1/2, a(x) = g(x)g(x)T ≤M (1 + ‖x‖2) Id

. ellipticity: a(x) > 0

Theorem (Wentzell–Freidlin)
xε satisfies a LDP with good rate function

J(f) =


1

2

∫
[0,T ]

∥∥∥a(fs)
−1/2

[
ḟs − b(fs)

]∥∥∥2
ds if f ∈ H1, f0 = x0

+∞ otherwise
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Large deviations for solutions of SDEs: General case

Remark

a(x) = 0: LDP remains valid with good rate function

but identification of J may fail

J(f) = inf

{
I(ϕ): ϕ ∈ H1,

ft = x0 +
∫ t

0
b(fs) ds+

∫ t
0
a(fs)

1/2ϕ̇s ds, t ∈ [0, T ]

}
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LDP for SDEs: Sketch of the proof for the general case

. Difficulty: Cannot apply contraction principle directly

. Introduce Euler approximations

xn,εt = x0 +

∫ t

0
b(xn,εs ) ds+

√
ε

∫ t

0
g(xn,ε

Tn(s)
) dWs, Tn(s) =

[ns]

n

. Schilder’s Theorem and contraction principle imply LDP for xn,ε with good
rate function Jn

Jn(f) =


1

2

∫
[0,T ]

∥∥a(fTn(s))
−1/2

[
ḟs − b(fs)

]∥∥2
ds if f ∈ H1, f0 = x0

+∞ otherwise

. To show:
(1) xn,ε is a good approximation to xε

(not difficult but tedious, uses Itô’s formula)
(2) Jn approximates J: lim

n→∞
inf

Γ
Jn = inf

Γ
J for all Γ
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Large deviations for solutions of SDEs: Varadhan’s Lemma

Assumptions

. φ : R d → R continuous

. Tail condition

lim
L→∞

lim sup
ε→0

ε log

∫
φ(xε)≥L

exp
{
φ(xε)/ε

}
dP = −∞

Theorem (Varadhan’s Lemma)

lim
ε→0

ε log

∫
exp

{
φ(xε)/ε

}
dP = sup

ϕ

[
φ(ϕ)− J(ϕ)

]

Remarks

. The moment condition

sup
0<ε≤1

(∫
exp

{
αφ(xε)/ε

}
dP
)ε

<∞ for some α ∈ (1,∞)

implies tail condition
. Infinite-dimensional analogue of Laplace method
. Holds in great generality — as long as xε satisfies a LDP with a good rate

function J
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Diffusion exit from a domain: Introduction

Deterministic ODE ẋdet
t = b(xdet

t ) x0 ∈ R d

Small random perturbation dxt = b(xt) dt+
√
εg(xt) dWt

Bounded domain D 3 x0 (with smooth boundary)

. first-exit time τ = inf{t > 0: xt 6∈ D}

. first-exit location xτ ∈ ∂D

Questions

. Does xεt leave D ?

. If so: When and where?

. Expected time of first exit?

. Concentration of first-exit time and loca-

tion?

. Distribution of τ and xτ ?
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Diffusion exit from a domain: Introduction

Towards answers

. If xt leaves D, so will xεt . Use LDP to estimate deviation xεt−xt.

. Assume xt does not leave D
(D positively invariant under deterministic flow)

Study noise-induced exit

In the latter case:

. Mean first-exit times and locations via PDEs

. Exponential asymptotics via Wentzell–Freidlin theory
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Diffusion exit from a domain: Relation to PDEs

Assumptions (from now on)

. b, g Lipschitz cont., bounded growth

. a(x) = g(x)g(x)T ≥ (1/M) Id (uniform ellipticity)

. D bounded domain, smooth boundary

Infinitesimal generator Lε of diffusion xε

Lε v(t, x) =
ε

2

d∑
i,j=1

aij(x)
∂2

∂xi ∂xj
v(t, x) + 〈 b(x),∇v(t, x) 〉

Compare to FPE!
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Diffusion exit from a domain: Relation to PDEs

Theorem

For f : ∂D → R continuous

. Ex{τε} is the unique solution of

 Lε u = −1 in D
u = 0 on ∂D

. Ex{f(xετε)} is the unique solution of

 Lεw = 0 in D
w = f on ∂D

Remarks

. Information on first-exit times and exit locations can be ob-

tained exactly from PDEs

. In principle . . .

. Smoothness assumption for ∂D can be relaxed to “exterior-ball

condition”
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Diffusion exit from a domain: An example

Motion of a Brownian particle in a single-well potential

d = 1, b(0) = 0, x b(x) < 0 for x 6= 0, g(x) ≡ 1

. Drift pushes particle towards bottom

. Probability of xε leaving D = (α1, α2) 3 0?

Solve the (one-dimensional) Dirichlet problemLεw = 0 in D
w = f on ∂D

with f(x) =

1 for x = α1

0 for x = α2

w(x) = Px
{
xετε = α1

}
= Exf(xετε) =

∫ α2

x
e2U(y)/ε dy

/∫ α2

α1

e2U(y)/ε dy

115



Diffusion exit from a domain: An example

w(x) = Px
{
xετε = α1

}
= Exf(xετε) =

∫ α2

x
e2U(y)/ε dy

/∫ α2

α1

e2U(y)/ε dy

What happens in the small-noise limit?

lim
ε→0

Px{xετε = α1} = 1 if U(α1) < U(α2)

lim
ε→0

Px{xετε = α1} = 0 if U(α2) < U(α1)

lim
ε→0

Px{xετε = α1} =
1

|U ′(α1)|

/(
1

|U ′(α1)|
+

1

|U ′(α2)|

)
if U(α1) = U(α2)

Note that the information we obtained this way is more precise

than results relying on the LDP can provide.
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Diffusion exit from a domain: A first result

Corollary (to LDP for xε)

lim
ε→0

ε log Px
{
τε ≤ t

}
= − inf

{
V (x, y; s): s ∈ [0, t], y 6∈ D

}

V (x, y; s) = inf
{
J[0,s],x(ϕ): ϕ ∈ C([0, s],R d), ϕ0 = x, ϕs = y

}
= cost of forcing a path to connect x and y in time s

Remarks

. Upper and lower LDP bounds coincide =⇒ limit exists

. Calculation of asymptotical behaviour reduces to a variational

problem

. V (x, y; s) is solution to a Hamilton–Jacobi equation

. extremals solution to an Euler equation
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The concept of a quasipotential

Assumptions (for the next slides)

. D positively invariant

. unique, asymptotically stable equilibrium point at 0 ∈ D

. ∂D ⊂ basin of attraction of 0

Quasipotential

. Quasipotential with respect to 0:

Cost to go against the flow from 0 to z

V (0, z) = inf
t>0

inf{I[0,t](ϕ): ϕ ∈ C([0, t],R d), ϕ0 = 0, ϕt = z}

. Minimum of quasipotential on boundary ∂D

V := min
z∈∂D

V (0, z)
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Wentzell–Freidlin theory

Theorem [Wentzell & Freidlin > ’70] (under above assumptions)

For arbitrary initial condition in D

. Mean first-exit time

Eτ ∼ eV /σ
2

as σ → 0

. Concentration of first-exit times

P
{

e(V−δ)/σ2
6 τ 6 e(V+δ)/σ2

}
→ 1 as σ → 0 (for arbitrary δ > 0 )

. Concentration of exit locations near minima of quasipotential

Gradient case (reversible diffusion)

Drift coefficient deriving from potential:

f = −∇V , g = Id

D containing saddle =⇒ D no longer invariant

. Cost for leaving potential well: V = 2H

. Attained for paths going against the flow:

ϕ̇t = −f(ϕt)

H
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Wentzell–Freidlin theory: Idea of the proof

First step
xε cannot remain in D arbitrarily long without hitting a small neighbourhood
B(0, µ) of 0:

∀µ lim
t→∞

lim sup
ε→0

ε log sup
x∈D

Px
{
xεs ∈ D \B(0, µ) for all s ≤ t

}
= −∞

=⇒ Restrict to initial conditions in B(0, µ)

Second step
Lower bound on probability to leave D:

∀ η > 0 ∃µ0 ∀µ < µ0 ∃T0 > 0 lim inf
ε→0

ε log inf
x∈B(0,µ)

Px
{
τ ε ≤ T0

}
> −(V+η)

. Construct piecewise a continuous exit path ϕ connecting x0, 0, ∂D and some
point y at distance µ from D with I(ϕ) ≤ V + η

. Use LDP to estimate probability of xε remaining in µ/2-neighbourhood of
exit path

Third step
More lemmas in the same spirit . . . (involving exit locations)

Forth step
Prove Theorem by considering successive trials to leave D using strong Markov
property
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Refined results in the gradient case

Simplest case: V double-well potential

First-hitting time τhit of deeper well

. Ex1 τ
hit = c(σ) e2 [V (z)−V (x1)] / σ2

. lim
σ→0

c(σ) =
2π

|λ1(z)|

√√√√|det∇2V (z)|
det∇2V (x1)

exists !

λ1(z) unique negative e.v. of ∇2V (z)

(Physics’ literature: [Eyring ’35], [Kramers ’40];

rigorous: [Bovier, Gayrard, Eckhoff, Klein ’02–’05], [Helffer, Klein, Nier ’04])

. Subexponential asymptotics known
Related to geometry at well and saddle / small eigenvalues of the generator

. τhit ≈ exp. distributed: lim
σ→0

P
{
τhit > tE τhit

}
= e−t

([Day ’82], [Bovier et al ’02])
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New phenomena for drift term not deriving from a potential?

Simplest situation of interest

Nontrivial invariant set which is a single periodic orbit

Assume from now on

d = 2, ∂D = unstable periodic orbit

. Eτ ∼ eV /σ
2

still holds

. Quasipotential V (Π, z) ≡ V is constant on ∂D :
Exit equally likely anywhere on ∂D (on exp. scale)

. Phenomenon of cycling [Day ’92]:

Distribution of xτ on ∂D does not converge as σ → 0

Density is translated along ∂D proportionally to |logσ|.

. In stationary regime: (obtained by reinjecting particle)

Rate of escape
d

dt
P
{
xt ∈ D

}
has |logσ|-periodic prefactor

[Maier & Stein ’96]
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Density of the first-passage time at an unstable periodic orbit

Study first-exit time by taking number of revolutions into account

Idea

Density of first-passage time at unstable orbit

p(t) = c(t, σ) e−V /σ
2
× transient term× geometric decay per period

Identify c(t, σ) as periodic component in first-passage density

Notations

. Value of quasipotential on unstable orbit: V

. Period of unstable orbit: T = 2π/ε

. Curvature at unstable orbit: a(t) = −
∂2

∂x2
V (xunst(t), t)

. Lyapunov exponent of unstable orbit: λ =
1

T

∫ T
0
a(t) dt
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Universality in first-passage-time distributions

Theorem ([Berglund & G ’04], [Berglund & G ’05], work in progress)

For any ∆ >
√
σ and all t > t0

P{τ ∈ [t, t+ ∆]} =
∫ t+∆

t
p(s, t0) ds

[
1 +O(

√
σ)
]

where

. p(t, t0) =
ftrans(t, t0)

N
QλT

(
θ(t)−|logσ|

) θ′(t)

λTK(σ)
e−(θ(t)−θ(t0)) / λTK(σ)

. QλT (y) is a universal λT -periodic function

. θ(t) is a “natural” parametrisation of the boundary:

θ′(t) > 0 is explicitely known model-dependent, T -periodic fct.;

θ(t+ T ) = θ(t) + λT

. TK(σ) is the analogue of Kramers’ time: TK(σ) =
C

σ
eV /σ

2

. ftrans grows from 0 to 1 in time t− t0 of order |logσ|
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Idea of the proof

δ J1 J2 J3 Jn−1

T 2T 3T (n− 1)T nT

In

Exit occurs in In = [t, t+ ∆] ⊂ [(n− 1)T, nT ]

=⇒ rate function has n minimizers (of comparable value)

P0,0
{
τ ∈ In

}
'

n∑
`=1

PJ`,δ
{
τ ∈ In

}
︸ ︷︷ ︸

Qn−`(t)

P0,0
{
τ ′ ∈ J`

}
︸ ︷︷ ︸

P`

P` ' const e−`q exp
{
−V1
σ2

(
1− e−2`λT

)}
, q = T e−V1/σ

2

Qk(t) ' C(t) e−2kλT exp
{
−V2
σ2

(
1− c(t) e−2kλT

)}
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The different regimes (after time change θ(t) 7→ t)

p(t, t0) =
ftrans(t, t0)

N
QλT

(
t− |logσ|

) 1

λTK(σ)
e−(t−t0) / λTK(σ)

Transient regime

ftrans is increasing; exponentially close to 1 for t− t0 > 2|logσ|

Metastable regime

QλT (y) = 2λT
∞∑

k=−∞
P (y−kλT ) where P (z) =

1

2
e−2z exp

{
−

1

2
e−2z

}

kth summand: Path spends

. k periods near stable periodic orbit

. [(t− t0)/T ]− k periods near unstable periodic orbit

Periodic dependence on |logσ| : Peaks P (z) rotate as σ decreases

Asymptotic regime

Significant decay only for t− t0 � TK(σ)
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The universal profile

y 7→ QλT (λTy)/2λT

�������

�������

�	����

�
������� �

. Profile determines concentration of first-passage times
within a period

. Shape of peaks: Gumbel distribution

. The larger λT , the more pronounced the peaks

. For smaller values of λT , the peaks overlap more
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Density of the first-passage time V = 0.5, λ = 1

(a) (b)

σ = 0.4, T = 2 σ = 0.4, T = 20

(c) (d)

σ = 0.5, T = 2 σ = 0.5, T = 5
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Residence-times

xt crosses unstable periodic orbit xper(t)

at time s

τ : time of first crossing back after time s
s τ

. First-passage-time density:

p(t, s) =
∂

∂t
Ps,x

per(s)
{
τ < t

}
. Asymptotic transition-phase density: (stationary regime)

ψ(t) =
∫ t
−∞

p(t, s)ψ(s− T/2) ds = ψ(t+ T )

. Residence-time distribution:

q(t) =
∫ T

0
p(s+ t, s)ψ(s− T/2) ds
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Computation of residence-time distributions

Without forcing (A = 0)

p(t, s) ∼ exponential, ψ(t) uniform =⇒ q(t) ∼ exponential

With forcing (A� σ2)

. First-passage-time density:

p(t, s) '
ftrans(t, s)

N
QλT (t− |logσ|)

1

λTK
e−(t−s)/λTK

. Asymptotic transition-phase density:

ψ(s) '
1

λT
QλT (s− |logσ|)

[
1 +O(T/TK)

]
. Residence-time distribution: (no cycling)

q(t) ' f̃trans(t)
e−t/λTK

λTK

λT

2

∞∑
k=−∞

1

cosh2(t+ λT/2− kλT ))
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Density of the residence-time distribution V = 0.5, λ = 1

(a) (b)

σ = 0.2, T = 2 σ = 0.4, T = 10

. Peaks symmetric

. Shape of peaks: Solitons

. No cycling

. σ fixed, λT increasing: Transition into synchronisation regime

. Picture as for Dansgaard–Oeschger events:
Periodically perturbed asymmetric double-well potential
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PART V

Small-ball probabilities for Brownian motion

. Small-ball probabilities for Brownian motion

. Generalizations
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Small-ball probabilities for Brownian motion

BM is growing with
√
t – What does that mean?

. Var{Wt} grows like t =⇒ typical spreading at time t is
√
t

. P{|Wt| ≥ c
√
t} ≤ e−c

2/2 � 1 for c� 1

. Also lower bound:

P{|Wt| ≤ c
√
t} =

√
2/π c [1−O(c2)]� 1 for c� 1

. These are statements on the endpoint Wt

. For the whole sample path, recall LDP: (for small ε)

P{ sup
0≤t≤T

|Wt| ≥ c
√
t/
√
ε} ≤ P{ sup

0≤t≤T
|Wt| ≥ c

√
T/
√
ε}

= P{ sup
0≤t≤T

|
√
εWt| ≥ c

√
T} ∼ e−c

2/2ε

Note: The large deviation is realized for sample paths leaving

the set as late as possible. Thus: The first two probabilities

behave in the same way.
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Small-ball probabilities for Brownian motion

What can be said about the probability

P{ sup
0≤t≤T

|Wt| ≤ ε}

that BM stays for a long time in a small neighbourhood of the
origin (“in a small ball”)?

Unlikely event!

For the endpoint, we’ve seen

P{|Wt| ≤ c
√
t} =

√
2

π
c [1−O(c2)]

Equivalent

P{|Wt| ≤ ε} =

√
2

π

ε√
t

[
1−O

(
ε2

t

)]
Here, the behaviour of the paths is not dominated by the behaviour of the

endpoint as it is easier for the whole path to exit some time than to be outside

the ball at time t
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Small-ball probabilities for Brownian motion

τr = first-exit time of BM from a centred ball B(0, r) of radius r

Theorem
For d = 1 and any r > 0,

P{ sup
06s61

|Ws| < r} 6
4

π
e−π

2/8r2

For arbitrary dimension d, the distribution function of the first-exit
time τr can be expressed with the help of an infinite series

Theorem [Ciesielski & Taylor, 1962]

P{τr > t} = P{ sup
06s6t

‖Ws‖ < r} =
∞∑
l=1

ξd,l e
−q2

d,lt/2r2

where qd,l, l > 1, are the positive roots of the Bessel function Jν, for ν = d/2−1,
and

ξd,l =
1

2ν−1Γ(ν + 1)

qν−1
d,l

Jν+1(qd,l)
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Generalizations: Weighted norms

Theorem [Berthet & Zhan Shi, 1998 (preprint)] (d = 1)

P
{

sup
0<t≤1

|Wt|
f(t)

< ε

}
∼ exp

(
−
π2

8ε2

∫ 1

0

dt

f2(t)

)

There is a condition on the admissible weights f :

. Admissible are for example f(t) = tα, −∞ < α < 1/2, strictly

positive f , f(t) = t1/2(log(1/t))β for β > 1/2

. An example of a not admissible function is f(t) =
√
t log log(1/t)

. Generalizations to other norms, to shifted balls

. Generalizations to Gaussian processes

. We will use the simplest variant to study escape from a saddle
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PART VI

First-passage of Brownian motion to a (curved) boundary

. Brownian motion crossing constant levels (reflection principle)

. Brownian motion crossing a linear boundary

. A master equation for the distribution of the first-passage time

to a general boundary

. An integral equation for the first-passage density
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First passage to a constant level

Recall the reflection principle for BM

P0,−b{τ0 < t} = 2P0,−b{Wt ≥ 0}
τa = first-passage time of BM at level a ≥ 0

Equivalent

P0,0{τb < t} = 2P0,0{Wt ≥ b} =
1√
2πt

∫ ∞
b

e−x
2/2t dx

Differentiate to obtain density of τb

f(t) =
d

dt
P0,0{τb < t}

= −
1√
2πt

1

t

∫ ∞
b

e−x
2/2t dx+

1√
2πt

∫ ∞
b

x2

t2
e−x

2/2t dx

= −
1√
2πt

1

t

∫ ∞
b

e−x
2/2t dx−

1√
2πt

[
x

t
e−x

2/2t
∣∣∣∣∞
x=b
−

1

t

∫ ∞
b

e−x
2/2t dx

]

=
1√
2πt

b

t
e−b

2/2t =
b

t3/2
ϕ

(
b√
t

)
(ϕ = standard Normal density)

141



Linear boundaries

The formula for the density generalizes to linear boundaries

τg := inf{t : Wt ≥ g(t)} with g(t) := b+ ct (b > 0)

τg has density

f(t) =
b

t3/2
ϕ

(
g(t)√
t

)

Note that for c ≥ 0

P0,0{τg <∞} = e−2cb

For c > 0: P{τg =∞} > 0 =⇒ f no proper density
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General boundaries

In general: No closed-form expression for the density of the first-
passage time of BM to a curved boundary

g : (0,∞)→ R continuous, g(0+) ≥ 0

Markov property for BM allows to restart upon first passage, yield-
ing

Master equation

1−Φ
(
z√
t

)
=
∫ t

0

[
1−Φ

(
z − g(s)
√
t− s

)]
F (ds) ∀ z ≥ g(t)

. F is the distribution function of τg

. Φ is the distribution function of a standard Normal r.v.

From this integral equation, a variety of integral equations for the
first-passage distribution or density are derived
Solved either numerically or using fixed-point arguments
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General boundaries

Under additional assumptions on g

(g cont. differentiable with P{τg = 0} = 0)

Density f of τg exists and satisfies

d

dt

[
1−Φ

(
g(t)√
t

)]
=

1

2
f(t) +

∫ t
0

d

dt

[
1−Φ

(
g(t)− g(s)
√
t− s

)]
f(s) ds ∀ t

(Proof nontrivial – taking derivatives has to be justified)
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PART VII

The simplest class of slow–fast systems:

Slowly driven systems

. Concentration of sample paths near the bottom of a well

. Stochastic resonance

. Hysteresis cycles

. Bifurcation delay
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Concentration of sample paths near the bottom of a well:
Deterministic case

d = 1

Overdamped motion in a potential landscape

εẋt = f(xt, t) , f(x, t) = −∇U(x, t) = −
∂

∂x
U(x, t)

Assume for the moment that U is a single-well potential for all t
(Otherwise: restrict to a suitable space–time region)

Let x?(t) denote the bottom of the well, i.e.,

f(x?(t), t) = 0 ∀ t

t 7→ x?(t) is called equilibrium branch

x?(t) is called uniformly asymptotically stable if

a?(t) := ∂xf(x?(t), t) = −∂xxU(x?(t), t) ≤ −a0 < 0 ∀ t
(Curvature of the well remains bounded away from zero)

148



Excursion: Static potentials

Assume U(x, t) = U(x, t0) for all times t (“frozen system”)

Dynamics

yt :=xfrozen
t − x?(t0)

εẏt = ε
d

dt
xfrozen
t = f(xfrozen

t , t0) = a?(t0)yt +O(y2
t ) , a?(t0) < 0

This implies

|yt| ≤ |y0| e−|a
?(t0)| t/2ε for |yt| small enough

. xfrozen
t approaches x?(t0) exponentially fast

. The speed depends on the curvature of the well:
The steeper the well, the faster the approach

What happens when the shape of the well changes slowly in time?
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Back to slowly driven systems

Theorem [Tihonov 1952, Gradštĕın 1953]

∃ ε0, c0, c1 ∀ε ≤ ε0 (depending only on f) s.t.

. ∃ particular solution x̂det
t s.t. |x̂det

t − x?(t)| ≤ c1ε ∀ t
. If |x0− x?(0)| ≤ c0 then the solution xdet

t starting in x0 at time
t = 0 satisfies

|xdet
t − x̂det

t | ≤ |x0 − x?(0)| e−a0t/2ε ∀ t

x̂det
t is called adiabatic or slow solution

. x̂det
t attracts nearby solutions

. x̂det
t tracks x?(t) at distance ≤ ε

. x̂det
t is not uniquely determined,

we can always start closer to x?(t)

x?(t)

xdet
t
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Sketch of the proof

Part 1: Existence of an adiabatic solution
(compare to the idea of proof in the case of a frozen potential)

For an arbitrary solution xt, define the deviation zt :=xt − x?(t)

A Taylor expansion in the moving point x?(t) shows

εżt = a?(t)zt + b∗(zt, t)− εẋ?(t) ≤ −a0zt +O(z2
t )− εẋ?(t)

We need a bound on the speed at which x?(t) can change:

0 =
d

dt
f(x?(t), t) = ∂xf(x?(t), t)ẋ?(t) + ∂tf(x?(t), t)

implies

ẋ?(t) =
∂tf(x?(t), t)

|a?(t)|
bounded, as a?(t) is bounded away from 0

=⇒ ∃K s.t. |ẋ?(t)| ≤ K <∞
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Sketch of the proof

For small enough zt, Gronwall’s lemma shows

εżt ≤ −
a0

2
zt + εK =⇒ żt ≤ −

a0

2ε
zt +K

=⇒ zt ≤
(
z0 −

2ε

a0
K

)
e−a0t/2ε+

2ε

a0
K

Choosing z0 of order ε yields |zt| ≤ const ε for all t. This implies

the existence of an adiabatic solution.

Part 2: An adiabatic solution is attracting

Repeating the same kind of arguments, this time using a Taylor

expansion around the adiabatic solution x̂det
t , proves the claim.
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The effect of noise

The approach we will present first is not optimal for d = 1, but

generalisable.

dxs = −∇xU(xs, εs) ds+ σ dWs

In slow time (t = εs, xt = xεs, Wt =
√
εWs (in distribution))

dxt = −
1

ε
∇xU(xt, t) dt+

σ
√
ε

dWt

=:
1

ε
f(xt, t) dt+

σ
√
ε

dWt

Assume for the moment that the potential U(x, t) is quadratic, i.e.,

f(x, t) = a?(t)[x− x?(t)]

(Curvature and location of the bottom of the well change in time with a?(t)

and x?(t))
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Effect of noise – quadratic potentials

zt :=xt − xdet
t

dzt =
1

ε
[f(xt, t)− f(xdet

t , t)] dt+
σ
√
ε

=
1

ε
a?(t)zt dt+

σ
√
ε

dWt

We can solve the non-autonomous SDE for zt

zt = z0e
α?(t)/ε +

σ
√
ε

∫ t
0
eα

?(t,s)/ε dWs

where α?(t) =
∫ t

0
a?(s) ds and α?(t, s) = α?(t)− α?(s)

Therefore, zt is a Gaussian r.v. with variance

v?(t) = Var(zt) =
σ2

ε

∫ t
0
e2α?(t,s)/ε ds

For any fixed time t, zt has a typical spreading of
√
v?(t), and a

standard estimate shows

P{|zt| ≥ h} ≤ e−h
2/2v?(t)
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Effect of noise – quadratic potentials

Goal: Similar estimate for the whole sample path

As v?(0) = 0, we need to find a better idea near the origin. We
will replace v?(t) by its “asymptotic value”, pretending that we
started the process at time t0 → −∞.

Crucial observation

d

dt

v?(t)

σ2
=

d

dt

1

ε

∫ t
0

e2α?(t,s)/ε ds =
1

ε
+

2a?(t)

ε

v?(t)

σ2

. v?(t)/σ2 satisfies a singularly perturbed ODE

. Actual variance v?(t)/σ2 is the particular solution starting in 0

. ∃ adiabatic solution ζ(t), tracking ζ?(t) = 1/2|a?(t)|

. v?(t)/σ2 is attracted exponentially fast by ζ(t)s

. Var zt = v?(t) = σ2[ζ(t)− ζ(0) e2α?(t)/ε]
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Introducing space–time sets

x̄(t, ε)

xt

x?(t)

B(h)

B(h) :=
{

(z, t): |z| ≤ h
√
ζ
}

For h = σ, at each t the “breathing” strip B(h) has a width equal
to the typical spreading of zt

For h > σ, we expect zt to remain in B(h) for quite a while

How long will it take until zt exits?
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A first result for the first-exit time τB(h)

∀ γ ∈ (0,1/2) ∀ t

P{τB(h) < t} = Ch/σ(t, ε) e−h
2/2σ2

with Ch/σ(t, ε) ≤ 2

⌈
|α?(t)|
εγ

⌉
eγ[1+O(ε)]h2/σ2

. e−h
2/2σ2

becomes small as soon as h� σ
. a?(t) bounded =⇒ α?(t) ∼ t =⇒ Ch/σ(t, ε) = const

t

εγ
eγh

2[1+O(ε)]/σ2

The probability of exit remains small for all times t which are
comparable to Kramers’ time

Idea for the proof

. Consider a partition of the time interval s.t. |α?(tj+1, tj)| = εγ

. d. . . e is the number of intervals in the partition

. On these short time intervals, approximate zt by a Gaussian
martingale

. Use Bernstein-type inequality to estimate probability of exit
during a short time interval
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The behaviour of the first-exit time τB(h) (d = 1)

In the special case d = 1 the preceding result on the first-exit
time from a neighbourhood of a quadratic potential well can be
improved:

Theorem [Berglund & G ’05]

∃c0, r0 > 0 s.t. whenever

r = r(h/σ, t, ε) :=
σ

h
+
t

ε
e−c0h

2/σ2
≤ r0

then

P{τB(h) < t} = Ch/σ(t, ε)e−h
2/2σ2

with

Ch/σ(t, ε) =

√
2

π

|α(t)|
ε

h

σ

[
1 +O(r) + ε+

ε

|α(t)|
log(1 + h/σ)

]

Idea of the proof
Proceed as before, considering the approximating Gaussian martingale as a

time-changed BM. Use results on first passage of BM to a curved boundary.
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The behaviour of the first-exit time τB(h) (d = 1)

For general single-well potentials with non-vanishing curvature, as

long as t < τcB(h), the solution of the SDE is well approximated by

the solution of the linearized SDE.

The error made scales with the width h of B(h).

Theorem [Berglund & G ’05]

∃c0, r0 > 0 s.t. whenever

r = r(h/σ, t, ε) :=
σ

h
+
t

ε
e−c0h

2/σ2
≤ r0

then

Ch/σ(t, ε)e−[1+O(h)]h2/2σ2
≤ P{τB(h) < t} ≤ Ch/σ(t, ε)e−[1−O(h)]h2/2σ2

with the prefactor Ch/σ(t, ε) as above
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Repetition: One-dimensional slowly driven systems

dxt =
1

ε
f(xt, t) dt+

σ
√
ε

dWt

Uniformly asymptotically stable equilibrium branch x?(t):

f(x?(t), t) = 0 , a?(t) = ∂xf(x?(t), t) 6 −a0

Adiabatic solution:

x̄(t, ε) = x?(t) +O(ε)

B(h): strip around x̄(t, ε)

of width ' h/2|a?(t)|
x̄(t, ε)

xt

x?(t)

B(h)

Theorem [Berglund & G ’02], [Berglund & G ’05]

P
{
xt leaves B(h) before time t

}
'
√

2

π

1

ε

∣∣∣∣∫ t
0
a?(s) ds

∣∣∣∣ hσ e−h
2/2σ2
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Idea

Behaviour of yt = xt − x̄(t, ε) ?

Linearizing the drift coefficent −→ nonautonomous linear SDE

dy0
t =

1

ε
a(t)y0

t dt+
σ
√
ε

dWt , y0 = 0

a(t) = ∂xf(x̄(t, ε), t) = curvature ; α(t, s) :=
∫ t
s
a(u) du

Solution y0
t =

σ
√
ε

∫ t
0

eα(t,s)/ε dWs is a Gaussian process

Variance v(t) =
σ2

ε

∫ t
0

e2α(t,s)/ε ds ∼
σ2

curvature

Concentration result for y0
t : P{|y0

t | > δ} ≤ e−δ
2/2v(t)

Theorem: Analogous resultat for the whole path {yt}t≥0
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Example I: Stochastic resonance

Recall the energy-balance model from the first lecture

Overdamped motion of a Brownian particle

dxs = −
∂

∂x
V (xs, εs) ds+ σ dWs

in a periodically modulated potential

V (x, εs) = −
1

2
x2 +

1

4
x4 + (λc − a0) cos(2πεs)x

←−−→√
a0

↑↓ a
3/2
0

V (x,0) V (x,1/4) = V (x,3/4) V (x,1/2)
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Example I: Stochastic resonance

3 small parameters :

0 < σ � 1 , 0 < ε� 1 , 0 < a0 � 1

Equation of motion of a Brownian particle

dxs = −
∂

∂x
V (xs, εs) ds+ σ dWs

V (x, εs) = −
1

2
x2 +

1

4
x4 + (λc − a0) cos(2πεs)x , λc = 2

3
√

3

Rewrite in slow time t = εs :

dxt =
1

ε
f(xt, t) dt+

σ
√
ε

dWt

with drift term

f(x, t) = −
∂

∂x
V (x, t) = x− x3 − (λc − a0) cos(2πt)
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Sample paths

Amplitude of modulation A = λc − a0
Speed of modulation ε
Noise intensity σ

A = 0.00, σ = 0.30, ε = 0.001 A = 0.10, σ = 0.27, ε = 0.001

A = 0.24, σ = 0.20, ε = 0.001 A = 0.35, σ = 0.20, ε = 0.001
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Small-barrier-height regime
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Effective barrier heights and scaling of small parameters

Theorem [ Berglund & G, Annals of Appl. Probab. ’02 ]

(informal version; exact formulation uses first-exit times from space–time sets)

∃ threshold value σc = (a0 ∨ ε)3/4

Below: σ ≤ σc

. Transitions unlikely

. Sample paths concentrated in one well

. Typical spreading �
σ(

|t|2 ∨ a0 ∨ ε
)1/4

�
σ(

curvature
)1/2

. Probability to observe a transition ≤ e−const σ2
c/σ

2

Above: σ � σc

. 2 transitions per period likely (back and forth)

. with probability ≥ 1− e−const σ4/3/ε|logσ|

. Transtions occur near instants of minimal barrier height

. Transition window � σ2/3
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Step 1: Deterministic dynamics

xdet
t

x?+(t)

x?0(t)

x?−(t)

. For t ≤ −const :

xdet
t reaches ε-nbhd of x?+(t)

in time � ε|log ε| (Tihonov ’52)

. For −const ≤ t ≤ −(a0 ∨ ε)1/2 :

xdet
t − x?+(t) � ε/|t|

. For |t| ≤ (a0 ∨ ε)1/2 :

xdet
t − x?0(t) � (a0 ∨ ε)1/2 ≥

√
ε

(effective barrier height)

. For (a0 ∨ ε)1/2 ≤ t ≤ +const :

xdet
t − x?+(t) � −ε/|t|

. For t ≥ +const :

|xdet
t − x?+(t)| � ε

167



Step 2: Below threshold σ ≤ σc = (a0 ∨ ε)3/4

v(t) ∼
σ2

curvature
∼

σ2

(|t|2 ∨ a0 ∨ ε)1/2

ζ(t) :=
v(t)

σ2

B(h) :=
{

(x, t): |x− xdet
t | < h

√
ζ(t)

}

τB(h) = first-exit time of (xt, t) from B(h)
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Step 2: Below threshold σ ≤ σc = (a0 ∨ ε)3/4

Theorem ([Berglund & G ’02], [Berglund & G ’05])

∃ h0, c1, c2, c3 > 0 ∀h ≤ h0

C(h/σ, t, ε) e−κ−h
2/2σ2

≤ P
{
τB(h) < t

}
≤ C(h/σ, t, ε) e−κ+h

2/2σ2

with κ+ = 1− c1h , κ− = 1 + c1h+ c1 e−c2t/ε ;

C(h/σ, t, ε) =

√
2

π

|α(t)|
ε

h

σ

[
1 +O

(
σ

h

)
+
t

ε
e−c3h

2/σ2
+ e−c1t/ε+ε

]

Basic idea

local approximation of yt by y0
t ; Gaussian process is a rescaled Brownian motion;

results on the density of the first-passage time for BM through nonlinear curves
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Step 3: Above threshold σ � σc = (a0 ∨ ε)3/4

. Typical paths stay below
xdet
t + h

√
ζ(t)

. For t� −σ2/3 :
Transitions unlikely;
as below threshold

. At time t = −σ2/3 :
Typical spreading satisfies
σ2/3 � xdet

t − x?0(t) ;
Transitions become likely

. Near saddle:
Diffusion dominated dynamics

. Levels δ1 > δ0 with f � −1 ;
δ0 in domain of attr. of x?−(t) ;
Drift dominated dynamics

. Below δ0: beh. as for small σ
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Step 3: Above threshold σ � σc = (a0 ∨ ε)3/4

Idea of the proof

With probability ≥ δ > 0, in time � ε|logσ|/σ2/3,
the path reaches

. xdet
t if above

. then the saddle

. finally the level δ1

In time σ2/3 there are
σ4/3

ε|logσ|
attempts possible

During a subsequent time span of length ε, level δ0

is reached (with probability ≥ δ )

Finally, the path reaches the new well

Result

P
{
xs > δ0 ∀s ∈ [−σ2/3, t]

}
≤ e−const σ4/3/ε|logσ| (t ≥ −γσ2/3, γ small)
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Example II: Hysteresis cycles

Recall the possibly periodic forcing of the freshwater flux in Stom-
mel’s box model

Periodically modulated double-well potential, where we now allow
for above-threshold forcing amplitude

In this case, it becomes possible for the deterministic particle to
switch wells
(provided the barrier vanishes for a sufficiently long time span (≥ γε))
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Example II: Hysteresis cycles

�����

�

� ���	�

�

� ��
��

�

�

Theorem [Berglund & G ’02]

. Small amplitude, small noise: Transitions unlikely during one

cycle (However: Concentration of transition times within each period)

. Large amplitude, small noise: Hysteresis cycles

Area = static area + O(ε2/3) (as in deterministic case)

. Large noise: Stoch. resonance / noise-induced synchronization

Area = static area − O(σ4/3) (reduced due to noise)
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Example III: Bifurcation delay

Symmetry breaking; try to measure bifurcation diagram

Slowly modulated potential, changing from single- to double-well

. What happens, if there is noise in the system?

. In which well will the particle finally settle?

. When is the decision taken?
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Example III: Bifurcation delay

Deterministic system: Macroscopic bifurcation delay
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Example III: Bifurcation delay

In the presence of noise:

. σ ≤ e−K/ε: Bifurcation delay remains of order 1

. σ = εp/2 for p > 1: Bifurcation delay becomes microscopic,

delay =
√

(p− 1)ε|log ε|
. σ ≥

√
ε: Spreading of paths is of order

√
σ during a window of

size σ around the bifurcation point
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PART VIII

Random perturbations of general slow–fast systems

. Controlling the random fluctuations of the fast variables

. Reduced dynamics
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General slow–fast systems

Recall the model for the North-Atlantic thermohaline circulation
from the first lecture

Fully coupled SDEs on well-separated time scales
dxt =

1

ε
f(xt, yt) dt+

σ
√
ε
F (xt, yt) dWt (fast variables ∈ R n)

dyt = g(xt, yt) dt+ σ′ G(xt, yt) dWt (slow variables ∈ Rm)

. {Wt}t≥0 k-dimensional (standard) Brownian motion

. D ⊂ R n × Rm

. f : D → R n, g : D → Rm drift coefficients, ∈ C2

. F : D → R n×k, G : D → Rm×k diffusion coefficients, ∈ C1

Small parameters

. ε > 0 adiabatic parameter (no quasistatic approach)

. σ, σ′ ≥ 0 noise intensities; may depend on ε:
σ = σ(ε), σ′ = σ′(ε) and σ′(ε)/σ(ε) = %(ε) ≤ 1
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Near slow manifolds: Assumptions on the fast variables

Existence of a slow manifold: ∃D0 ⊂ Rm ∃x? : D0 → R n

s.t (x?(y), y) ∈ D and f(x?(y), y) = 0 for y ∈ D0

Slow manifold is attracting: Eigenvalues of A?(y) := ∂xf(x?(y), y)

satisfy Reλi(y) ≤ −a0 < 0 , uniformly in D0

Theorem ([Tihonov ’52], [Fenichel ’79])

There exists an adiabatic manifold:

∃ x̄(y, ε) s.t.

. x̄(y, ε) is invariant manifold for

deterministic dynamics

. x̄(y, ε) attracts nearby solutions

. x̄(y,0) = x?(y) and x̄(y, ε) = x?(y) +O(ε)

y1
y2

x x?(y)

x̄(y, ε)

Consider now stochastic system under these assumptions
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Typical neighbourhoods of adiabatic manifolds

. Consider deterministic process (xdet
t = x̄(ydet

t , ε), ydet
t )

on (invariant) adiabatic manifold
. Dev. ξt :=xt − xdet

t of fast variables from adiabatic manifold
. Linearize SDE for ξt ; resulting process ξ0

t is Gaussian

Key observation
1

σ2
Cov ξ0

t is a particular sol. of the det. slow–fast system


εẊ(t) = A(ydet

t )X(t) +X(t)A(ydet)T + F0(ydet)F0(ydet)T

ẏdet
t = g(x̄(ydet

t , ε), ydet
t )

with A(y) = ∂xf(x̄(y, ε), y) and F0 0th-order approximation to F

. System admits an adiabatic manifold X(y, ε)

Typical neighbourhoods

B(h) :=
{

(x, y):
〈[
x− x̄(y, ε)

]
, X(y, ε)−1

[
x− x̄(y, ε)

]〉
< h2

}
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Concentration of sample paths near adiabatic manifolds

Define (random) first-exit times

τD0
:= inf{s > 0: ys /∈ D0}

τB(h) := inf{s > 0: (xs, ys) /∈ B(h)}

x̄(y, ε)

(xdet
t , ydet

t )

B(h)

Theorem [Berglund & G, J. Differential Equations, 2003]

Assume: ‖X(y, ε)‖, ‖X(y, ε)−1‖ uniformly bounded in D0

Then: ∃ ε0 > 0 ∃h0 > 0 ∀ ε 6 ε0 ∀h 6 h0

P
{
τB(h) < min(t, τD0

)
}

6 Cn,m(t) exp

{
−
h2

2σ2

[
1−O(h)−O(ε)

]}

where Cn,m(t) =
[
Cm + h−n

](
1 +

t

ε2

)
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Random perturbations: General slow–fast systems
dxt = 1

εf(xt, yt) dt+ σ√
ε
F (xt, yt) dWt

dyt = g(xt, yt) dt+σ′ G(xt, yt) dWt

Theorem

. Previous theorem can be summarized as:

P
{

(xt, yt) leaves B(h) before time t
}
' Cn,m(t, ε) e−κh

2/2σ2

with κ = 1−O(h)−O(ε)
(provided yt does not drive the system away from the region where assump-

tions are satisfied)

. Reduction to adiabatic manifold x̄(y, ε):

dy0
t = g(x̄(y0

t , ε), y
0
t ) dt+ σ′G(x̄(y0

t , ε), y
0
t ) dWt

y0
t approximates yt to order σ

√
ε up to Lyapunov time

of ẏdet = g(x̄(ydet, ε)ydet)
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Near slow manifolds: Longer time scales

y1
y2

x

(xdet
t , ydet

t )

B(h)

. Behaviour of g or

behaviour of yt and ydet
t

becomes important

Example:

ydet
t following a

stable periodic orbit

. yt ∼ ydet
t for t 6

const

σ ∨ %2 ∨ ε
linear coupling → ε

nonlinear coupling → σ

noise acting on slow variable → %

. On longer time scales: Markov property allows for restarting

yt stays exp. long in a neighbourhood of the periodic orbit

(with probability close to 1)
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Bifurcations

Question

What happens if (xt, yt) approaches a bifurcation

point (x̂, ŷ) for the deterministic dynamics?

Ex.: Saddle–node bifurcation General approach

x?(y)

(xdet
t , ydet

t )x

y1
y2

. Apply centre-manifold theorem

. Concentration results for deviation
from centre manifold
([Berglund & G, 2003])

. Consider reduced dynamics
on centre manifold

. Concentration results for deviation
of reduced system from original
variables [Berglund & G, 2003]
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