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Slowly driven systems

Recall from Monday's lecture

Parameter dependent ODE, perturbed by small Gaussian white noise
dxs = f(xs, \) ds + o d W (xs € RY)
Assume parameter varies slowly in time: A = A(es)
dxs = F(xs, Mes)) ds + o d W,

Rewrite in slow time t = es

1 o
dx; = gf(xt,t)dt—&- %th
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Collaborators
Assumptions on Monday
Existence of a uniformly asymptotically stable equilibrium branch x*(t)
Ax*: 1l =R st f(x*(t),t) =0
and
a*(t) = Oxf(x*(t),t) < —ap < 0
[Tihonov 1952]: Then there exists an adiabatic solution X(t,¢)
X(t,e) = x*(t) + O(e)
and X(t, ) attracts nearby solutions exp. fast
x*(t)
Xdet(t)
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Defining the strip describing the typical spreading

v

Let v(t) be the variance of the solution z(t) of the linearized SDE for the
deviation x; — X(t, ¢)

v

v(t)/o? is solution of a deterministic slowly driven system admitting a
uniformly asymptotically stable equilibrium branch

Let ((t) be the adiabatic solution of this system
C(t) = 1/|a(t)|, where a(t) = Oxf(X(t,e),t) < —ap/2 <0

v

v

Define a strip B(h) around X(t,c) of width ~ hy/((t) and the first-exit time 75,

B(h) = {(x, t): [x = x(t, )| < h/C(1)}
(k) = inf{t > 0: (x;, t) & B(h)}
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Concentration of sample paths

B(h)

Theorem [Berglund & G 2002, 2006]

1 t
P{rp) < t} < constf)/ a(s) ds‘ h e IPI1-0()-0(h) /207
€

0 g

Bifurcations in Slow—Fast Systems Barbara Gentz SNU, 19 March 2014 5 /39



Slowly driven systems Stochastic resonance Saddle-node MMOs References Collaborators

Next goal
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Avoided bifurcation: Stochastic Resonance

Bifurcations in Slow—Fast Systems Barbara Gentz SNU, 19 March 2014 7 /39



Slowly driven systems Stochastic resonance Saddle-node MMOs References Collaborators

Overdamped motion of a Brownian particle
in a periodically modulated potential

10 o
dXt = —gaV(Xt, t) ds + %th

1 1
V(x, t) = —§x2 + ZX4 + (Ae — ag) cos(2mt)x
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Sample paths

Amplitude of modulation A = \. — ag
Speed of modulation ¢
Noise intensity o

i O |
e

A =0.00, c =0.30, e = 0.001

A=0.10, 0 =0.27, ¢ = 0.001

PRSI

A=0.24, 0 =0.20, e = 0.001

A=0.35 0=0.20, ¢ =0.001
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Different parameter regimes and stochastic resonance

Synchronisation |

> For matching time scales: 27/ = Tiorcing = 2 Tkramers = e?H/o?

> Quasistatic approach: Transitions twice per period likely
(Physics’ literature; [Freidlin 2000], [Imkeller et al, since 2002])

> Requires exponentially long forcing periods

Synchronisation |1
> For intermediate forcing periods: Trelax < Trorcing K TKramers
and close-to-critical forcing amplitude: A ~ A.
> Transitions twice per period with high probability
> Subtle dynamical effects: Effective barrier heights [Berglund & G 2002]

SR outside synchronisation regimes
> Only occasional transitions

> But transition times localised within forcing periods
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Slowly driven systems

Characterised by 3 small parameters: 0 <0 <1,0<e<k<1,0< 3«1

Bifurcations in Slow—Fast Systems

Stochastic resonance Saddle-node MMOs References

Synchronisation regime |l

LIRS A A A S A S
7 06 0.5 04 03 02 -01 00 0.1 02 03 04 05 06

System  Stochastic resonance

Epsilon 0005 0005 0.005 1,005
Sigma 0 003 ¥ .12
Gap 0005 0005 0.005 005
Time siep 0.001
Seeds 0534154541 0355564852
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Effective barrier heights and scaling of small parameters

Theorem [Berglund & G 2002] (informal version; exact formulation via first-exit times)

3 threshold value o. = (ap v €)3/*

Below: o < o,

> Transitions unlikely; sample paths concentrated in one well

> Typical spreading = 7 = 7

(|t]? v ao Vv 5)1/4 (curvature) 1/2

2/ 2
> Probability to observe a transition < e~ "5t ac/o

Above: 0 > o,
> 2 transitions per period likely (back and forth)

> with probabilty > 1 — e~consto*/3/zlloga|

> Transitions occur near instants of minimal barrier height; window = o2/3
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Deterministic dynamics

> For t < —const :
x°t reaches e-nbhd of x} (t)

in time < ¢|loge| [Tihonov 1952]

| > For —const <t < —(ag \/5)1/2 .
e-‘“Xtdet X?et o Xi(t) - 8/|t‘
> For |t| < (ao \/5)1/2 :

&) xft =g (t) < (ag Vo) /2 > e
(effective barrier height)

/\_/\ > For (ap V)2 < t < +const :
=) xget = xi () = —e/ It

> For t > +const :

|xdet — X3 (t)] < e
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Stochastic resonance

Saddle-node

MMOs References

Below threshold: o < o, = (ag V )%/4

v(t) ~

o2 o?

curvature  (Jt[2V ap V £)1/2

Collaborators

Approach for stable case can still be used

2 2 5 2
C(h/ot,e)e 0 /27" < P{rsm < t} < C(h/o, t,e)e fi+h /20

with k. =1 —O(¢) = O(h), k- =1+ O(¢) + O(h) + O(e~=%)
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Above threshold: o > o, = (ag V £)*/*

> Typical paths stay below x{ + h/C(t)

B
> For t < —c?/3 :

Transitions unlikely; as below threshold
> At time t = —¢°/3

Typical spreading is o°/% > x® — x§(t)

Transitions become likely

> Near saddle:

Diffusion dominated dynamics

> 01 > 09 with £ < —1;

do in domain of attraction of x* (t)

Drift dominated dynamics

> Below dp: behaviour as for small o
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Above threshold: o > 0. = (ap V £)*/*

Idea of the proof
With probability > § > 0, in time < ¢|logo|/o
the path reaches

[ o+ hCH)

2/3
)
i) ="

> X;jet

if above

> then the saddle

> finally the level 41

4/3

. a .
In time o2/3 there are ——— attempts possible
ellog o]

During a subsequent timespan of length ¢,
level &g is reached (with probability > ¢ )

Finally, the path reaches the new well

Result

4/3
IP{XS >d09 Vse [—02/3, t]} < e onsto / /ellog o (t > —ya?? small)
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Space—time sets for stochastic resonance

Below threshold Above threshold
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Saddle-node

Saddle—node bifurcation

%

;f“'uf‘é‘ssm

\

S
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Saddle—node bifurcation (eg. f(x,t) = —t — x?)

1/2 1/2

oK 0o, =¢

o> 0, =¢

1/3

o = 0: Solutions stay at distance £!/3 above bif. point until time 2/3 after bif.

Theorem [Berglund & G 2002]
> If ¢ < o.: Paths likely to stay in B(h) until time £2/3 after bifurcation;
maximal spreading 0/51/6.
> If o > o.: Transition happens typically for t = —g*/3 (early transitions);

—ca?/ellog o

transition probability > 1 —e
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Mixed-mode oscillations
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Belousov—Zhabotinsky reaction

MMOs

Mixed-mode oscillations (MMOs)

Potential Imillivolts)

11 1 1 1

50

60

Time [minutes]

Recording from bromide ion electrode; T=25° C; flow rate = 3.99 ml/min; Ce™3 catalyst [Hudson, Hart, Marinko '79]
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MMOs in Biology

Layer Il Stellate Cells

5mV

4 bbbt ity )fﬂ

D: subthreshold membrane potential oscillations (1 and 2) and spike clustering (3) develop at increasingly depolarized membrane potential levels
positive to about 55 mV. Autocorrelation function (inset in 1) demonstrates the rhythmicity of the subthreshold oscillations [Dickson et a/ 2000]

Questions:  Origin of small-amplitude oscillations?
Source of irregularity in pattern?

Bifurcations in Slow—Fast Systems Barbara Gentz SNU, 19 March 2014 22 /39



Slowly driven systems Stochastic resonance Saddle-node MMOs References Collaborators

MMOs & slow—fast systems

Observation

MMOs can be observed in slow—fast systems undergoing a folded-node bifurcation
(1 fast, 2 slow variables)

Normal form of folded-node [Benoit, Lobry 1982; Szmolyan, Wechselberger 2001]
ex =y —x°

y=—-(p+1)x~-z

s

2

z =

Questions  Dynamics for small ¢ > 07
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MMOs & slow—fast systems

Observation

MMOs can be observed in slow—fast systems undergoing a folded-node bifurcation
(1 fast, 2 slow variables)

Normal form of folded-node [Benoit, Lobry 1982; Szmolyan, Wechselberger 2001]

ex = y — x> 4 noise

y =—(p+ 1)x — z + noise
s

2

z =

Questions  Dynamics for small ¢ > 07
Effect of noise?
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Folded-node bifurcation:
Critical manifold and canard solutions

- e

. 2 Fold
EX =Yy —X

y = —(‘U =+ 1)X —Z Stable critical
manifol

Unsfable critical
mahifold

=

Stable critical
manifold

Fold

Collaborators

> ¢ = 0: Critical manifold decomposes into stable and unstable parts 4 fold line
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Folded-node bifurcation:
Critical manifold and canard solutions

. 2 Fold

EX=y—X

y=—(u+1)x—z
. /~L Unst'::xble critical
zZ = 5 mahifold

Stable critical

manifold Folded node

Collaborators

> ¢ = 0: Critical manifold decomposes into stable and unstable parts 4 fold line

> Typical solution exhibits small amplitude oscillations
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Folded-node bifurcation:
Critical manifold and canard solutions

6)_( _ y N X2 Fold
y=—(u+1)x—z
. B
zZ=—
2

Stable critical

manifold Folded node

Collaborators

> ¢ = 0: Critical manifold decomposes into stable and unstable parts 4 fold line

> Typical solution exhibits small amplitude oscillations

> Existence of canard solutions tracking critical manifold
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Folded-node: Adiabatic manifolds and canard solutions

1.1
20ty ® Assume
xr
> ¢ sufficiently small
oté £ &2 %s 1
> pe(0,1), p=t ¢N
57 NBm : (@)

Theorem

[Benoit, Lobry 1982;

Szmolyan, Wechselberger 2001;
Wechselberger 2005;

Brgns, Krupa, Wechselberger 2006]

[Desroches et al 2012]
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Folded-node: Adiabatic manifolds and canard solutions

1.1
5% ® Assume

> ¢ sufficiently small
> pe(0,1), pt¢gN

oty £ &2 7s

SE N - (@)

Theorem
> Existence of strong and
weak (maximal) canard 2"
b 2k+1<pu t<2k+3:
3 k secondary canards ~Z
>~ makes (2j +1)/2
oscillations around Y

[Desroches et al 2012]
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Folded-node: Canard spacing

Tw

(a) 2
3
2| S z /
3 1.5
1 r //
0
B I/
1 /
-3 o
-10 - " = .. . i 72
-7 o [EETPRER L D . 10 (c)
-4 . = 5 y -3
1 s 0 =5 -2.5 0 25 Yy 5
2 .10

[Desroches, Krauskopf, Osinga 2008]

Lemma
. . 2
For z = 0: Distance between canards 7% and ¥ is O(e~(k+1)1)
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Stochastic folded nodes: Rescaling

1 o
dxe = (e —x7) dt + NG dw
dy: = [~ (1 + 1)xe — z] dt + o’ dW?
dz, = g dt

Rescaling (blow-up transformation): (x,y,z,t) = (\/eX,ey,1/€Z,\/Et)

In addition: (0, 0") = (£3/%G,£%/*5") and consider z as “time”

2 2
dx, = =(y, — x2) dz + Q dw®
Iz VHE
YELE
o

2
dyz = = l(p+1x + 2] dz +

For small p: Slowly driven system with two fast variables
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Deviation from the adiabatic manifold due to noise

Main idea

> Deterministic reference process (x2¢, ydet)

> Linearize SDE for ¢, := x, — xd¢t
Key observation

> Resulting process ¢° is mean-zero Gaussian

> Covariance matrix 02X (z, ) determines behaviour
We're in business . ..

> Calculate asymptotic size of the covariance tube

B(h) = {(X,y): <[xfX(y,e)],)?(y,e)*l[xfi(y,s)]> <h, ye Dg}

using Neishtadt's theorem on delayed Hopf bifurcations

> Use general result on concentration of sample paths for &, in B(h)
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Stochastic folded nodes: Concentration of sample paths

Theorem [Berglund, G & Kuehn 2012]

2

h
P{rsn < z} < C(20,2) exp{—/@w} Vz € [0, /1]

where 755 = inf{s > 0: (xs,ys) ¢ B(h)}

For z =0: ' [ / YL
> Distance between canards 7 and ~vf+1 | ( //J?"
is Oe= 2k+1)2u) I ( #
> Section of B(h) is close to circular with
radius ;o /*h :
> Noisy canards become indistinguishable B
when typical radius ;%o ~ distance
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Noisy small-amplitude oscillations

Theorem [Berglund, G & Kuehn 2012]

h 2k+1

Canards wit oscillations become indistinguishable from noisy fluctuations for

1/4 e—(2k+1)2/1

o> o) = p

Zoom

02(#)

/L 0.1

Bifurcations in Slow—Fast Systems Barbara Gentz SNU, 19 March 2014 31 /39



Slowly driven systems Stochastic resonance Saddle-node MMOs References Collaborators

Early escape

Model allowing for global returns : @

> Consider z > /1
> Dy = neighbourhood of 4%,
growing like 1/z

Theorem [Berglund, G & Kuehn 2012] T =

dk, K1, k2, C >0
s.t.
for ollog o|™ < 3/

(b)

P{TDO > z} < Cllog o|™ efm(zzfﬂ)/(ﬂuogg‘)

Note:

r.h.s. small for z > /pllogo|/k o oes
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-0.005




Slowly driven systems Stochastic resonance Saddle-node MMOs References Collaborators

Mixed-mode oscillations in the presence of noise

09r

0.4r

Observations
> Noise smears out small-amplitude oscillations
> Early transitions modify the mixed-mode pattern
> Which kind of patterns can arise?
Partial answer: [Berglund, G & Kuehn, submitted]
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Thank you for your attention !

University of Bielefeld
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