Blatt 5 - Abgabe bis 15.11.2024

Zusätzliche Aufgaben sind mit * markiert Verwenden Sie das Induktionsprinzip wann immer möglich

30. (Bernoullische Ungleichung) Beweisen Sie, dass für alle reelle x>-1 und $n\in\mathbb{N}$ gilt

$$(1+x)^n \ge 1 + nx.$$

- 31. Beweisen Sie die folgenden Identitäten für alle $n \in \mathbb{N}$.
 - (a) Es gilt

$$\sum_{k=1}^{n} \frac{k}{2^k} = 2 - \frac{n+2}{2^n}.\tag{9}$$

(b) (Summenformel für die geometrische Reihe) Für alle $q \in \mathbb{R} \setminus \{1\}$:

$$\sum_{k=0}^{n} q^k = \frac{q^{n+1} - 1}{q - 1}. (10)$$

(c) Für alle $x, y \in \mathbb{R}$:

$$(x-y)\sum_{k=0}^{n} x^{n-k}y^k = x^{n+1} - y^{n+1}.$$
 (11)

Bemerkung. Für n=1 ergibt (11)

$$(x - y)(x + y) = x^2 - y^2$$

und für n=2

$$(x-y)(x^2 + xy + y^2) = x^3 - y^3.$$

- 32. Eine natürliche Zahl n heißt gerade wenn $n/2 \in \mathbb{N}$, und ungerade wenn $(n+1)/2 \in \mathbb{N}$. Beweisen Sie die folgenden Aussagen.
 - (a) Jede natürliche Zahl n ist entweder gerade oder ungerade. Hinweis. Verwenden Sie Induktion nach n.
 - (b) Das Produkt nm zweier natürlichen Zahlen n, m ist ungerade genau dann wenn die beiden Zahlen n und m ungerade sind.

Hinweis. Die obigen Definitionen der geraden und ungeraden Zahlen ergeben folgendes: für jede gerade Zahl n gilt n=2k für ein $k \in \mathbb{N}$, und für ungerade Zahl n gilt n=2k-1 für ein $k \in \mathbb{N}$.

- 33. Beweisen Sie die folgenden Identitäten für alle $n, m \in \mathbb{N}$ und $a, b \in \mathbb{R}$:
 - (a) $(ab)^n = a^n b^n$
 - (b) $a^{n+m} = a^n a^m$
 - (c) $(a^n)^m = a^{nm}$

34. * Beweisen Sie die Identitäten (a), (b) und (c) von Aufgabe 33 auch für alle $n, m \in \mathbb{Z}$ und $a, b \in \mathbb{R} \setminus \{0\}$.

Hinweis. Benutzen Sie, dass $a^0 = 1$ und für alle $k \in \mathbb{N}$

$$a^{-k} := (a^{-1})^k = (a^k)^{-1}. (12)$$

35. * Beweisen Sie für alle $n \in \mathbb{N}$ die Summenformeln:

(a)
$$\sum_{k=1}^{n} \frac{1}{k(k+1)} = \frac{n}{n+1}$$
.

(b)
$$\sum_{k=1}^{n} k = \frac{n(n+1)}{2}$$

(c)
$$\sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}$$

(d)
$$\sum_{k=1}^{n} k^3 = \left(\frac{n(n+1)}{2}\right)^2$$

36. * Für ganze Zahlen $n \geq k \geq 0$ definieren wir den Binomialkoeffizient $\binom{n}{k}$ durch

$$\binom{n}{k} = \frac{n!}{(n-k)!k!},$$

wobei $n! := \prod_{j=1}^{n} j = 1 \cdot 2 \cdot \dots \cdot n$.

(a) Beweisen Sie die folgende Identität für alle $n \geq k \geq 1$

$$\binom{n}{k} = \frac{\prod_{j=n-k+1}^{n} j}{k!} \qquad \left(= \frac{(n-k+1)(n-k+2)...n}{k!} \right).$$

(b) Beweisen Sie die folgende Identität für alle $n \ge k \ge 1$:

$$\binom{n}{k} + \binom{n}{k-1} = \binom{n+1}{k}.$$

37. * Beweisen Sie die folgenden Identitäten für endliche Summen von reellen Zahlen:

(a)
$$c \sum_{k=1}^{n} a_k = \sum_{k=1}^{n} (ca_k)$$

(b)
$$\sum_{k=1}^{n} a_k + \sum_{k=1}^{n} b_k = \sum_{k=1}^{n} (a_k + b_k)$$

(c)
$$\left(\sum_{k=1}^{n} a_k\right) \left(\sum_{l=1}^{m} b_l\right) = \sum_{k=1}^{n} \left(\sum_{l=1}^{m} a_k b_l\right) = \sum_{l=1}^{m} \left(\sum_{k=1}^{n} a_k b_l\right)$$

(d) Sei $\{a_k\}_{k=m}^n$ eine Folge von reellen Zahlen, wobei $m, n \in \mathbb{Z}$ und m < n. Beweisen Sie die folgende Identität für alle $l \in \mathbb{Z}$ mit $m \le l < n$:

$$\sum_{k=-m}^{l} a_k + \sum_{k=l+1}^{n} a_k = \sum_{k=-m}^{n} a_k.$$
 (13)

Hinweis. Fixieren Sie m und l mit $l \ge m$ und beweisen (13) für alle n > l per Induktion nach n.