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Introduction: A Brownian particle in a potential
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Small random perturbations

Gradient dynamics (ODE)

= TV

Random perturbation by Gaussian white noise (SDE)

dx(w) = —V V(x5 (w)) dt + V2 dBy(w)

Equivalent notation
X (W) = =VV(x; (@) + V2 &(w)
with
> V :R? — R: confining potential, growth condition at infinity

> {B¢(w)}¢>0: d-dimensional Brownian motion
> {&(w)}e>0: Gaussian white noise, (&¢) =0, (§:&s) = 6(t —s)
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Fokker—Planck equation

Stochastic differential equation (SDE) of gradient type

dxf(w) = =V V(x5 (w)) dt 4+ V2 dB(w)

Kolmogorov's forward or Fokker—Planck equation

> Solution {x{(w)}¢ is a (time-homogenous) Markov process
> Transition probability densities (x,t) — p(x, t|y,s) satisfy

0
5P = Lop=V-[VV(x)p] +cAp

> If {x{(w)}+ admits an invariant density pg, then L.py =0
> Easy to verify (for gradient systems)

1
po(x) = —-e~V/e with Z. = /de*v(x)/E dx
R

Ze
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Equilibrium distribution

> Invariant measure or equilibrium distribution

1
e (dx) = 7e_ V/e dx

€

> System is reversible w.r.t. . (detailed balance)
p(y, t|x,0) e V(/e = p(x, tly,0) e~ V)/e

> For small ¢, the invariant measure pi. concentrates in the minima of V

20

Cycling
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Timescales

Let V be a double-well potential as before, start in x5 = x* = left-hand well

How long does it take until x; is well described by its invariant distribution?

> For € small, paths will stay in the left-hand well for a long time

> x; first approaches a Gaussian distribution, centered in x*,

1 1
T — = d=1
relax V"(x*)  curvature at the bottom of the well (=1

> With overwhelming probability, paths will remain inside left-hand well, for all
times significantly shorter than Kramers' time

Tiramers = €7/, where H = V(z*) — V(xX) = barrier height

> Only for t > Tkramers. the distribution of x; approaches pg
The dynamics is thus very different on the different timescales
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Diffusion exit from a domain

-LETS &
EXPLORING /
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The more general picture: Diffusion exit from a domain

dxf = b(x¢) dt + V2eg(xf)dWe,  x € R?

General case: b not necessarily derived from a potential

Consider bounded domain D > xp (with smooth boundary)
> First-exit time: 7 = 75 = inf{t > 0: x{ ¢ D}
> First-exit location: x¢ € 9D

T
Questions

> Does x{ leave D?
If so: When and where?

Expected time of first exit?

v

v

> Concentration of first-exit time and location?

v

Distribution of 7 and xZ 7
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First case: Deterministic dynamics leaves D

If x; leaves D in finite time, so will x;. Show that deviation x; — x; is small:

Assume b Lipschitz continuous and g = Id (isotropic noise)

t
I — x|l < L/ 5 — xe|| ds + V22 || W
0

By Gronwall's lemma, for fixed realization of noise w

sup ||x5 — xo|| < V2 sup ||Wi| et
0<s<t 0<s<t

> d = 1. Use André’s reflection principle
—r?/2t
IP’{ sup |Wg| > r} < 2]}”{ sup Wi > r} §4P{Wt > r} <2e
0<s<t 0<s<t
> d > 1: Reduce to d = 1 using independence

> General case: Use large-deviation principle
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Second case: Deterministic dynamics does not leave D
Assume D positively invariant under deterministic flow: Study noise-induced exit
dx = b(x¢) dt + V2eg(xF)dW:,  xo € R?

> b, g locally Lipschitz continuous, bounded-growth condition

> a(x) = g(x)g(x)" > i 1d (uniform ellipticity)

- 1
Infinitesimal generator A° of diffusion x{: A°v(x) = Ii\mo : [Exv(x) — v(x)]
t

d 2
Afv(x)=¢ Z ajj(x) 8):?8)9_ v(x) 4+ ( b(x), Vv(x))

Compare to Fokker—Planck operator: L° is the adjoint operator of A°

Approaches to the exit problem

> Mean first-exit times and locations via PDEs

> Exponential asymptotics via Wentzell-Freidlin theory
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Diffusion exit from a domain: Relation to PDEs

Theorem

> Poisson problem: ]
A*u=-1 inD

u=~0 on 0D

E. {75} is the unique solution of

> Dirichlet problem:
A w=0 inD

E, {f(x5.)} is the uni lution of
{ (XTD)} is the unique solution o w—f  ondD

(for f : 9D — R continuous)

Remarks

> Expected first-exit times and distribution of first-exit locations obtained
exactly from PDEs
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Diffusion exit from a domain: Relation to PDEs

Theorem

> Poisson problem: ]
A*u=-1 inD

E, {75} is the unique solution of
{5} d u=20 on 0D

> Dirichlet problem:
A w=0 inD

E, {f(x5.)} is the uni lution of
{ (XTD)} is the unique solution o w—f  ondD

(for f : 9D — R continuous)
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Diffusion exit from a domain: Relation to PDEs

Theorem

> Poisson problem: ]
A*u=-1 inD

E, {75} is the unique solution of
{5} d u=20 on 0D

> Dirichlet problem:
A w=0 inD

E, {f(x5.)} is the uni lution of
{ (xTD)} is the unique solution o w—f  ondD

(for f : 9D — R continuous)

Remarks

> Expected first-exit times and distribution of first-exit locations obtained
exactly from PDEs

> In principle ...
> Smoothness assumption for 9D can be relaxed to “exterior-ball condition”
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An example in d =1
Motion of a Brownian particle in a quadratic single-well potential
dxf = b(x¢) dt + V2e dW,;

where b(x) = —VV/(x), V(x) = ax?/2 with a > 0

> Drift pushes particle towards bottom at x =0
> Probability of x¢ leaving D = (a1, az) 3 0 through «;7?

Solve the (one-dimensional) Dirichlet problem

Aw =0 in D with Fx) = 1 for x =0
w =f on 0D 0 forx=q»

g%} a2
e — — ey — — V(y)/e V(y)/e
IP’X{XT%7041}7]Exf(x7%)fw(x)7/x e’V dy//a1 e’ Ve dy
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An example in d = 1: Small noise limit?

P {x: = an} = / /Edy//

What happens in the small-noise limit?

lim PX{Xf_s = O[l} =1 if V(a1) < V(OQ)
e—0 D

lim Po{xz; = a1} =0 if V(a2) < V(o)
H £ — M J—

lm, Pl = 1) = ey / (|v' |v'(a2)|) vl = vie)

Information is more precise than results relying on a LDP provide
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Large deviations: Wentzell-Freidlin theory

Alexander Wentzell (*1937), Eugene Dynkin (*1924), Joseph Doob (1910-2004), Mark Freidlin (*1934)
(May 1994)
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Exponential asymptotics via large deviations

v

Large-deviation rate function

T .
3 Jo llgs — bls)|I> ds for € Hy
400 otherwise

I(p) = /[o,T](SO) = {

v

Large deviation principle reduces est. of probabilities to variational principle:
For any set I of paths on [0, T]

—infl <liminf2elog P{(x;): € '} <limsup2eclogP{(x;): € '} < —inf/
re =0 =0 r

v

In short: Probability of observing sample paths being close to a given path
¢ : [0, T] — RY behaves like ~ exp{—2/(y)/e}

Assume domain D has unique asymptotically stable equilibrium point x*

v

> Quasipotential with respect to x* = cost to reach z against the flow

V(x*,z):= tlglg inf{fo,g(0): » € C([0,t], D), @o = x*, @r =z}
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Wentzell-Freidlin theory

Theorem [Wentzell & Freidlin 1969-72, 1984] (general case as on previous slide)
For arbitrary initial condition in x € D
V/2¢

> Mean first-exit time: E, 75 ~ e ase — 0

> Concentration of first-exit times:
}P’X{e(vf‘s)/25 <7p < e(VM)/zE} — lase — 0 (for arbitrary § > 0)

> Concentration of exit locations near minima of quasipotential

Gradient case (reversible diffusion)
> b=-VV, g=1Id
> Quasipotential V(x*,z) =2[V(z) — V(x*)]
> Cost for leaving potential well:

V =inf,cop V(x*,z) =2[V(z*) — V(x*)] = 2H
Attained for paths going against the deterministic flow:
$r = +VV(pr)

v

15 / 32
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Wentzell-Freidlin theory

Theorem [Wentzell & Freidlin 1969-72, 1984] (general case as on previous slide)
For arbitrary initial condition in x € D
V/2e

> Mean first-exit time: E, 75 ~ e ase — 0

> Concentration of first-exit times:

}P’X{e(Vﬂs)/% <7p < e(V+6)/2€} —lase— 0 (for arbitrary § > 0)

> Concentration of exit locations near minima of quasipotential

Gradient case (reversible diffusion)

>b=-VV,g=1Id

> Quasipotential V(x*,z) =2[V(z) — V(x*)]

> Cost for leaving potential well:
V =infcop V(x*,z) =2[V(z*) — V(x*)] = 2H
Attained for paths going against the deterministic flow:

> i
et dt L +
Sbt =4+V V(gpt) MFO Oberwolfach
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Remarks for the gradient case

> Arrhenius Law [van’t Hoff 1885, Arrhenius 1889] follows as a corollary
E,- 74 =~ const elVZ)=VEl/e
where 7, = first-hitting time of small ball B;(x}) around other minimum x}
Ty = Tox (w) = inf{t > 0: x{(w) € Bs(x})}

> Exponential asymptotics depends only on barrier height

> LDP also provides information on optimal transition paths
> Only 1-saddles are relevant for transitions between wells

> Multiwell case described by hierarchy of “cycles”

> Nongradient case: Work with variational problem

> Prefactor cannot be obtained by this approach
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Subexponential asymptotics
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Refined results in the gradient case: Kramers' law

First-hitting time of a small ball Bs(x}) around minimum x}

Ty = Tfi(w) =inf{t > 0: x{(w) € Bs(x})}

Arrhenius Law [van’'t Hoff 1885, Arrhenius 1889] — see previous slide

E,» 7 ~ const elVz) -Vl e
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Refined results in the gradient case: Kramers' law

First-hitting time of a small ball Bs(x}) around minimum x}

Ty = Tfi(w) =inf{t > 0: x{(w) € Bs(x})}

Arrhenius Law [van’'t Hoff 1885, Arrhenius 1889] — see previous slide

E,» 7 ~ const elVz) -Vl e

Eyring—Kramers Law [Eyring 1935, Kramers 1940]

b d=1 Eer o~ 27 V)V e

Zeangen]
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Refined results in the gradient case: Kramers' law

First-hitting time of a small ball Bs(x}) around minimum x}

Ty = Tfi(w) =inf{t > 0: x{(w) € Bs(x})}

Arrhenius Law [van’'t Hoff 1885, Arrhenius 1889] — see previous slide

E,» 7 ~ const elVz) -Vl e

Eyring—Kramers Law [Eyring 1935, Kramers 1940]

b d=1 Eer o~ 27 V)V e

Zeangen]

27 |det V2V/(z*)| YVt
d>2 Ber ~ V() -Vixt )l e
Sa= TEE @) deevevixs)

where \1(z*) is the unique negative eigenvalue of V2V at saddle z*
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Proving Kramers' law (multiwell potentials)

> Low-lying spectrum of generator of the diffusion (analytic approach)
[Helffer & Sjostrand 1985, Miclo 1995, Mathieu 1995, Kolokoltsov 1996, . ..]

v

Potential theoretic approach [Bovier, Eckhoff, Gayrard & Klein 2004]

_2n |det V2V/(z*)| V()
(29| det V2V(x*)

(obtained from similar asymptotics for eigenvalues of generator)

N “VENE L+ O((ellog ) ?)]

v

Full asymptotic expansion of prefactor [Helffer, Klein & Nier 2004]

v

Asymptotic distribution of 7 is exponential
im P {7y >t -Epx7y =€ f
e—=0 -

[Day 1983, Bovier, Gayrard & Klein 2005]
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Generalizations: Non-quadratic saddles

What happens if det V2V (z*) =07

det V2V(z*) =0 = At least one vanishing eigenvalue at saddle z*

= Saddle has at least one non-quadratic direction
= Kramers Law not applicable

Why do we care about this
non-generic situation?

Parameter-dependent systems
may undergo bifurcations

Quartic unstable direction Quartic stable direction
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Example: Two harmonically coupled particles
V(31 %) = U(xa) + Uxe) + 30 — x)?

Change of variable: Rotation by 7 /4 yields

_ 1 1-2v , 1
Vilyoye) = =501 — — y§+§(yf+6yfy§+y§)

Note: det V2 \77(0, 0) =1—2v = Pitchfork bifurcation at v = 1/2

v >

[N
]

\
2

\

General case of n particles [Berglund, Fernandez & G 2007]
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Transition times for non-quadratic saddles

> Assume x* is a quadratic local minimum of V
(non-quadratic minima can be dealt with)

> Assume x is another local minimum of V/
> Assume z* = 0 is the relevant saddle for passage from x* to x7}

> Normal form near saddle

V(y) = —u1(y1) + ua(y2) Z/\J}/J

> Assume growth conditions on uq, u

Theorem [Berglund & G 2010]

2(y2)/e
E (2me)d/2 e~ VIx2)/e Tdy ﬁ 2me
T = —
- \/det V2\/ / e—tiln)/e dy; Jj=3 )‘J

x [1+ O((elloge|)™)

where o > 0 depends on the growth conditions and is explicitly known
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Corollary: Pitchfork bifurcation

d
1 1 1
Pitchfork bifurcation: V/(y) = —§|)\1|y12 + §A2y§ + Cays + 5 ; NyP +
> For A\ > 0 (possibly small wrt. ¢):

) [V(z*)=V(xX)]l/e
By 7y = 2| Q2 X V2ECAs . A € 1+ RE)]
- |)\1‘ det V2 V( _) \U+()\2/\/ 2€C4)

where
()[(1 + a) o? a?
o)=L ()
+(a) 8n 16
K14 = modified Bessel fct. of 2nd kind 55 3 % 1% I 1 % &%
> For A\ < 0: Similar, involving /4 A2 — prefactor

e =0.5, € =0.1, € =0.01
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Non-gradient case:

Cycling

v / et
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New phenomena in non-gradient case: Cycling

Simplest situation of interest:
Nontrivial invariant set which is a single periodic orbit

Assume from now on:
d = 2, 9D = unstable periodic orbit

v

Wentzell-Freidlin theory: Erp ~ eV/2¢ still holds

> Quasipotential V/(I1,z) = V is constant on JD:
Exit equally likely anywhere on 0D (on exp. scale)

> Phenomenon of cycling [Day 1992]:
Distribution of x,,, on 9D does not converge as ¢ — 0
Density is translated along 9D proportionally to |log ¢|
>

In stationary regime: (obtained by reinjecting particle)

Rate of escape cht ]P‘{xt ¢ D} has |log ¢|-periodic prefactor [Maier & Stein 1996]
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Universality in cycling

Theorem [Berglund & G 2004, 2005, 2014] (informal version)
There exists an explicit parametrization of 0D s.t. the exit time density is given by

ftrans(t-, tO)

0'(t) (o) .
p(t. o) = === 2220 Qur (6(2) — log <) (6)_ 000 / AT(o)

/\TK(E)

v

Qx7(y) is a universal A T-periodic function

v

O(t) is a “natural” parametrisation of the boundary:
0'(t) > 0 is explicitely known model-dependent, T-periodic function;
O(t+ T)=0(t)+ AT

£ eV/25

v

Tk(g) is the analogue of Kramers' time: Tk(e) =

v

ferans grows from 0 to 1 in time t — tp of order |log <]

N is the normalization

v
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The universal profile
y — QAT()\Ty)/2)\T

AT =1

> Profile determines concentration of first-passage times within a period
> Shape of peaks: Gumbel distribution P(z) = e *?exp{—1e %}
> The larger AT, the more pronounced the peaks

> For smaller values of AT, the peaks overlap more
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Density of the first-passage time for V = 0.5, A =1

(d)

/ N
/ \
\
\
[ \
! \
|
N
! N
| ~
f N
) N
T T T T T T

e=05T=2 e=05T=5
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Dependence of exit distribution on the noise intensity

Author: Nils Berglund

> o decreasing from 1 to 0.0001 -
> Parameter values: A\, =1, T, =4, V=1

Modifications
> System starting in quasistationary distribution (no transitional phase)
> Maximum is chosen to be constant (area under the curve not constant)
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