lwl 1l als

WeierstralB-Institut fir Angewandte Analysis und Stochastik

SIAM Annual Meeting
Boston, MA, 12 July 2006

Barbara Gentz

Metastability in irreversible diffusion processes
and stochastic resonance

Joint work with Nils Berglund (CPT-CNRS Marseille)

T\
Leibniz
Gemeinschaft

WIAS Berlin, Germany gentz@wias-berlin.de www.wias-berlin.de/people/gentz



A brief introduction to stochastic resonance

What is stochastic resonance (SR)?

SR = mechanism to amplify weak signals in presence of noise

Requirements

> (background) noise

> weak input

> characteristic barrier or threshold (nonlinear system)

Examples
> periodic occurrence of ice ages (?)
> Dansgaard—Oeschger events
> bidirectional ring lasers
> visual and auditory perception
> receptor cells in crayfish
> ...
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A brief introduction to stochastic resonance

The paradigm

Overdamped motion of a Brownian particle . ..

doy = [—a] + 2 + Acos(et)] dt + o dW;

0
= —%V(xt, et)

...in a periodically modulated double-well potential

1 1
Vi(z,s) = 1:134 — 5:132 — Acos(s)x | A< Ag
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A brief introduction to stochastic resonance

Sample paths

Fud

A =0.00, 0 =0.30, e = 0.001

A=0.24,0=0.20,e =0.001 A =0.35,0=0.20, e = 0.001
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A brief introduction to stochastic resonance

Different parameter regimes

Synchronisation |

> For matching time scales: 2r/c = Tiorcing = 2 Tkramers = €2/
> Quasistatic approach: Transitions twice per period with high probability

(physics’ literature; [Freidlin '00], [Imkeller et al, since '02])
> Requires exponentially long forcing periods

Synchronisation I
> For intermediate forcing periods: Trelax < Tiorcing < Tkramers
and close-to-critical forcing amplitude: A ~ Ag
> Transitions twice per period with high probability
> Subtle dynamical effects: Effective barrier heights [Berglund &G '02]

SR outside synchronisation regimes
> Only occasional transitions
> But transition times localised within forcing periods

Unified description / understanding of transition between regimes ?
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First-passage-time distributions as a qualitative measure for SR

Qualitative measures for SR

o O
-

How to measure combined effect of periodic and random perturbations?

Spectral-theoretic approach Probabilistic approach

> Power spectrum > Distribution of interspike times

> Spectral power amplification > Distribution of first-passage times
> Signal-to-noise ratio > Distribution of residence times

Look for periodic component in density of these distributions
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First-passage-time distributions as a qualitative measure for SR

Interwell transitions

Deterministic motion in a periodically modulated double-well potential
> 2 stable periodic orbits tracking bottoms of wells
> 1 unstable periodic orbit tracking saddle
> Unstable periodic orbit separates basins of attraction

Brownian particle in a periodically modulated double-well potential

> Interwell transitions characterised by crossing of unstable orbit

Ay

Y periodic orbit
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Diffusion exit from a domain

Exit problem
Deterministic ODE gl = f(gdet) zo € RY
Small random perturbation dey = f(xy) dt + o AW, (same initial cond. )

Bounded domain D > z (with smooth boundary)

> first-exit time T=1p=inf{t > 0: 2y € D}
> first-exit location x, € 0D

Distribution of ~ and =, ?

Interesting case
D positively invariant under deterministic flow

Approaches
> Mean first-exit times and locations via PDEs
> Exponential asymptotics via Wentzell-Freidlin theory
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Diffusion exit from a domain

Gradient case (for simplicity: V' double-well potential)

Exit from neighbourhood of shallow well

> Mean first-hitting time 7"* of deeper well

E,, ™" = ¢(0) eV /o’

Minimum V = 2[V(z) — V(z;)] of (quasi-)potential on boundary

To

2
> lim (o) = 2m  [|det V2V (2)]

' |
70 A (2) || det V2V (xy) exists |

A1(z) unigue negative e.v. of V2V (z)
(Physics’ literature: [Eyring ’35], [Kramers '40];
rigorous results: [Bovier, Gayrard, Eckhoff, Klein ’04/'05], [Helffer, Klein, Nier '04])

> Subexponential asymptotics known
Related to geometry at well and saddle/small eigenvalues of the generator
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Noise-induced passage through an unstable periodic orbit

New phenomena for drift not deriving from a potential?

Simplest situation of interest
Nontrivial invariant set which is a single periodic orbit

Assume from now on
d = 2, 0D = unstable periodic orbit

> Er ~ ¢"/7” still holds

> Quasipotential V/(II, z) = V is constant on 9D :
Exit equally likely anywhere on 9D (on exp. scale)

> Phenomenon of cycling [Day '92]:
Distribution of =, on 0D generally does not converge as o — 0.
Density is translated along 0D proportionally to |log o|.

> In stationary regilé‘le: (obtained by reinjecting particle)
Rate of escape &P{xt € D} has |logo|-periodic prefactor [Maier & Stein *96]
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The first-passage time density

Density of the first-passage time at an unstable periodic orbit

Taking number of revolutions into account

Idea
Density of first-passage time at unstable orbit
p(t) =c(t, o) ¢ V7" X transient term x geometric decay per period

|dentify c(¢, o) as periodic component in first-passage density

Notations

> Value of quasipotential on unstable orbit: V/
(measures cost of going from stable to unstable periodic orbit; based on large-deviations rate function)

> Period of unstable orbit: 7" = 27 /¢

. 0*
> Curvature at unstable orbit: a(t) = —5 V(2"Y(1), 1)
. I
> Lyapunov exponent of unstable orbit: \ = T / a(t) dt
0
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The first-passage time density

Universality in first-passage-time distributions

Theorem ([Berglund & G '04], [Berglund & G '05], work in progress)

There exists a model-dependent time change such that after performing this time change,
forany A > ./oc andall ¢t > t,

P{r e [t,t+A]} = /tth p(s,to)ds [1+ O(v0o)]

where

1

= A (t=to) [ NIk (o) tt
)\TK(O_) € ftranS( 9 O)

1
> p(t, ty) = NG QAT<t — \loga])

> Qxr(y) is a universal NXT-periodic function
C V/U2

> Tk(o) is the analogue of Kramers’ time: Tk(o) = —e
o

> firans grows from 0 to 1 in time ¢ — ¢, of order |log o]
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The first-passage time density

The different regimes

1

1 —(t— o
p(t,to) = N Qxr(t — |log ODWe U=10) FATR() i ans(, o)

Transient regime
firans IS increasing from 0 to 1; exponentially close to 1 after time ¢ — ¢, > 2|log o]

Metastable regime

Qxr(y) = 2T k;m Py —kXT)  withpeaks  P(z) = %e—% exp {_% e_zz}
kth summand: Path spends

> k periods near stable periodic orbit
> the remaining [(t — ty) /7| — k periods near unstable periodic orbit

Periodic dependence on |log o| : Peaks rotate as o decreases

Asymptotic regime
Significant decay only for t — ty > Tk(o)
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Plots of the first-passage time density

The universal profile

y = Qaxr(NT'y) /20T

AT =1
N N N
AT =2
XT =5
AT =10 T

> Profile determines concentration of first-passage times within a period
> Shape of peaks: Gumbel distribution

> The larger \T', the more pronounced the peaks

> For smaller values of \T', the peaks overlap more
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Plots of the first-passage time density

Density of the first-passage time
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