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Introduction: Small random perturbations

Consider small random perturbation
des = b(at) dt + v/E g(ad) dIWS, 75 = g
of ODE

x; = b(xy) (with same initial cond.)

We expect z; ~ x; for small «.
Depends on

> deterministic dynamics
> noise intensity ¢
> time scale
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Introduction: Small random perturbations

Indeed, for b Lipschitz continuous and ¢ = Id

t
o5zl < L / a8 — 2] ds + V2 [ Wi
0

Gronwall’s lemma shows
sup | — ]| < VE sup Wi e

0<s<t 0<s<t

Remains to estimate sup ||[IV]|
0<s<t

> d = 1: Use reflection principle

IP’{ sup |W| > r} < QIP’{ sup W, > r} < 4IP’{W¢ > 7“} < 2 e /2

0<s<t 0<s<t
> d > 1: Reduce to d =1 using independence

P{ AR } < 2d P

0<s<t
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Introduction: Small random perturbations

For I' ¢ C =C([0,T],R%) with T C B((x,),,0)° (C equipped with sup norm |-/~ )

) 52 —2Lt
Plaf e 1} <P sup il > 6 b < P sup i) > 2 et} < 2 enp{ <22

<s<t

and
P{z €'} =0 as ¢ =0

> Event {z° € I'} is atypical: Occurrence a large deviation
> Question: Rate of convergence as a function of ['?
> Generally not possible, but exponential rate can be found

Aim: Find functional I :C — [0,00] S.t.

P{||z° — pl|oo < 6} m e P/ for e - 0

> Provides local description
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Large deviations for Brownian motion: The endpoint
Special case: Scaled Brownian motion, d =1
thg — \/g th, - th — \/th

> Consider endpoint instead of whole path

1
P{W: € A :/ exp{ —z?/2¢t} dx
{wW, } et p{ / }
> Use Laplace method to evaluate integral
e log P{W; € A} 1’fx2 as ¢ >0
~ —— Int —
& t 2 zeA t -
Caution
> |A| =1: Lhs. = —o0 < r.his. € (—00, 0]
> Limit does not necessarily exist
Remedy: Use interior and closure == Large deviation principle
Lot & < liminf ¢ log POVF € A} < I log PAVF € A} < — 2+ inf &
Jnf, - Sliminf & log P{W; € A} <limsup e log P{W; € A} < —5 inf —-

Collog. Equations Diff. Stoch. October 20, 2003 5 (24) [wlilals



Large deviations for Brownian motion: Schilder’s theorem

Schilder’s Theorem (1966)

Scaled BM satisfies a (full) large deviation principle with good rate function

1

(1 . . _
slelln =5 [ ol as it e i with =0

I(p) = Lo 110(0) = .
+ 00 otherwise

\

That is
> Rate function: [:Cy={p € C: ¢y =0} — [0,00] is lower semi-continuous
> Good rate function: I has compact level sets
> Upper and lower large-deviation bound:
— ilglf] < liminf € log P{W* € I'} < limsup ¢ log P{W* € I'} < —inf [ forall T' € B(Cy)
° r

e—0 e—0

Remarks
> Infinite-dimensional version of Laplace method
> We g H' =— I(W¢) =+o0o (almost surely)
> I(0) =0 reflects W —0 (¢ —0)
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Large deviations for Brownian motion: Examples

Example I: Endpoint again ... (d = 1) F'={peCy:p €A}

t 2
mf [ = inf —/ i<§>
€A 2 ds \ ¢t

— P{W;e A} ~ exp{—;réf4 x”[2te}

2

ds = inzf4 g_t —= cost to force BMtobein A attime ¢
xre

Note: Typical spreading of W; is /et

Example ll: BM leaving a small ball F={p€C:|lpllw=d}
6 6
mf I = inf inf  I(p)= inf — = — = costtoforce BMtoleave B(0,J) before T
0<t<T peCy: ||ot]|=0 o<i<T 2t 2T
— P{It<T, |W;|| =8} ~exp{—6°/2T¢c}
Example lll: BM staying in a cone (similarly ...)
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Large deviations for Brownian motion: Lower bound

To show: Lower bound for open sets

lim i(l)qf e log P{W*® € G} > —igf I for all open G C (g
£—

Lemma (local variant of lower bound)

liminf € log P{W* € B(p,0)} > —1(yp) forall o € Cy with I(¢) < oo, all 6 >0

e—0

> Lemma = lower bound
> Standard proof of Lemma: uses Cameron—Martin—Girsanov formula

Cameron-Martin-Girsanov formula (special case, d =1)
(W}, P-BM = {W,}, Q-BM

where

t
Wt:Wt—/h<S) dS, hEEQ
0

N — exp{/oth(s) dW, — %/Oth(s)Q ds}
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Large deviations for Brownian motion: Proof of Cameron-Martin—-Girsanov formula

First step
t 1 t
X = exp{/ h(s) dW, — 5/ h(s)? ds} h e Ly
0 0
! 1 [ —~ 1
Y; = exp{/ (v + h(s)) dW, — 5/ (v + h(s))? ds} = X exp{'th — 5721?} v >0
0 0

are exponential martingales wrt. P

Second step

—~ —~ ~ —~ 1
Eq{Z exp{y(W; — W) }} = Ep{Z X, exp{y(W; — W)} } = EP{Z exp{—nyS + 57215} Ep{Y, | ]—"8}}
L L,

EP{ZXS exp{iy (t — s)}} =Eq{Z} exp{§7 (t — s)} vV Z e F,

> W, — Wy is Q—-independent of F;, — increments are independent
> Increments are Gaussian

— /V[Z is BM with respectto Q
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Large deviations for Brownian motion: Proof of the lower hound

d=1, §>0, p€C With I(p) < oo, W,=W,— /e

1 T

_ | I
P{W — gl < 6} = B{|W | <8/vE} = | exp{—— py AW, + o / 2 ds} aQ
WeB(0,6//z) Ve Jo 2e Jy

Estimate integral by Jensen’s inequality

I(p) = 1 (.
...eXp{—?}Q{WEB(O,é/\/E)}XW /WeB(oa/\/E)exp{_% 0 Dy dWS} dQ

> exp{—@} P{W € B(0,0/y/)} x exp{—\/ap)? T mon /OT oy AW, dIP’}

= eXp{—@}P{W € B(0,6/v¢)} x 1

€

Finally note

P{W € B(0,0/ve)} /1 (e\0) — liminf & log P{||W* — ¢llc <6} = —I(p)

e—0
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Large deviations for Brownian motion: Approximation by polygons (upper bound)
Approximate W€ by the random polygon W™¢ joining (0, W§), (T'/n, W§/n), e (T, W5
Toshow: 1W"° is a good approximationto W¢

0
BW = Wl > 8} <nP{ s WE - Wl 26 <nb{ s Wi >3]

0<s<T'/n 0<s<T'/n
P Wl > 0 < 2nd ik (standard estimate)
=n su sl| =2 ——= ¢ < 2nd expy —
Oésgg/n 2\/g P edT’

— Difference is negligible:

limsup limsup € log P{||W® — W"|| > ¢} = —oc0 forall o >0

n—00 e—0
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Large deviations for Brownian motion: Proof of the upper bound

F C Cy closed, § >0, f(szilgaf)]:'mf{](go):QOEF((S)}, neN
F

P{W® e F} <P{W™ € FO} L P{|W* — W™ || = 0} <P{I(W") > (5} + negligible term

W™ being a polygon yields

nd
Ty (& ~ N(0,1) iid.)

1) =2 / HW“st—— HT = W )

By Chebychev’s inequality, for v < 1/2

v < 1/2 being arbitrary and the lower semi-continuity of I show

limsup ¢ log IP{ We e F} < lim sup lim sup ¢ log IP’{] W) E(g} < — mf I\, — mf[

e—0 n—»00 e—0
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Large deviations for solutions of SDEs: Special case
dzi = b(zy) dt + v/ AW}, Ty = T ( b Lipschitz, bounded growth, ¢(x) = identity matrix )

Define F':Cy —C by o — F(v)=f, [ being the unique solutionin C to

t
) =+ [ B ds + ol
> F(W®) = af
> F' is continuous (use Gronwall’s lemma)
Define J:C — [0,00] by J(f) =inf{I(p): p €Cy, Flp)= [}
Contraction principle (trivial version)

I good rate fct, governing LDP for W* — J good rate fct, governing LDP for z° = F(WW°)

4 1 i . .
5/ Hfs_b(fs)H2 ds IffEHl with f():l‘()
Identify J: J(f) = Jora(f) = =701
+ 00 otherwise
\
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Large deviations for solutions of SDEs: General case

dzy = b(z}) dt + e g(zy) AWy, Ty = T

Assumptions

> b, g Lipschitz continuous

> bounded growth: ||b(z)|| < M (1 + ||z||)"Y?, a(z) = g(x)g(z)" < M (1 + ||z|*) 1d
> ellipticity: a(x) > 0

Theorem (Wentzell-Freidlin)

x° satisfies a LDP with good rate function

( 1 . . .
iﬂﬂW%>WM—meﬂb Tf e Howith fo= o
+ 00 otherwise

\

J(f) = Jjo1120(f) = S

Remark
If a(x) is only positive semi-definite: LDP remains valid with good rate function but identification

of J may fail;

t t
waﬂﬁ&wwwem,ﬂ:m+Abmwu+LamW%ﬂmtemﬂ}
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Large deviations for solutions of SDEs: Sketch of the proof for the general case

> Difficulty: Cannot apply contraction principle directly
> Introduce Euler approximations

t t
x?,s — 2 _|_/ b<x?,€> ds + \/g/ g(x%j(s)) dWS, Tn<8> = -
0 0

> Schilder’s Theorem and contraction principle imply LDP for "= with good rate function J”

(1 : . .
5 [ Nalfne) PLE =] ds i €y with o=y
Jn(f) — ¢ (0,7
+ 00 otherwise
\

> To show:
(1) z™° is a good approximationto z¢ (not difficult but tedious, uses Itd’s formula)

(2) J" approximates J: lim inf J”:irFlfJ forall T

n—oo I
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Large deviations for solutions of SDEs: Varadhan’s Lemma

Assumptions

> ¢:C — R continuous
> Tail condition

lim limsup € log / exp{gb(xg)/s} dP = —¢
$(a%) =L

L—oo 20

Theorem (Varadhan’s Lemma)

lim ¢ log /exp{gb(xg)/s} dP = Slép [Qb(@) — J(SO)]

e—0

Remarks
> Moment condition

sup (/ exp{a ¢(z)/c} dIED)6 <oo  forsome a € (1,00)

O<e<l

implies tail condition.
> Infinite-dimensional analogue of Laplace method
> Holds in great generality — as long as z° satisfies a LDP with a good rate function .J
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Diffusion exit from a domain: Introduction

Noise-induced exit from a domain D (bounded, open, smooth boundary)

Consider small random perturbation

dz§ = b(x7) dt + /e g(x7) dW,, xy=1x9 €D
of ODE
xy = b(xy) (with same initial cond.)

First-exit time
T =mf{t >0:2; ¢ D}

Questions
> Does z; leave D?
> If so: When and where?
> Expected time of first exit?
> Concentration of first-exit time and location?

Towards answers
> If z;, leaves D, so will z;. Use LDP to estimate deviation z; — x;.
> Later on: Assume z; does not leave D. Study noise-induced exit.
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Diffusion exit from a domain: Relation to PDEs

Assumptions (from now on)
> b, g Lipschitz cont., bounded growth
> a(z) = g(z)g(x)! > (1/M)Id (uniform ellipticity)
> D bounded domain, smooth boundary
Infinitesimal generator £° of diffusion z°

Lov(t,z) = % Z a;;(z) %axjv(t,x) + (b(z), Vu(t, z))

ij=1
Theorem
For f:0D — R continuous
LS'u=-1 in D

> E,{7°} is the unique solution of the PDE
u =70 on 0D

LEw =0 in D

> E,{f(x2-)} is the unique solution of the PDE
w=f on 0D

Remarks

> Information on first-exit times and exit locations can be obtained exactly from PDEs
> In principle ...

> Smoothness assumption for 9D can be relaxed to “exterior-ball condition”
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Diffusion exit from a domain: An example

Overdamped motion of a Brownian particle in a single-well potential

d =1, potential U deriving from b, b(0) =0, zb(x) <0 for x #£0, g(z)=1

> Drift pushes particle towards bottom
> Probability of z¢ leaving D = (aj,a9) 507?
Solve the (one-dimensional) Dirichlet problem
Lw=0 1inD
w =f on 0D

with f(z)

for x = oy

for © = oy

a9 Q2
w(e) = B {o =} =B, flar) = [ gy [ [ gy
T aq
hg(l) PAre =1} =1 if Ul(ar) < Ulay)
l'm(l) Pz =an} =0 if Ulay) < Ulay)
E—r
lim P, {25 — g} — — /( P ) it U(on) = Ulan)
m P2 =apyp = o) = Ul
e—0 U ()] U'(a1)]  [U'(a2)] : ’
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Diffusion exit from a domain: A first result

Corollary (to LDP for z¢)
lim € log P, {7° <t} = —inf {V(z,y;s): s €(0,t], y € D},

e—0

where
V(z,y;5) = inf {Jjo.g.(): ¢ € C(0, 8], RY), o =2, 9 =y}
— inf {% /OSHhUH2 du : h € £5(][0,5],R?) such that
Oy =T + /OU b(py) du + /ng(gpu)hu du, v € [0,s], and g = y}

= cost of forcing a path to connect = and y intime s

Remarks
> Upper and lower LDP bounds coincide = Ilimit exists
> Calculation of asymptotical behaviour reduces to variational problem
> V(x,y;s) is solution to a Hamilton—Jacobi equation; extremals solution to an Euler equation
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Diffusion exit from a domain: Assumptions and the concept of quasipotentials

Assumptions
> @; = b(xy) has a unique stable equilibrium point z* =0 in D, z* is asymptotically stable
> D is contained in the basin of attraction of z* =0 (for the deterministic dynamics)
> V =inf.cop V(0,2) < o0

with quasipotential

V(0,y) = %ng V(0,y;t) = cost of forcing a path starting in z* =0 to reach y eventually
>

Remarks
> Similar if D contains for instance a stable periodic orbit
> Conditions exclude characteristic boundary
> Uniform-ellipticity condition can be relaxed; requires additional controllability condition
> Were V = oo, all possible exit points would be equally unlikely

> If b derives from a potential U, ¢ =1d:
Quasipotential satisfies V(0,y) =2 [U(y) — U(0)] forall y € D suchthat U(y) < min U

Arrhenius law: For b deriving from a potential, ¢ = Id

The average time to leave potential well is exp{twice the barrier height /noise intensity }
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Diffusion exit from a domain: Main results

Theorem
For all initial conditions =z € D and all § > 0

> First-exit time:
lim IP’x{eXp{(V— 0)/e} <715 < exp{(V—l—(S)/s}} =1

e—0
and

lim ¢ log B, {7°} =V

e—0

> First-exit location: For any closed subset N C 9D satisfying inf.cxy V(0,2) >V

lim P, {zl- € N} =0

e—0

If V(0,-) has a unique minimum z* on 0D, then

iii% P {||z — 2*|| < 0} =1

Remarks
> 2¢ favours exit near boundary points where V(0,-) is minimal

> If V(0,-) has multiple minima on 9D : corresponding weights cannot be obtained by large-
deviation techniques
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Diffusion exit from a domain: ldea of the proof

First step
x® cannot remain in D arbitrarily long without hitting a small neighbourhood B(0, i) of 0:
A7 lim limsup € log sup IP):E{ z; € D\B(0,u) forall s < t} = —00

=00 £ z€D

—> Restrict to initial conditions in B(0, u)

Second step
Lower bound on probability to leave D:

V>0 dpuy Vu<py 3Ty >0 liminf € log inf Px{Tg < T()} > —(V+4n).
e—0 z€B(0,u)

> Construct piecewise a continuous exit path » connecting =, 0, 9D and some point y
at distance p from D with I(p) <V +17
> Use LDP to estimate probability of z* remaining in /2 -neighbourhood of exit path

Third step
More lemmas in the same spirit ... (involving exit locations)

Fourth step
Prove Theorem by considering successive attempts to leave D using strong Markov property
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