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Metastability in the real world

Examples

. Supercooled liquid

. Supersaturated gas

. Wrongly magnetized ferromagnet

Order parameter

Free energy

. Near first-order phase transitions

. Nucleation implies crossing of
energy barrier
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Metastability in stochastic lattice models

Ingredients

. Lattice: Λ ⊂ Zd

. Configuration space: X = SΛ, S finite set (e.g. {−1, 1})

. Hamiltonian: H : X → R (e.g. Ising model or lattice gas)

. Gibbs measure: µβ(x) = e−βH(x) /Zβ

. Dynamics: Markov chain with invariant measure µβ
(e.g. Metropolis such as Glauber or Kawasaki dynamics)

Results (for β � 1)

. Transition time from empty to full configuration

. Typical transition paths

. Shape of critical droplet

References

. Frank den Hollander, Metastability under stochastic dynamics, Stochastic Process. Appl. 114 (2004), 1–26

. Enzo Olivieri & Maria Eulália Vares, Large deviations and metastability , Cambridge University Press, Cambridge, 2005
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Reversible diffusions

Gradient dynamics (ODE)

ẋdet
t = −∇V (xdet

t )

Random perturbation by Gaussian white noise (SDE)

dxεt (ω) = −∇V (xεt (ω)) dt +
√

2ε dBt(ω)

with

x?−

z?

x?+

. V : Rd → R : confining potential, growth condition at infinity

. {Bt(ω)}t≥0: d-dimensional Brownian motion

Invariant measure or equilibrium distribution (for gradient systems)

µε(dx) =
1

Zε
e−V (x)/ε dx with Zε =

∫
Rd

e−V (x)/ε dx

Dynamics reversible w.r.t. invariant measure µε (detailed balance)
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Transition times between potential wells

First-hitting time of a small ball Bδ(x?+) around minimum x?+

τ+ = τεx?+ (ω) = inf{t ≥ 0: xεt (ω) ∈ Bδ(x?+)}

Eyring–Kramers Law [Eyring 35, Kramers 40]

. d = 1: Ex?−
τ+ '

2π√
V ′′(x?−)|V ′′(z?)|

e[V (z?)−V (x?−)]/ε

. d ≥ 2: Ex?−
τ+ '

2π

|λ1(z?)|

√
|det∇2V (z?)|
det∇2V (x?−)

e[V (z?)−V (x?−)]/ε

where λ1(z?) is the unique negative eigenvalue of ∇2V at saddle z?
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Proving Kramers Law

. Exponential asymptotics and optimal transition paths via large deviations
approach [Wentzell & Freidlin 69–72]

lim
ε→0

ε logEx?−
τ+ = V (z?)− V (x?−)

Only 1-saddles are relevant for transitions between wells

. Low-lying spectrum of generator of the diffusion (analytic approach)

[Helffer & Sjöstrand 85, Miclo 95, Mathieu 95, Kolokoltsov 96, . . . ]

. Potential theoretic approach [Bovier, Eckhoff, Gayrard & Klein 04]

Ex?−
τ+ =

2π

|λ1(z?)|

√
|det∇2V (z?)|
det∇2V (x?−)

e[V (z?)−V (x?−)]/ε[1 +O
(
(ε|log ε|)1/2

)
]

. Full asymptotic expansion of prefactor [Helffer, Klein & Nier 04]

. Asymptotic distribution of τ+ [Day 83, Bovier, Gayrard & Klein 05]

lim
ε→0

Px?−
{τ+ > t · Ex?−

τ+} = e−t
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Ginzburg–Landau equation

∂tu(x , t) = ∂xxu(x , t) + u(x , t)− u(x , t)3 + noise

. On finite interval x ∈ [0, L]

. u(x , t) ∈ R (one-dimensional, representing e.g. magnetization)

. Boundary conditions
. Periodic b.c. u(0, t) = u(L, t) and ∂xu(0, t) = ∂xu(L, t)
. Neumann b.c. with zero flux ∂xu(0, t) = ∂xu(L, t) = 0

. Weak space–time white noise

Deterministic dynamics minimizes energy functional

V (u) =

∫ L

0

[ 1
2u
′(x)2 − 1

2u(x)2 + 1
4u(x)4] dx

as

∂xxu(x , t) + u(x , t)− u(x , t)3 = −δV
δu
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Stationary states for the deterministic system

d2

dx2
u(x) = −u(x) + u(x)3 = − d

du

[ ]
. Uniform stationary states

. u±(x) ≡ ±1 (stable; global minima of V )

. u0(x) ≡ 0 (unstable – when is u0 a transition state?)

. Periodic b.c.: For k = 1, 2, . . . and L > 2πk
. Continuous one-parameter family of stationary states

uk,ϕ(x) =

√
2m

m + 1
sn
( kx√

m + 1
+ ϕ,m

)
where 4k

√
m + 1K(m) = L

. Neumann b.c.: For k = 1, 2, . . . and L > πk
. Two stationary states

uk,±(x) = ±
√

2m

m + 1
sn
( kx√

m + 1
+ K(m),m

)
where 2k

√
m + 1K(m) = L
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Stationary states: Neumann b.c.

For k = 1, 2, . . . and L > πk:

uk,±(x) = ±
√

2m

m + 1
sn
( kx√

m + 1
+ K(m),m

)
where 2k

√
m + 1K(m) = L

0 π 2π 3π L u0 ≡ 0

u4,−

u3,−

u2,−
u1,−
u− ≡ −1

u4,+

u3,+

u2,+

u1,+

u+ ≡ +1
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Stability of the stationary states: Neumann b.c.

Consider linearization of GL equation at stationary solution u : [0, L]→ R

∂tv = A[u]v where A[u] =
d2

dx2
+ 1− 3u2

Stability is determined by the eigenvalues of A[u]

. u±(x) ≡ ±1: A[u±] has eigenvalues −(2 + (πk/L)2), k = 0, 1, 2, . . .

. u0(x) ≡ 0: A[u0] has eigenvalues 1− (πk/L)2, k = 0, 1, 2, . . .

Counting the number of positive eigenvalues: None for u± and . . .

0 π 2π 3π L
u0

u4,±

u3,±

u2,±

u1,±

1 2 3 4

1 2 3
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Stability of the stationary states: Neumann b.c.

. For L < π:
. u±(x) ≡ ±1 are stable; global minima
. u0(x) ≡ 0 is unstable; transition state
. Activation energy V (u0)− V (u±) = L/4

. For L > π:
. u±(x) ≡ ±1 remain stable; global minima
. u0(x) ≡ 0 remains unstable; but no longer forms the transition state
. u1,±(x) are the new transition states (of instanton shape)

. Pitchfork bifurcation as L increases through π:
Uniform transition state u0 bifurcates into pair of instanton states u1,±

. Subsequent bifurcations at L = kπ for k = 2, 3, . . . do not affect transition
states
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Ginzburg–Landau equation with noise
∂tu(x , t) = ∂xxu(x , t) + u(x , t)− u(x , t)3 +

√
2εξ(t, x)

u(·, 0) = ϕ(·)
∂xu(0, t) = ∂xu(L, t) = 0 (Neumann b.c.)

. Space–time white noise ξ(t, x) as formal derivative of Brownian sheet

. Mild / evolution formulation, following [Walsh ’86]:

u(x , t) =

∫ L

0

Gt(x , z)ϕ(z) dz +

∫ t

0

∫ L

0

Gt−s(x , z)
[
u(s, z)− u(s, z)3

]
dz ds

+
√

2ε

∫ t

0

∫ L

0

Gt−s(x , z)W (ds, dz)

where
. G is the fundamental solution of the deterministic equation
. W is the Brownian sheet

Existence and a.s. uniqueness [Faris & Jona-Lasinio 82]
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Question

How long does a noise-induced transition from the global minimum u−(x) ≡ −1
to (a neighbourhood of) u+(x) ≡ 1 take?

τu+ = first hitting time of such a neighbourhood

Metastability: We expect Eu−τu+ ∼ econst/ε

We seek

. Activation energy ∆W

. Transition rate prefactor Γ−1
0

. Exponent α of error term

such that
Eu−τu+ = Γ−1

0 e∆W/ε[1 +O(εα)]
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Large deviations for the Ginzburg–Landau equation

Large deviation principle [Faris & Jona–Lasinio ’82]:

. For L ≤ π:

∆W = V (u0)− V (u−) = L/4

. For L > π:

∆W = V (u1,±)− V (u−) =
1

3
√

1 + m

[
8E(m)− (1−m)(3m + 5)

1 + m
K(m)

]
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Formal computation of the prefactor for the GL equation

Consider L < π

. Transition state: u0(x) ≡ 0, V [u0] = 0

. Activation energy: ∆W = V [u0]− V [u−] = L/4

. Eigenvalues at stable state u−(x) ≡ −1: µk = 2 + (πk/L)2

. Eigenvalues at transition state u0 ≡ 0: λk = −1 + (πk/L)2

Thus formally [Maier & Stein ’01, ’03]

Γ0 '
|λ0|
2π

√√√√ ∞∏
k=0

µk

|λk |
=

1

23/4π

√
sinh(

√
2L)

sin L

For L > π: Spectral determinant computed by Gelfand’s method

Problems

. What happens when L↗ π? (Approaching bifurcation)

. Is the formal computation correct in infinite dimension?
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Ginzburg–Landau equation: Introducing Fourier variables
. Fourier series

u(x , t) =
1√
L
y0(t) +

2√
L

∞∑
k=1

yk(t) cos(πkx/L) =
1√
L

∑
k∈Z

ỹk(t) ei kπx/L

. Rewrite energy functional V in Fourier variables

V (y) =
1

2

∞∑
k=0

λky
2
k + V4(y) , λk = −1 + (πk/L)2

where

V4(y) =
1

4L

∑
k1+k2+k3+k4=0

ỹk1 ỹk2 ỹk3 ỹk4

. Resulting system of SDEs

ẏk = −λkyk −
1

L

∑
k1+k2+k3=k

ỹk1 ỹk2 ỹk3 +
√

2εẆ
(k)
t

with i.i.d. Brownian motions W
(k)
t
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Truncating the Fourier series
. Truncate Fourier series (projected equation)

ud(x , t) =
1√
L
y0(t) +

2√
L

d∑
k=1

yk(t) cos(πkx/L)

. Retain only modes k ≤ d in the energy functional V

V (d)(y) =
1

2

d∑
k=0

λky
2
k + V

(d)
4 (y)

where

V
(d)
4 (y) =

1

4L

∑
k1+k2+k3+k4=0

ki∈{−d,...,0,...,+d}

ỹk1 ỹk2 ỹk3 ỹk4

. Resulting d-dimensional system of SDEs

ẏk = −λkyk −
1

L

∑
k1+k2+k3=k

ki∈{−d,...,0,...,+d}

ỹk1 ỹk2 ỹk3 +
√

2εẆ
(k)
t
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Reduction to finite-dimensional system

. Show the following result for the projected finite-dimensional systems

εγC (d) e∆W (d)/ε[1− R−d (ε)] ≤ E
u

(d)
−
τ
u

(d)
+
≤ εγC (d) e∆W (d)/ε[1 + R+

d (ε)]

(The contribution εγ is only present at bifurcation points / non-quadratic saddles)

. The following limits exist and are finite

lim
d→∞

C (d) =: C (∞) and lim
d→∞

∆W (d) =: ∆W (∞)

. Important: Uniform control of error terms (uniform in d):

R±(ε) := sup
d

R±d (ε)→ 0 as ε→ 0

Away from bifurcation points, c.f. [Barret, Bovier & Méleard 09]
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Taking the limit d →∞

. For any ε, distance between u(x , t) and solution u(d)(x , t) of the projected
equation becomes small [Liu ’03] on any finite time interval [0,T ]

. Uniform error bounds and large deviation results allow to decouple limits of
small ε and large d

. Yielding

εγC (∞) e∆W (∞)/ε[1− R−(ε)] ≤ Eu−τu+ ≤ εγC (∞) e∆W (∞)/ε[1 + R+(ε)]
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Result for the Ginzburg–Landau equation

Theorem [Barret, Berglund & G., in preparation]

For the Ginzburg–Landau equation with Neumann b.c., L < π

(Similar expression for L > π)

Eu−τu+ =
1

Γ0(L)
eL/4ε[1+O((ε|log ε|)1/4)]

where the rate prefactor satisfies
(recall: λ1 = −1 + (π/L)2) L/π

Γ0

Γ0(L) =
1

23/4π

√
sinh(

√
2L)

sin L

√
λ1

λ1 +
√

3ε/4L
Ψ+

( λ1√
3ε/4L

)

−→ Γ(1/4)

2(3π7)1/4

√
sinh(

√
2π) ε−1/4 as L↗ π
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Towards a proof in the finite-dimensional case:
Potential theory for Brownian motion I

First-hitting time τA = inf{t > 0: Bt ∈ A} of A ⊂ Rd

Fact I: The expected first-hitting time wA(x) = ExτA is a solution to the Dirichlet
problem {

∆wA(x) = 1 for x ∈ Ac

wA(x) = 0 for x ∈ A

and can be expressed with the help of the Green function GAc (x , y) as

wA(x) =

∫
Ac

GAc (x , y) dy
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Potential theory for Brownian motion II

The equilibrium potential (or capacitor) hA,B is a solution to the Dirichlet problem
∆hA,B(x) = 0 for x ∈ (A ∪ B)c

hA,B(x) = 1 for x ∈ A

hA,B(x) = 0 for x ∈ B

Fact II: hA,B(x) = Px [τA < τB ]

The equilibrium measure (or surface charge density) is the unique measure ρA,B on
∂A s.t.

hA,B(x) =

∫
∂A

GBc (x , y) ρA,B(dy)
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Capacities

Key observation: For a small ball C = Bδ(x),∫
Ac

hC ,A(y) dy =

∫
Ac

∫
∂C

GAc (y , z) ρC ,A(dz) dy

=

∫
∂C

wA(z) ρC ,A(dz) ' wA(x) capC (A)

where capC (A) =

∫
∂C

ρC ,A(dy) denotes the capacity

⇒ ExτA = wA(x) ' 1

capBδ(x)(A)

∫
Ac

hBδ(x),A(y) dy

Variational representation via Dirichlet form

capC (A) =

∫
(C∪A)c

‖∇hC ,A(x)‖2 dx = inf
h∈HC,A

∫
(C∪A)c

‖∇h(x)‖2 dx

where HC ,A = set of sufficiently smooth functions h satisfying b.c.
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General case

dxεt = −∇V (xεt ) dt +
√

2ε dBt

What changes as the generator ∆ is replaced by ε∆−∇V · ∇ ?

capC (A) = ε inf
h∈HC,A

∫
(C∪A)c

‖∇h(x)‖2 e−V (x)/ε dx

ExτA = wA(x) ' 1

capBδ(x)(A)

∫
Ac

hBδ(x),A(y) e−V (y)/ε dy

It remains to investigate capacity and integral.

Assume, x = x?− is a quadratic minimum. Use rough a priori bounds on h∫
Ac

hBδ(x?−),A(y) e−V (y)/ε dy ' (2πε)d/2 e−V (x?−)/ε√
det∇2V (x?−)
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Estimating the capacity

For the truncated energy functional

V (d)(y) =
1

2

d∑
k=0

λky
2
k + V

(d)
4 (y) = −1

2
y2

0 + u1(y1) +
1

2

d∑
k=2

λky
2
k + . . .

where

u1(y1) =
1

2
λ1y

2
1 +

3

8
y4

1

To show

capC (A) = ε

∫ ∞
−∞

e−u1(y1)/ε dy2

√
2πε

d∏
j=2

√
2πε

λj

[
1 +O(R(ε))

]
where R(ε) = O((ε|log ε|)1/4) is uniformly bounded in d
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Sketch of the proof

Proof follows along the lines of [Bovier, Eckhoff, Gayrard & Klein 04]

. Upper bound: Use Dirichlet form representation of capacity

cap = inf
h

Φ(h) 6 Φ(h+) = Φ(h+) = ε

∫
‖∇h+(y)‖2 e−V (y)/ε dy

Choose δ =
√
cε|log ε| and

h+(z) =


1 for y0 < −δ
f (y0) for −δ < y0 < δ

0 for y0 > δ

where εf ′′(y0) + ∂y0V (y0, 0)f ′y0) = 0 with b.c. f (±δ) = 0 or 1, resp.

. Lower bound: Bound Dirichlet form for capacity from below by
. restricting domain
. taking only 1st component of ∇h
. using b.c. derived from a priori bound on hC ,A
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