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Metastability in the real world

Examples
> Supercooled liquid
> Supersaturated gas

> Wrongly magnetized ferromagnet

Free energy

/\ > Near first-order phase transitions

° > Nucleation implies crossing of
energy barrier

Order parameter

Metastability for the Ginzburg—Landau equation SAMSI 10 February 2010 2 /26



Metastability in stochastic lattice models

Ingredients
> Lattice: A C Z9
> Configuration space: X = S, S finite set (e.g. {—1,1})
> Hamiltonian: H: X — R (e.g. Ising model or lattice gas)
> Gibbs measure: ji5(x) = e #HX) /7,

> Dynamics: Markov chain with invariant measure /i3
(e.g. Metropolis such as Glauber or Kawasaki dynamics)
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Metastability in stochastic lattice models

Ingredients
> Lattice: A C Z9
> Configuration space: X = S, S finite set (e.g. {—1,1})
> Hamiltonian: H: X — R (e.g. Ising model or lattice gas)
> Gibbs measure: ji5(x) = e #HX) /7,

> Dynamics: Markov chain with invariant measure /i3
(e.g. Metropolis such as Glauber or Kawasaki dynamics)

Results (for 5 > 1) n " -
> Transition time from empty to full configuration
> Typical transition paths m - N
> Shape of critical droplet ] -
]

References
D> Frank den Hollander, Metastability under stochastic dynamics, Stochastic Process. Appl. 114 (2004), 1-26
D> Enzo Olivieri & Maria Eulélia Vares, Large deviations and metastability, Cambridge University Press, Cambridge, 2005

Metastability for the Ginzburg—Landau equation SAMSI 10 February 2010 3 /26



Reversible diffusions

Gradient dynamics (ODE)
K = V()
Random perturbation by Gaussian white noise (SDE)

dxf(w) = =V V(x5 (w)) dt + V2 dB,(w)
with

> V:RY — R: confining potential, growth condition at infinity

> {Bi(w)}e>0: d-dimensional Brownian motion

Invariant measure or equilibrium distribution (for gradient systems)

1
pe(dx) = 7e_V(X)/5 dx with Z. = /Rd e~ V(¥/e d4x

€

Dynamics reversible w.r.t. invariant measure j. (detailed balance)
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Transition times between potential wells

First-hitting time of a small ball Bs(x}) around minimum x%

Ty = T)fi(w) =inf{t > 0: x{(w) € Bs(x})}

Eyring—Kramers Law [Eyring 35, Kramers 40]

> d =1: Ex* T+ =~ 271- e[V(Z*)fv(Xi)]/E
- VI (x2)|V"(z¥)]

o |det VEV(Z*)] viz)-vie /e

d>2: Ewx1y >~
Ca= STEE N\ detvRv(xr)

where \;(z*) is the unique negative eigenvalue of V2V at saddle z*
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Proving Kramers Law

Exponential asymptotics and optimal transition paths via large deviations
approach [Wentzell & Freidlin 69-72]

lim elogExs 7y = V(2%) — V(x¥)
e—0 -

Only 1-saddles are relevant for transitions between wells

Low-lying spectrum of generator of the diffusion (analytic approach)
[Helffer & Sjéstrand 85, Miclo 95, Mathieu 95, Kolokoltsov 96, ... ]

Potential theoretic approach [Bovier, Eckhoff, Gayrard & Klein 04]

27 |det V2V (z*)] V()

=V(x2)l/e 1/2
Mi(z9)] | det V2V(x*) [1+O((clloge])"/?)]

Exi T+ =

Full asymptotic expansion of prefactor [Helffer, Klein & Nier 04]
Asymptotic distribution of 7, [Day 83, Bovier, Gayrard & Klein 05]

imPo {7 >t Epri}=e"
e—=0 7 -
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Ginzburg—Landau equation

dru(x, t) = O(x, t) + u(x, t) — u(x, t)* + noise

v

On finite interval x € [0, L]

v

u(x,t) € R (one-dimensional, representing e.g. magnetization)

v

Boundary conditions
> Periodic b.c. u(0,t) = u(L,t) and 0xu(0,t) = Oxu(L, t)
> Neumann b.c. with zero flux d,u(0, t) = dcu(L,t) =0

v

Weak space-time white noise

Deterministic dynamics minimizes energy functional

V(u) = / [0/ (x)? — Ju(x)? + Lu(x)"] dx

as
ov

6XXU(X7 t) + U(X, t) — U(X7 t)3 = _E
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Stationary states for the deterministic system

d2

5 u(x) = —u(x) + u(x)? = 7% { M}

> Uniform stationary states
> us(x) = £1 (stable; global minima of V)
> up(x) = 0 (unstable — when is up a transition state?)
> Periodic b.c.: For k =1,2,... and L > 27k
> Continuous one-parameter family of stationary states
Uk, (x) = ”mzirl sn(\/% +¢,m) where 4kvm+1K(m) =L
> Neumann b.c.: For k=1,2,... and L > 7k

> Two stationary states
2m
m+1

U +(x) ==+ sn( + K(m), m) where  2kv'm+ 1K(m) = L
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Stationary states: Neumann b.c.

For k=1,2,... and L > mk:

2 k
Uk, +(x) = 4/ m—Tl sn( X + K(m),m) where  2kv/m + 1K(m

m+41

~—

uy = +1
u1,+
uz 4

us,+

Usg 4

UoEO

Ug, —

N

\A2S 25/

uz —

uz —
ui,—
u-=-1
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Stability of the stationary states: Neumann b.c.

Consider linearization of GL equation at stationary solution v : [0, L] — R
42
Orv = Alu]lv  where  Alu] = o +1— 30
Stability is determined by the eigenvalues of A[u]
> us(x) = £1: Alus] has eigenvalues —(2 + (mk/L)?), k =0,1,2,...
> up(x) = 0: Alug] has eigenvalues 1 — (7k/L)?, k =0,1,2,...

Counting the number of positive eigenvalues: None for vy and ...

us,+
uz,+
ui,+

RS
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Stability of the stationary states: Neumann b.c.

v

For L < m:
> ut(x) = £1 are stable; global minima

> up(x) = 0 is unstable; transition state
> Activation energy V(up) — V(us+) = L/4

v

For L > 7
> ug(x) = £1 remain stable; global minima
> up(x) = 0 remains unstable; but no longer forms the transition state
> uy,+(x) are the new transition states (of instanton shape)

v

Pitchfork bifurcation as L increases through 7:
Uniform transition state up bifurcates into pair of instanton states u; 4

v

Subsequent bifurcations at L = k7 for k = 2,3,... do not affect transition
states
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Ginzburg—Landau equation with noise

Oru(x,t) = Ou(x,t) + u(x,t) — u(x, t)* +v/2e£(t, x)

u(-,0) = ¢()
0xu(0,t) = Owu(L,t)=0 (Neumann b.c.)

o

> Space—time white noise £(t, x) as formal derivative of Brownian sheet

> Mild / evolution formulation, following [Walsh '86]:
L it L
u(x,t) = / Gi(x,2z)p(z) dz + / / Ge—s(x, 2)[u(s, z) — u(s, 2)*] dzds
Jo Jo Jo
it el
+V2¢e / / G:_s(x, z)W(ds, dz)
o Jo

where
> G is the fundamental solution of the deterministic equation
> W is the Brownian sheet

Existence and a.s. uniqueness [Faris & Jona-Lasinio 82]
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Question

How long does a noise-induced transition from the global minimum u_(x)
to (a neighbourhood of) vy (x) = 1 take?

-1

T4, = first hitting time of such a neighbourhood

Metastability: We expect E,,_ Tu, ~ geonst/e

We seek
> Activation energy AW
> Transition rate prefactor ;"
> Exponent « of error term

such that
By, 7u, = g teAW/E[1 4+ O(%)]
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Large deviations for the Ginzburg—Landau equation

Large deviation principle [Faris & Jona—Lasinio '82]:

> For L < r:
AW = V() — V(u_)=L/4
> For L > m:
AW = V(u+)—V(u) = 3\/% 8E(m) — (1_,;)—1(——3:17_'—5)}((”1)
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Formal computation of the prefactor for the GL equation

Consider L < 7
> Transition state: up(x) =0, V[up] =0
> Activation energy: AW = V[ug] — V[u_] = L/4
> Eigenvalues at stable state u_(x) = —1: juy = 2+ (7k/L)?
> Eigenvalues at transition state up = 0: A\, = —1 + (7k/L)?
Thus formally [Maier & Stein '01, '03]

|)\0| H Mk Slnh(\/EL)
- v 23/4 sin L

For L > m: Spectral determinant computed by Gelfand’s method

Problems
> What happens when L 7~ 7?7 (Approaching bifurcation)

> |Is the formal computation correct in infinite dimension?
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Ginzburg—Landau equation: Introducing Fourier variables

> Fourier series

1
u(x, t) = \[ \f Zyk cos(mkx/L) = \f ZYk

keZ
> Rewrite energy functional V in Fourler variables

V) = S AR Valy) . = 1+ (kL

k=0
where
1 U
Valy) = ;1 > TS
ki+ko+k3+ks=0
> Resulting system of SDEs

1 oo .
yk:—)\k)’k—z Z )/kl)’kz}’k3+ VQSWI‘(k)
ki+ko+ks=k

with i.i.d. Brownian motions Wt(k)
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Truncating the Fourier series

> Truncate Fourier series (projected equation)

d
ua(x, £) = %yo(t) + \% S yi(t) cos(rkx/1L)

> Retain only modes k < d in the energy functional V

v@(y Z MyE + Vily)
where

1
d ~ o~~~
V4( )(}/) Y Z Yk Yko Yks Yka
ki+ko+ks+ks=0
kie{—d,....0,....+d}

> Resulting d-dimensional system of SDEs

. 1 S ;
Vi = =AYk = 7 > T Tho s + V25 W
ka+ho-tks=k
kie€{—d,....0,...,+d}
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Reduction to finite-dimensional system

> Show the following result for the projected finite-dimensional systems
e1C(d) W1 - Ry (e)] < E 7,0 <& C(d) AW (1 4 RY(e)]

(The contribution ¢” is only present at bifurcation points / non-quadratic saddles)

> The following limits exist and are finite

lim C(d)=: C(c0)  and lim AW = AW

d—o0 d—o0

> Important: Uniform control of error terms (uniform in d):

R*(c) :=supRi(e) =0 as e—0
d

Away from bifurcation points, c.f. [Barret, Bovier & Méleard 09]
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Taking the limit d — oo

> For any ¢, distance between u(x, t) and solution u(?)(x, t) of the projected
equation becomes small [Liu '03] on any finite time interval [0, T]

> Uniform error bounds and large deviation results allow to decouple limits of
small € and large d

> Yielding

e7C(00) AW /1 = R7(e)] < By 7, < 7 C(00) W1 4 RY(2)]
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Result for the Ginzburg—Landau equation

Theorem [Barret, Berglund & G., in preparation]

For the Ginzburg-Landau equation with Neumann b.c., L <7

(Similar expression for L > ) 1 fo | om0
9 ‘\
E, 1y, = e4 [14+0((]log e|)/* 7 \ o
u—tuy rO(L) [ + (( | g |) )] r;-_ !\A’ £=0.003
1 / { e=001
where the rate prefactor satisfies ;
(recall: 2y = 1+ (x/0)?) L — ..

03 04 05 06 07 08 09 1.0 1.1 1.2 1.3 14 1.5 16 1.7

- 1 smh(ﬁL) )\1 W ( )\1 )
- 23/4g sin L A1+ /3e/4L " \V/3e/4L

m sinh(v27) e /4 as L A

Fo(L)
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Towards a proof in the finite-dimensional case:
Potential theory for Brownian motion |

First-hitting time 74 = inf{t > 0: B, € A} of A C R

Fact |: The expected first-hitting time wa(x) = Ex7a is a solution to the Dirichlet
problem

Awp(x) =1 for x € A°
wa(x) =0 forxe A

and can be expressed with the help of the Green function Gac(x,y) as

wa(x) = [ Gac(x,y) dy
AC
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Potential theory for Brownian motion Il

The equilibrium potential (or capacitor) ha g is a solution to the Dirichlet problem

AhAJg(X) =0 forxe (A U B)C
hag(x)=1 forxe A
hag(x)=0 forxeB

Fact Il: ha g(x) = Py[ta < 78]

The equilibrium measure (or surface charge density) is the unique measure ps g on
0A s.t.

hag(x) = A Gpe(x,y) pa,g(dy)
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Capacities
Key observation: For a small ball C = B;(x),

/A hea(y) dy = / /OC Gac(y,2) pc,a(dz) dy
= / wa(z) pc.a(dz) ~ wa(x) capc(A)
Joc

where cap(A) = / pc.a(dy) denotes the capacity
ac
1

B, 7a = ~— | gy d
= Ta = wa(x) cade(X)(A) /AC Bs(x),A(Y) dy

Variational representation via Dirichlet form

capC(A):/ [Vhc a(x)||> dx = inf / [Vh(x)|? dx
(CUA)e heHe,a J(cun)e

where Hc a = set of sufficiently smooth functions h satisfying b.c.
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General case
dxt = —VV(x{) dt + V2e dB;
What changes as the generator A is replaced by eA —VV -V ?

capc(A) =¢ inf Vh(x)|]? e” V=4
e =< inf [ IVHI x
1

B 7a = ~——~ | hg —V/eg
Ta = walx) capg; (x)(A) /A Bstaly) € d

It remains to investigate capacity and integral.

Assume, x = x* is a quadratic minimum. Use rough a priori bounds on h

271_5)11/2 e7V(Xi)/E
g, (x+ e~V /e gy ~ (
/C Bsx2).AL) Y det V2V(x*)
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Estimating the capacity

For the truncated energy functional

d d
1 J 1
v@(y EZ/\kYk+V( ((y )**EYOJFUl 1) ;AkaJr
where
1 3
(1) = S+ gnt
To show

where R(g) = O((c|log])'/*) is uniformly bounded in d
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Sketch of the proof

Proof follows along the lines of [Bovier, Eckhoff, Gayrard & Klein 04]

> Upper bound: Use Dirichlet form representation of capacity
cap = inf O(h) < O(hs) = 0(h.) == [[Vhe(y)|7e 0" dy

Choose § = y/celloge| and

1 for yo < =0
hi(z) = f(yo) for =0 <yp < ¢
0 for yo >0

where ef”(yo) + 0y, V(¥0,0)f'yo) = 0 with b.c. f(£6) =0 or 1, resp.
> Lower bound: Bound Dirichlet form for capacity from below by

> restricting domain
> taking only 1st component of Vh
> using b.c. derived from a priori bound on hc 4
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