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Introduction: Small random perturbations

Consider small random perturbation

of ODE

(with same initial cond.)

We expect for small .

Depends on

deterministic dynamics
noise intensity
time scale
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Introduction: Small random perturbations

Indeed, for Lipschitz continuous and

Gronwall’s lemma shows

Remains to estimate

: Use reflection principle

: Reduce to using independence
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Introduction: Small random perturbations

For with ( equipped with sup norm )

and
as

Event is atypical: Occurrence a large deviation
Question: Rate of convergence as a function of ?
Generally not possible, but exponential rate can be found

Aim: Find functional s.t.

for

Provides local description
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Large deviations for Brownian motion: The endpoint

Special case: Scaled Brownian motion,

Consider endpoint instead of whole path

Use Laplace method to evaluate integral

as

Caution
:

Limit does not necessarily exist

Remedy: Use interior and closure Large deviation principle
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Large deviations for Brownian motion: Schilder’s theorem

Schilder’s Theorem (1966)

Scaled BM satisfies a (full) large deviation principle with good rate function

if with

otherwise

That is
Rate function: is lower semi-continuous
Good rate function: has compact level sets
Upper and lower large-deviation bound:

for all

Remarks
Infinite-dimensional version of Laplace method

(almost surely)
reflects ( )
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Large deviations for Brownian motion: Examples

Example I: Endpoint again . . . ( )

cost to force BM to be in at time

Note: Typical spreading of is

Example II: BM leaving a small ball

cost to force BM to leave before

Example III: BM staying in a cone (similarly . . . )
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Large deviations for Brownian motion: Lower bound

To show: Lower bound for open sets

for all open

Lemma (local variant of lower bound)

for all with , all

Lemma lower bound
Standard proof of Lemma: uses Cameron–Martin–Girsanov formula

Cameron–Martin–Girsanov formula (special case, )

–BM –BM

where
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Large deviations for Brownian motion: Proof of Cameron–Martin–Girsanov formula

First step

are exponential martingales wrt.

Second step

is –independent of increments are independent
Increments are Gaussian

is BM with respect to
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Large deviations for Brownian motion: Proof of the lower bound

, , with ,

Estimate integral by Jensen’s inequality

Finally note
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Large deviations for Brownian motion: Approximation by polygons (upper bound)

Approximate by the random polygon joining

To show: is a good approximation to

(standard estimate)

Difference is negligible:

for all
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Large deviations for Brownian motion: Proof of the upper bound

closed, , ,

negligible term

being a polygon yields

( i.i.d.)

By Chebychev’s inequality, for

being arbitrary and the lower semi-continuity of show
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Large deviations for solutions of SDEs: Special case

( Lipschitz, bounded growth, identity matrix )

Define by , being the unique solution in to

is continuous (use Gronwall’s lemma)

Define by

Contraction principle (trivial version)

good rate fct, governing LDP for good rate fct, governing LDP for

Identify :
if with

otherwise
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Large deviations for solutions of SDEs: General case

Assumptions
, Lipschitz continuous
bounded growth: ,
ellipticity:

Theorem (Wentzell–Freidlin)
satisfies a LDP with good rate function

if with

otherwise

Remark
If is only positive semi-definite: LDP remains valid with good rate function but identification
of may fail;
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Large deviations for solutions of SDEs: Sketch of the proof for the general case

Difficulty: Cannot apply contraction principle directly
Introduce Euler approximations

Schilder’s Theorem and contraction principle imply LDP for with good rate function

if with

otherwise

To show:
(1) is a good approximation to (not difficult but tedious, uses Itô’s formula)
(2) approximates : for all

Colloq. Equations Diff. Stoch. October 20, 2003 15 (24)



Large deviations for solutions of SDEs: Varadhan’s Lemma

Assumptions
continuous

Tail condition

Theorem (Varadhan’s Lemma)

Remarks
Moment condition

for some

implies tail condition.
Infinite-dimensional analogue of Laplace method
Holds in great generality — as long as satisfies a LDP with a good rate function
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Diffusion exit from a domain: Introduction

Noise-induced exit from a domain (bounded, open, smooth boundary)

Consider small random perturbation

of ODE
(with same initial cond.)

First-exit time

Questions
Does leave ?
If so: When and where?
Expected time of first exit?
Concentration of first-exit time and location?

Towards answers
If leaves , so will . Use LDP to estimate deviation .
Later on: Assume does not leave . Study noise-induced exit.
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Diffusion exit from a domain: Relation to PDEs

Assumptions (from now on)
, Lipschitz cont., bounded growth

(uniform ellipticity)
bounded domain, smooth boundary

Infinitesimal generator of diffusion

Theorem
For continuous

is the unique solution of the PDE in
on

is the unique solution of the PDE in
on

Remarks
Information on first-exit times and exit locations can be obtained exactly from PDEs
In principle . . .
Smoothness assumption for can be relaxed to “exterior-ball condition”
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Diffusion exit from a domain: An example

Overdamped motion of a Brownian particle in a single-well potential
, potential deriving from , , for ,

Drift pushes particle towards bottom
Probability of leaving ?

Solve the (one-dimensional) Dirichlet problem

in
on

with for
for

if

if

if
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Diffusion exit from a domain: A first result

Corollary (to LDP for )

where

such that

and

cost of forcing a path to connect and in time

Remarks
Upper and lower LDP bounds coincide limit exists
Calculation of asymptotical behaviour reduces to variational problem

is solution to a Hamilton–Jacobi equation; extremals solution to an Euler equation
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Diffusion exit from a domain: Assumptions and the concept of quasipotentials

Assumptions
has a unique stable equilibrium point in , is asymptotically stable

is contained in the basin of attraction of (for the deterministic dynamics)

with quasipotential

cost of forcing a path starting in to reach eventually

Remarks
Similar if contains for instance a stable periodic orbit
Conditions exclude characteristic boundary
Uniform-ellipticity condition can be relaxed; requires additional controllability condition
Were , all possible exit points would be equally unlikely
If derives from a potential , :
Quasipotential satisfies for all such that

Arrhenius law: For deriving from a potential,

The average time to leave potential well is twice the barrier height noise intensity
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Diffusion exit from a domain: Main results

Theorem
For all initial conditions and all

First-exit time:

and

First-exit location: For any closed subset satisfying

If has a unique minimum on , then

Remarks
favours exit near boundary points where is minimal

If has multiple minima on : corresponding weights cannot be obtained by large-
deviation techniques
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Diffusion exit from a domain: Idea of the proof

First step
cannot remain in arbitrarily long without hitting a small neighbourhood of :

for all

Restrict to initial conditions in

Second step
Lower bound on probability to leave :

Construct piecewise a continuous exit path connecting , , and some point
at distance from with
Use LDP to estimate probability of remaining in -neighbourhood of exit path

Third step
More lemmas in the same spirit . . . (involving exit locations)

Fourth step
Prove Theorem by considering successive attempts to leave using strong Markov property
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