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1 Real numbers

1.1 Axioms of real numbers and their immediate consequences

SetR is called the set of real numbers and its elements are called real numbers ( )
if the following axioms are satisfied:

Axiom 1.1 (Axioms of addition) For any two elements   ∈ R the expression +  is

defined as a real number with the following properties:

1. (Neutral element) There exists a zero element 0 ∈ R such that

+ 0 = 0 +  =  for any  ∈ R

2. (Negative element) For any  ∈ R there exists− ∈ R such that

+ (−) = (−) +  = 0

3. (Associative law - ) For all    ∈ R,

(+ ) +  = + ( + ) 

4. (Commutative law - ) For all   ∈ R,

+  =  + 

Axiom 1.2 (Axioms of multiplication) For any two elements   ∈ R the expression  ·
(or just ) is defined as a real number with the following properties:

1. (Neutral element) There exists a unit element 1 ∈ R \ {0} such that

 · 1 = 1 ·  =  for any  ∈ R

2. (The inverse element) For any  ∈ R \ {0} there exists−1 ∈ R such that

 · −1 = −1 ·  = 1

3. (Associative law) For all    ∈ R,

( · ) ·  =  · ( · ) 

4. (Commutative law) For all   ∈ R,

 ·  =  · 

5. (Distributive law - ) For all    ∈ R,

(+ ) ·  =  ·  +  · 
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Any set that satisfies the axioms of addition and multiplication is called a field

(̈), and the two sets of axioms are called the axioms of a field (̈).

Axiom 1.3 (Axioms of order - ) For any two elements   ∈ R the
relation  ≤  is defined, that is, either  ≤  is true or not, with the following properties:

1. (reflexivity)  ≤  for any  ∈ R
2.  ≤  and  ≤  imply  = .

3. (transitivity)  ≤  and  ≤  imply  ≤ 

4. for any two elements   ∈ R, either  ≤  or  ≤  is true.

5. if  ≤  then +  ≤  +  for any  ∈ R
6. if 0 ≤  and 0 ≤  then 0 ≤  · 

The relation  ≤  is spelt out as “ is at most ” or “ is smaller than or equal to

”. Any set with a relation ≤ that satisfies the axioms 1-4 is called an ordered set. The
axioms 5,6 provide the link between the arithmetic operations and the order.

Axiom 1.4 (Axiom of completeness -  ̈) If  are non-empty sub-

sets of R such that  ∈  and  ∈  imply  ≤  then there exists  ∈ R such that

 ≤  ≤  for all  ∈  and  ∈  .

It is useful to represent the real numbers as points on a straight line (although for

a rigorous introduction of geometry one needs the theory of real numbers!). Then the

meaning of the axiom of completeness is that if a set  is on the left of the set  then

there is a point  that separates these two sets. In other words, the straight line contains

no “holes” or “punctures”.

Consequences of the addition axioms.

• Zero element is unique.
Indeed, if 00 is another zero then 00 + 0 must be equal to both 00 and 0 whence

00 = 00 + 0 = 0

• The negative of any  ∈ R is unique.
If  and  are two negatives to  then

 =  + 0 =  + (+ ) = ( + ) +  = 0 +  = 

In particular, it follows that − (−) =  because + (−) = 0 and, hence,  satisfies the
definition of the negative to −. Also, we see that −0 = 0 because 0 + 0 = 0 and, hence,
0 satisfies the definition of the negative to 0.

• The equation +  =  has a unique solution  = + (−) 
Indeed, for this value of , we have

(+ (−)) +  = + ((−) + ) = + 0 = 
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On the other hand, the equation +  =  implies

(+ ) + (−) = + (−)

whence

+ (+ (−)) = + (−)
and  = + (−).
The sum +(−) is denoted shortly −  and is called the difference of  and . The

operation of taking difference is called subtraction.

Consequences of the multiplication axioms.

• The unit element is unique.
• The inverse of any  ∈ R \ {0} is unique.
• The equation  ·  =  has a unique solution  =  · −1 provided  6= 0.
The proofs are the same as for the case of addition and are omitted. The expression

 · −1 is called the quotient of  and  and is denoted by  or 

. The corresponding

operation is called the division.

Consequences of the distributive law.

•  · 0 = 0 ·  = 0 for any  ∈ R
Indeed, we have

 · 0 =  · (0 + 0) =  · 0 +  · 0
which implies that

 · 0 =  · 0−  · 0 = 0
•  ·  = 0 implies  = 0 or  = 0
Indeed, if  6= 0 then solving the equation  ·  = 0 with respect to  we obtain

 = 0 = 0 · −1 = 0
• − = (−1) ·  for any  ∈ R
Indeed,  + (−1) ·  = 1 ·  + (−1) ·  = (1 + (−1)) ·  = 0 ·  = 0 whence it follows

that (−1) ·  is the negative to .
It follows, that − (+ ) = −−  because

− (+ ) = (−1) · (+ ) = (−1) · + (−1) ·  = −− 

• (−1) · (−) = 

Applying the previous claim to −, we obtain

− (−) = (−1) · (−) 

It is clear from the definition of the negative that − (−) = , which finishes the proof.

•  · (−) = −( · ) and (−) · (−) =  · 
We have

 · (−) =  · ((−1) · ) = (−1) · ( · ) = − ( · )
and, applying this to − instead of ,

(−) · (−) = − ((−) · ) = − (− ( · )) =  · 

In particular, we have (−1) · (−1) = 1
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Consequences of the axioms of order.

The relation  ≤  will be equivalently written as  ≥ . If in addition  6=  then we

write    or    (strict inequality).

• If    and  ≤  then   . Similarly, if  ≤  and    then   .

By the transitivity, we have  ≤ . Let us show that  6= . Assuming from the

contrary that  = , we have    and  ≤ , which implies by the axioms of order that

 = , which is impossible by   . The second claim is proved similarly.

• For any two numbers   ∈ R, exactly one of the relations holds:

    =    

If  =  then only the middle relation holds. Assume  6= . By the axioms of order,

we have either  ≤  or  ≥  which implies    or   . If these two relations

hold simultaneously then by the axiom we have  = . Hence, exactly one of these two

relations holds.

•  ≤  and  ≤  imply +  ≤ + .

By the order axiom, we have

+  ≤ + 

and

+  ≤ + 

Combining these together, we obtain +  ≤ + .

• The following inequalities are equivalent:

   ⇔  −   0 ⇔ −  − 

It suffices to prove the three implications:

   ⇒  −   0 ⇒ −  − ⇒    (1.1)

If    then adding to the both sides (−) we obtain 0  − . If the latter holds then

adding to the both sides (−) we obtain −  −. Hence, the first two implications in
(1.1) give us that

   ⇒ −  −
Changing here − to  and − to , we obtain

−  − ⇒   

which is exactly the last implication in (1.1).

A number  ∈ R is called positive if   0 and negative if   0. Applying (1.1) with

 = 0 we obtain that  is negative if and only if − is positive. Similarly,  is positive if
and only if − is negative.
• If  and  are both positive or negative then  ·  is positive (in particular,  ·   0

provided  6= 0). If one of   is positive and the other is negative then  ·  is negative.
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If    0 then, by the axiom, we have  ·  ≥ 0. If  ·  = 0 then one of   must be
0, which is impossible. Hence,  ·   0 If    0 then −− are positive, and

 ·  = (−) · (−)  0

If   0 and   0 then −  0 and

− ( · ) =  · (−)  0

which implies that  ·   0.
• 1  0 and (−1)  0
Since by the axiom 1 6= 0 and 1 = 1 ·1, and by the previous claim 1 ·1  0, we conclude

1  0. It follows that (−1)  0.
• Let   . If   0 then  ·    · . If   0 then  ·    · .
Note that    implies  −   0. Therefore,

 ·  −  ·  =  · ( − )  0

which implies the claim in the case   0. The case   0 is treated similarly.

• If   0 then −1  0. If     0 then −1  −1.
Indeed, if −1  0 then

1 =  · −1  0
which contradicts 1  0. To prove the second claim, observe that    implies

−1 ·   −1 ·  = 1

and

−1 = −1 · ¡ · −1¢ = ¡−1 · ¢ · −1  1 · −1 = −1

which was to be proved.

Consequences of the axiom of completeness.

Let  be a non-empty subset of R. A real number  is called an upper bound for  if
 ≤  for any  ∈ . Similarly,  is a lower bound of  if  ≥  for any  ∈ .

Definition. The supremum sup of a set  ⊂ R is the smallest upper bound of . The
infimum of a set  ⊂ R is the largest lower bound of .
Clearly, for any  ∈  we have

inf  ≤  ≤ sup

A number  ∈  is called the maximum of  if  ∈  and  ≤  for any  ∈ . If the

maximum of  exists then it is denoted by max. In this case, we have max = sup.

Indeed, max is an upper bound for . If   max then  cannot be an upper bound

because max ∈  which means, that max is the smallest upper bound.

Similarly one defines the minimummin. If it exists then it coincides with the infimum

of . However, in general sup and inf  exist under milder conditions than max and

min, as we’ll see below.

A set  is called bounded from above if it has an upper bound, and bounded from below

if it has a lower bound.
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Theorem 1.1 Any non-empty subset  ⊂ R bounded from above has the supremum.

Similarly, any non-empty subset  ⊂ R bounded from below has the infimum.

Proof. Denote by  the set of upper bounds for . Since  is bounded, the set 

is not empty. For any  ∈  and  ∈  , we have by construction  ≤ . Hence, by the

completeness axiom, there exists  ∈ R that separates  and  , that is,  ≤  ≤  for all

 ∈  and  ∈  . This means that

•  is an upper bound for  and, hence,  ∈  ;

•  is the smallest number in  .

Hence,  is the smallest upper bound of , that is, the supremum of , which proves

the existence of sup. The infimum is handled in the same way.

For any two reals   , define the following intervals:

( ) = { ∈ R :     } open

( ] = { ∈ R :    ≤ } semi-open from left

[ ) = { ∈ R :  ≤   } semi-open from right

[ ] = { ∈ R :  ≤  ≤ } closed.

Proposition 1.2 Let  be any of these intervals. Then  is non-empty, inf  = , and

sup = .

Remark. It is easy to show that the set  = ( ) has neither maximum nor minimum.

Indeed, it max exists then max = sup =  whereas  ∈  and, hence,  cannot be

the maximum of .

Proof. Note that 2 := 1 + 1  1 because 1  0. Then 0  2−1  1−1, which can
be written as 1

2
∈ (0 1). More generally, let us show that  := 1

2
(+ ) belongs to ( )

(which will prove, in particular, that  6= ∅). Indeed, we have +    +  = 2, which

implies 1
2
(+ )  , that is   . Similarly, one proves that   .

Set  = inf  and prove that  = . Clearly,  is a lower bound for , whence  ≥ .

Assume that    and bring this assumption to contradiction. Since  is a lower bound

for  and  ∈ , we have  ≤ , which implies    and, hence, ( ) ⊂ ( )  Set
 = 1

2
(+ ) and note that, by the above argument,

 ∈ ( ) ⊂ ( ) ⊂ 

which implies  ≥ inf  = . We have obtained a contradiction with the condition   ,

which finishes the proof.

By Theorem 1.1, sup is defined for any bounded from above non-empty set of reals.

Let us define sup for all sets  ⊂ R using the notations +∞ and −∞ for the positive

and negative infinity. These are additional ideal points with the properties that +∞ is

larger than any real, and −∞ is smaller than any real. The set R ∪ {+∞−∞} is called
the extended real line and is denoted by R, and its elements are called extended reals.
If  is non-empty but unbounded from above then define sup by

sup = +∞
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If  is empty then set sup = −∞. Similarly, if  is non-empty and unbounded from
below then set inf  = −∞. If  is empty then set inf  = +∞

Theorem 1.1 and the above conventions imply the following.

Corollary. Any subset of R has the supremum and the infimum with values in R.

The notion of an interval is easily extended to the case when   ∈ R to include +∞
and −∞. For example, if  ∈ R then [+∞) denotes the set of all  ∈ R such that
 ≥ , and (+∞) is the set of  ∈ R such that   . The statement of Proposition

1.2 remains true in this case as well.

1.2 Natural numbers and mathematical induction

The purpose of this section is to introduce the notion of a natural number (̈

). We expect that the set N of natural numbers is a subsets of R and should satisfy
the following properties:

• 1 ∈ N
• if  ∈ N then also + 1 ∈ N.

However, these two properties are still not enough to specify N — for example, the full
set R also satisfies these properties. In order to give a complete definition of N, let us
introduce the following notion.

Definition. A set  ⊂ R is called inductive if  ∈  implies + 1 ∈ .

For example, the set R itself is inductive. Also, intervals of the form (+∞) and
[+∞) are inductive sets, whereas any bounded interval is not inductive.
Definition. The set N of natural numbers is the intersection of all inductive sets con-
taining 1.

Theorem 1.3 The set N is the smallest inductive set containing 1.

Proof. Denote by F the family of all inductive sets containing 1. Then the statement
of Theorem 1.3 contains two claims:

• N ∈ F (that is, N is an inductive set containing 1),

• N is the smallest set in F , that is, N ⊂  for any  ∈ F .

The family F is non-empty, for example, R ∈ F . By definition, we have

N =
\
∈F

 (1.2)

Since each  ∈ F contains 1, it follows that N also contains 1. Since each  is inductive,

we have

 ∈ N =⇒  ∈  (∀ ∈ F) =⇒ + 1 ∈  =⇒ + 1 ∈ N
that is, N is inductive. Hence, N ∈ F . By (1.2) we have N ⊂  for any  ∈ F , which
finishes the proof.
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For example, the interval [1+∞) is an inductive set and contains 1, which implies
N ⊂ [1+∞) Hence, 1 is the smallest natural number. Since N contains 1, it must contain
also 2 = 1 + 1 then it must contain 3 = 2 + 1 etc.

Suppose that we need to prove a statement  () () depending on a natural

parameter . Theorem 1.3 provides the following method of proving  () for all  ∈ N,
which consists of two steps:

(1) prove that  (1) is true,

(2) prove that if  () is true then  (+ 1) is also true.

These two conditions imply that  () is true for all  ∈ N. Indeed, let  be the set
of those , for which  () is true. Then, by step 1,  contains 1 and, by step 2,  is

inductive. Hence, by Theorem 1.3,  contains all N, which means that  () holds for all
 ∈ N.
This method of the proof is called themathematical induction ( ̈ ).

The step 1 is called the inductive basis (), and the step 2 is called the

inductive step (). The assumption  () in the inductive step is called

the inductive hypothesis ().

Let us illustrate this method in the proof of the following theorem.

Theorem 1.4 () The sum  + and the product  of two natural numbers  are

again natural numbers.

() If  are two natural numbers and    then − ∈ N.

Proof. () Let us prove that + ∈ N using induction in .

• Inductive basis. If  = 1 then 1 + ∈ N because  ∈ N and N is an inductive set.
• Inductive step. The inductive hypothesis  () is as follows: if  ∈ N then + ∈
N. Assuming that  () holds for some , let us prove  (+ 1), that is,  ∈ N
implies (+ 1) + ∈ N. Indeed, we have the identity

(+ 1) + = (+) + 1

By the inductive hypothesis we have + ∈ N, and by Theorem 1.3 we conclude

that (+) + 1 ∈ N.

Let us now prove that  ∈ N using again induction in .

• Inductive basis. If  = 1 then  =  ∈ N.
• Inductive step. If it is already known that  ∈ N then

(+ 1) = + ∈ N

since both numbers  and  are natural, and we have already proved that the

sum of natural numbers is natural.
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() Let us prove the claim by induction in . The inductive basis is stated as follows:

if  ∈ N,   1, then − 1 ∈ N. It suffices to prove that the set

 = { ∈ N :  = 1 or − 1 ∈ N}

contains N. Clearly,  contains 1. If  ∈  then  ∈ N and, hence,  + 1 ∈ N. Since
(+ 1) − 1 =  ∈ N, we conclude that  + 1 ∈ , which implies that  is an inductive

set. By Theorem 1.3,  contains N. 1

The inductive step. The inductive hypothesis  () is as follows: if  ∈ N and   

then − ∈ N. Assuming that  () holds for some , let us prove  (+ 1), that is,
if   +1 then − (+ 1) ∈ N. Using the properties of addition and subtraction, one
easily proves that

− (+ 1) = (−)− 1
We have   , which implies by the inductive hypothesis that  −  ∈ N. Since
 −  1, by the inductive basis we conclude that (−) − 1 ∈ N, which was to be
proved.

Denote by Z the union of {0}, N, and the negatives of N, which can be written as
follows:

Z := {0} ∪N ∩ (−N) 
The elements of Z are called integers ( ) and Z is called the set of integers.
Obviously, a positive integer is the same as a natural number.

Corollary. If   ∈ Z then also + , − ,  belong to Z.

Proof. If  = 0 or  = 0 then the claims are trivial. Otherwise, there are natural

numbers  such that  =  or  = − and  =  or  = −. Considering various
cases and using Theorem 1.4, we obtain the claim. For example, in the case  =  and

 = − we have  +  =  − . If  =  then  +  = 0 ∈ Z, if    then

 +  ∈ N by Theorem 1.4, and if    then by Theorem 1.4  −  ∈ N and, hence,
− = − (− ) ∈ Z.
Corollary. If   ∈ Z then the condition    is equivalent to  ≥  + 1

Proof. Indeed,    implies that  −   0. Since  −  is an integer, this means

that  −  ∈ N. Since 1 is the smallest natural number, it follows that  −  ≥ 1 and,
hence,  ≥  + 1. The opposite implication is obvious:  ≥  + 1 implies    because

 + 1  .

Claim (Extension of the principle of mathematical induction) Let 0 be an integer and

 () be a statement that depends on an integer parameter  ≥ 0. If  (0) is true and

 () implies  (+ 1) for any  ≥ 0 then  () is true for all  ≥ 0.

(See Problem no.8).

1Alternatively, this argument can be stated as a proof by induction in . Namely, let us prove that,

for any  ∈ N,
either  = 1 or − 1 ∈ N (∗)

Inductive basis: if  = 1 then (∗) is trivially satisfied.
Inductive step: assuming that a number  ∈ N satisfies (∗), let us prove that + 1 does too. Indeed,

we have + 1 ∈ N and (+ 1)− 1 =  ∈ N, which means that + 1 satisfies (∗)
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1.3 Finite sequences and finite sets

For any two integers  ≤ , denote by { } the set of all integers  such that
 ≤  ≤ .

Definition. A finite sequence ( ) {}= is a mapping ()  :
{ }→ R with notation  () = .

The sum
P

=  of a finite sequence {}= can be defined by induction in  as

follows:

• if  =  then
P

=  = .

• ifP

=  is already defined then set

+1X
=

 =

Ã
X
=



!
+ +1 (1.3)

By the principle of mathematical induction, we conclude that the sum
P

=  is

defined for all integers  ≥ . Frequently we use a less formal notation

X
=

 =  + +1 + + 

Similarly, one defines the product

Y
=

 =  ·  · 

In particular, when all  =  then we obtain the  of :

 =

Y
=1

 =  ·  ·  · | {z }
 times



for any  ∈ N. Equivalently, the powers  can be defined inductively by 1 =  and

+1 =  · . Using induction, one easily proves the following identities:

 ·  = + and ()

= · (1.4)

If  6= 0 then the powers  are defined also for non-positive integers  as follows: 0 := 1
and, for a negative integer , set  := (−1)−. The identities (1.4) remain true for all
integers .

The next statement plays an important role in the study of finite sets.

Theorem 1.5 Let  be a non-empty subset of Z. If  is bounded from above then max
exists. If  is bounded from below then min exists. In particular, if  ⊂ N then min
always exists.
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Proof. Let  be bounded from above. Then, by Theorem 1.1, sup exists. Set

 = sup. By definition,  is the smallest upper bound for  Let us prove that  ∈ ,

which will imply  = max. Assume from the contrary that  ∈ . Since − 1 is not an
upper bound for , there exists  ∈  such that   − 1. Since  is an upper bound for
, we have also  ≤ . Since  ∈  and  ∈ ,  6=  and, hence,   . Hence, we have

 ∈ (− 1 ). Similarly, there exists  ∈  such that  ∈ ( ). The numbers  and  are

both in  and, hence,  and  are integers. Since −   0, −  is a positive integer and,

hence,  −  ≥ 1, whereas by construction  −    − (− 1) = 1. This contradiction
finishes the proof. The case of inf  is treated in the same way.

Theorem 1.6 (The Archimedes principle) For any real  there exists a unique integer 

such that  ≤   + 1.

Such a number  is called the integer part of  and is denoted by []. For example,£
1
2

¤
= 0 and

£−1
2

¤
= −1.

Proof. Fix  ∈ R and consider the set
 = { ∈ Z :   } 

Let us first show that this set is non-empty. Assuming the contrary we obtain that  is

an upper bound for Z. Hence, Z is bounded from above and, by Theorem 1.5, Z has the
maximum, say . But then +1 is also an integer and must be in Z, which contradicts
to + 1  maxZ.
Since the set  is non-empty and is bounded from below, we obtain by Theorem 1.5

that  has the minimum; let  = min. Then consider  = −1. By construction,  ∈ ,

which implies  ≤ . On the other hand, + 1 =  ∈ , that is, + 1  . Hence, this 

satisfies the required conditions

 ≤   + 1

Assume that there is another integer 0 also satisfying

0 ≤   0 + 1

The comparison the two lines shows that 0  +1 and, hence, 0 ≤ . In the same way

 ≤ 0, which implies  = 0.
Let  be two arbitrary sets and  :  →  be a mapping () from 

to  , that is, a rule that associates to any element  ∈  an element  ∈  , which is

denoted by  (). The element  =  () is called the image () of , and  is called

a preimage or inverse image () of . A mapping  :  →  is called injective if

every point  ∈  has at most one preimage (that is, different points in  have different

images). A mapping  is called surjective if every point  ∈  has at least one preimage.

Finally,  is called bijective if every  ∈  has exactly one preimage. Equivalently,  is

bijective if  is injective and surjective.

For a bijective mapping  , the inverse mapping −1 :  →  is defined as follows:

−1 () is equal to the unique element  ∈  such that  () = . Clearly, −1 is also a
bijection.

Definition. Two sets  are called equivalent (̈) if there is a bijection

 :  →  .

Notation:  ∼  . The following are simple properties of the equivalence:
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•  ∼ ,

•  ∼  implies  ∼ 

•  ∼  ,  ∼  imply  ∼ 

For example, let us prove the last property. For any two mappings  :  →  and

 :  →  consider the through mapping  :  →  defined by  () =  ( ()) (the

mapping  is called the composition of  and  and is denoted by  ◦ ). If  and  are

bijections then  is also a bijections, whence  ∼ .

For any natural number , denote

 := {1  } = { ∈ N : 1 ≤  ≤ } 

Definition. A set  is called finite if  is either empty or  is equivalent to  for some

 ∈ N.
If  ∼  then one says that the number of elements in  is  or that the cardinality

of  is . This can also be written as follows: card = .

Theorem 1.7 () A subset of a finite set is finite.

() The union of two finite sets is finite.

Proof. () It suffices to prove that any subset of  is finite. Inductive basis: If  = 1

then any subset of 1 = {1} is either 1 or ∅ and there is nothing to prove. Inductive step.
Assuming that any subset of  is finite, let us prove that any subset of +1 is finite.

Consider a subset  ⊂ +1. If  = +1 then there is nothing to prove. Otherwise, there

is  ∈ +1 \ . Without loss of generality, we can assume that  = + 1 so that

 ⊂ +1 \ {+ 1} = 

However, by the inductive hypothesis, any subset of  is finite and, hence,  is finite.

() For any two sets , the union ∪ is a disjoint union of  \,  \, ∩.
By part (), all these sets are finite. Hence, it suffices to prove that the union of two

disjoint finite sets is finite. Hence, let  be two disjoint finite sets, card =  and

card = . Then  ∼  and  ∼ . Consider the set

+  = {+  :  ∈ } 
Obviously, +  ∼  and, hence,  ∼ + . The sets  and +  are disjoint,

which implies that  ∪ is equivalent to the union of  and + . Finally, it is easy

to see that

 ∪ (+ ) = {1 ≤  ≤ } ∪ {+ 1 ≤  ≤ +} = +

which implies that  ∪ ∼ + and  ∪ is finite.

Remark. As it follows from the proof, if  and  are disjoint finite sets then

card ( ∪) = card+ card
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Theorem 1.8 (The Dirichlet principle) Let  be natural numbers and   . Then

there is no injective mapping from  to .

Remark. A folklore version of this theorem is called the pigeonhole principle: if  letters

are put in  pigeonholes and    then there is a pigeonhole with more than 1 letters

in it.

Proof. The condition    means  ≥ + 1 and, hence +1 ⊂ . If a mapping

 :  →  is injective then its restriction  |+1 is also injective. Hence, it suffices
to consider the case  =  + 1. Let us prove by induction in   1 that any mapping

 :  → −1 is not injective.
Inductive basis. The minimal value of  is 2. Consider a mapping  : 2 → 1. Since

1 = {1} and 2 = {1 2}, it follows that  (1) =  (2) = 1 and, hence,  is not injective.

Inductive step. Assuming that the inductive hypothesis is true for some , let us

prove that any mapping  : +1 →  is not injective. Assume from the contrary that

a mapping  : +1 →  is injective. Without loss of generality we can assume that

 (+ 1) = . The injectivity of  implies that, for any  ∈ ,  ()   and, hence,

 () ≤ −1. Let  =  | be the restriction of  to . Then the image of  lies in −1
so that we can consider  as a mapping from  to −1. By the inductive hypothesis, 
is not injective, which clearly contradicts the injectivity of  .

Corollary. If  6=  then  and  are not equivalent.

Proof. Assume that   . If  ∼  then there is a bijection  :  → . But

then  is an injection, which contradicts Theorem 1.8.

Hence, a set  may be equivalent to at most one of the sets , which makes the

notion card well-defined.

1.4 Some consequences of the completeness axiom

Definition. An infinite sequence {}∞=1 is a mapping  : N → R with the notation
 () = . More generally, if  is an integer then an infinite sequence {}∞= is a
mapping  : { ∈ Z :  ≥ }→ R.

Similarly one defines sequences of elements from a set  rather than numbers - just

replace in the above definition R by . In particular, consider a sequence of bounded

intervals {}∞=1, that is,  is one of the intervals of the form ( ), [ ), ( ]

[ ] where   ∈ R,   . We say that the sequence {}∞=1 is nested if +1 ⊂ 
for any  ≥ 1. In this case, we have  ≤ +1 and +1 ≤ .

Theorem 1.9 (The principle of nested intervals / the Cauchy-Cantor lemma) Let {}∞=1
be a nested sequence of closed bounded intervals in R. Then the intervals {}∞=1 have a
common point (that is, there exists a point  such that  ∈  for all ).

Remark. It is essential that the intervals are closed. Indeed, consider the following

nested sequence of semi-open intervals:  = (0
1

]. We claim that these intervals have

empty intersection. Indeed, if  ∈  for all  ∈ N then 0    1

and, hence, −1 ≥ .

However, this contradicts the Archimedes principle. Similarly, the boundedness of the

intervals is essential: the unbounded intervals (−∞−] have no common point.
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Proof. Let us use the above notation for the intervals. The condition  ≤ +1
implies by induction that  ≤  whenever  ≤  (use induction in ). Similarly, the

condition +1 ≤  implies that  ≤  whenever  ≥ . Let us show that    for any

pair of natural numbers  . Indeed, if  ≤  then

 ≤   

and if    then

   ≤ 

so that in the both cases we have   .

Let  be the set of all numbers  and  - the set of all numbers . Then  ∈  and

 ∈  imply  ≤ . By the axiom of completeness we conclude that there is a point  ∈ R
such that  ≤  ≤  for all  ∈  and  ∈ . This exactly means that  ∈ [ ] for all
.

In the next statement we’ll consider a family {}∈ of intervals parametrized by an
index  that may vary in an arbitrary index set . This means that  is a mapping from

the set  to the set of all intervals, and  () is denoted by . If  ⊂  then the family

{}∈ is called a subfamily of {}∈. The subfamily {}∈ is finite if the set  is
finite.

Theorem 1.10 (The compactness principle / the Borel-Lebesgue lemma) Let a bounded

closed interval [ ] be covered by a family {}∈ of open intervals, where  is an

arbitrary index set. Then there exists a finite subfamily {}∈ that also covers [ ].

Remark. This property of the interval [ ] is called compactness. In more details

this notion will be studied in Analysis 2. It is essential that the interval [ ] is closed

and bounded. For example, consider a semi-open interval (0 1] and the following open

intervals  = (
1

 2) Then the family {}∞=1 covers (0 1] while no finite subfamily does.

Indeed, let  be a finite set of indices  and let us show that
S

∈  does not cover (0 1]
The finiteness of  implies that  is bounded as a subset of R (see Exercise 14) Let  be

an upper bound for  . Then  ≤  for all  ∈  , which implies 1

≥ 1


. Hence, 1


∈ .

However, 1

∈ (0 1] which means that the finite family {}∈ does not cover (0 1].

Proof. Assume from the contrary that no finite subfamily of {}∈ covers [ ].
Set  = +

2
and consider two intervals [ ] and [ ]. If both of them can be covered

by finite subfamilies of {}∈ then so can be the union (since the union of finite sets
is finite by Theorem 1.7). Therefore, one of these intervals cannot be covered by a finite

subfamily of {}∈. Denote this interval by [1 1]. Considering now 1 =
1+1
2

we

obtain that one of the intervals [1 1] and [1 1] cannot be covered by a finite subfamily

of {}∈; denote this interval by [2 2], etc. More precisely, we construct a nested
sequence {[ ]}∞=0 of intervals such that each [ ] cannot be covered by a finite
subfamily of {}∈. Namely, define the sequence by induction in  as follows.

• Inductive basis for  = 0. Set 0 =  and 0 = .

• Inductive step. If [ ] is already constructed for some  then construct [+1 +1]
as follows. Set  =

+
2
. Then one of the intervals [ ], [ ] cannot be

covered by a finite subfamily of {}∈. Choose this interval and denote it by
[+1 +1]
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By the principle of mathematical induction, [ ] is defined for all non-negative

integers . By construction, the sequence {[ ]}∞=0 is nested. By Theorem 1.9, there

is a common point  for all intervals [ ]. Since  ∈ [ ], the point  belongs to some
interval  = ( ) so that     . We claim that there exists  ∈ N such that

[ ] ⊂ ( )  (1.5)

which will be a contradiction to the assumption that [ ] cannot be covered by a finite

subfamily of {}∈. By construction we have

+1 − +1 =
 − 

2


which implies by induction that

 −  =
− 

2


We need to find  large enough to satisfy (1.5). For that we use the following version of

the Archimedes principle (Theorem 1.6):

Claim If  are positive numbers then there exists a natural number  such that 

 .

Indeed, by Theorem 1.6 there is  ∈ N such that   

, which is equivalent to 


 .

Let  be the smallest of the numbers −  and −. Since     , the number 

is positive. Applying the above claim with  = − , we conclude that there exists  ∈ N
such that −


 . By Bernoulli’s inequality (see Exercise 9), we have

2 ≥ 1 +   

which implies

 −  =
− 

2


− 


 

Using  −    and  ≤ − , we obtain

 = ( − ) +  ≤ ( − ) +   + (−) = 

and using  ≤ − , we obtain

 = − (− ) ≥ − ( − )  (+ )− ≥ 

Hence, we have proved that       , whence (1.5) follows.

1.5 Numeral systems

For the next theorem, we need the following modification of the principle of the mathe-

matical induction.

Claim Let  () be a statement depending on the natural parameter . Assume that the

following two conditions take place:

• (Inductive basis)  (1) is true
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• (Inductive step) For any  ∈ N, if  () is true for all  ∈ {1  } then also
 (+ 1) is true.

Then  () is true for all  ∈ N.
Proof. Let  () be the statement that  () is true for all  ∈ {1  }. Let us

prove by induction that  () holds for all  ∈ N, which of course implies that also  ()
holds.

Inductive basis.  (1) is true because  (1) is equivalent to  (1).

Inductive step. Assuming that  () holds for some  let us prove that  (+ 1)

holds. Indeed,  () means that  () is true for all  ∈ {1  }. By the hypothesis,
this implies that  (+ 1) also true. Hence,  () is true for all  ∈ {1  + 1}, which
means hat  (+ 1) is true.

Theorem 1.11 Let   1 be a natural number. For any  ∈ N, there exists a unique
non-negative integer  and a unique sequence {}=0 of integers such that 0 ≤   ,

 6= 0 and
 =

X
=0


 = 

 + −1
−1 + + 1 + 0 (1.6)

The identity (1.6) is called the representation of  in the -ic numeral system (= the

positional system with the base ). The familiar symbolic way of writing down the identity

(1.6) is as follows:

 = −10

(do not mix up with the product). Each number  in this context is called a digit

( ). The number  is called the order of .

Most frequently used positional systems are the decimal system (with base  = ten ),

the binary system (with base  = 2), and the hexadecimal system (with base  = sixteen).

The binary system is remarkable by the simplicity of operations with the digits since there

are only two digits: 0 and 1. The numbers 1 2 3 4 5 6 7 8 9 look in the binary system

as follows:

1 10 11 100 101 110 111 1000 1001

In the hexadecimal system, alongside the usual digits 0 1  9 one uses the digits 

to represent the numbers from ten to fifteen. For example, the number  in the hexadec-

imal system is equal to

 =  ·  + | {z }
hex

= 15 · 16 + 15 = 255| {z }
decimal



Proof of Theorem 1.11. Let us prove the statement by induction in  using the

above modification of the principle of the mathematical induction.

Inductive basis. If  = 1 then (1.6) holds with  = 0 and 0 = 1. Moreover, with

any other choice of  and  the right hand side of (1.6) is larger than 1 so that the

representation of 1 in the -ic system is unique.

Inductive step. Assume that any natural number    admits a unique representation

in -ic system and prove the same for  Set  =
h



i
, that is,  is the integer part of 


.

This means, that  is the unique integer such that

 ≤ 


  + 1 (1.7)
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Obviously,  ≥ 0. Set  = − . Obviously,  is an integer and

 =  +  (1.8)

It follows from (1.7) that 0 ≤   , that is,  is a -ic digit. If  = 0 then   

and the -ic representation of  is given by  = 0 and 0 = . Assume   0. Then

 ∈ {1  − 1} and, by the inductive hypothesis,  can be represented in -ic system,

say, as follows

 = 
 + + 0

Then by (1.8)

 = 
+1 + + 0 + 

which is a -ic representation of  because  and all  are -ic digits.

Now let us prove the uniqueness of the representation of  in the form (1.6). Observe

that

 = 
 + + 11 + 0 = 

¡


−1 + + 1
¢
+ 0 =  + 0

where

 = 
−1 + + 1 (1.9)

Dividing the identity  =  + 0 by  and using 0 ≤ 0  , we obtain

 ≤ 


  + 1

By Theorem 1.6,  is uniquely determined by these conditions (and  =
h



i
). Therefore,

0 =  −  is also uniquely determined. Since   , the representation (1.9) of  in

the -ic system is unique by the inductive hypothesis, which implies that all the digits

1   are uniquely determined. Hence, all the digits 0   are uniquely determined,

which finishes the proof.

Now we consider the representation in the -i system of real numbers. Consider first

an infinite sequence {}∞=1 of -ic digits (that is, integers between 0 and  − 1) and the
infinite sum ∞X

=1


− = 1

−1 + 2
−2 +   (1.10)

so far as a formal expression. The expression
P∞

=1 
− is called a series ( ).

The purpose of the next statement is to define the notion of the sum of the series2.

Lemma 1.12 For any sequence {}∞=1 of -ic digits, there exists a unique  ∈ R such
that

X
=1


− ≤  ≤

X
=1


− + − (1.11)

for any  ∈ N. Moreover,  ∈ [0 1] 
2Later in this course the sum of a series will be defined for a more general series than (1.10).
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Definition. The unique number  satisfying (1.11) is called the sum of the series (1.10),

and one writes

 =

∞X
=1


−

The sum
P

=1 
− is called the -th partial sum of the series (1.10). The inequality

(1.11) means that the -th partial sum can be considered as an approximation to the sum

of the series with error at most −.

A series of the form (1.10) is also called an (infinite) -i fraction. Hence, any -i

fraction represents a real number  ∈ [0 1]. The usual symbolic way of writing down a
-i fraction is as follows:

0 123

(or using ‘’ after 0 instead of ‘’).

Proof of Lemma 1.12. Set

 =

X
=1


−

and

 =

X
=1


− + − =  + −

Let us show that the sequence of intervals [ ] is nested. It is obvious that   
and +1 ≥ . We only need to prove that +1 ≤ . Indeed, using +1 ≤  − 1, we
obtain

+1 =

+1X
=1


− + −(+1)

=

X
=1


− + +1

−(+1) + −(+1)

=
¡
 − −

¢
+ (+1 + 1) 

−(+1)

≤  − − +  · −(+1)
= 

By the principle of the nested intervals (Theorem 1.9), we conclude the existence of a

common point for all intervals [ ].

Assume that there exists two distinct common points  and 0, and let   0. Consider
the difference  := −0  0. The assumption that both  and 0 belong to [ ] implies
that, for any  ∈ N,

 ≤  −  = − ≤ 2−  1




On the other hand, by the Archimedes principle, there exists  ∈ N such that 1

 . This

contradiction finishes the proof of the uniqueness.

For the proof of the fact that  ∈ [0 1] see Exercise 17.
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Example. Setting  = 1 for all  ∈ N, we obtain the series
∞X
=1

− = −1 + −2 +  (1.12)

which is called the infinite geometric series. Let us prove that the sum of the infinite

geometric series is given by the formula

∞X
=1

− =
1

 − 1  (1.13)

that is,

0 111| {z }
−ic

=
1

 − 1 

Recall that, by Exercise 10, the following identity holds for any real  6= 1:

1 +  + 2 + +  =
+1 − 1
 − 1 

Setting  = −1 and using the notation ,  as in the above proof, we obtain, for any

 ∈ N,
 = −1 + −2 + + −

=
−(+1) − 1
−1 − 1 − 1 = −(+1) − −1

−1 − 1
=

−1 (− − 1)
−1 (1− )

=
1− −

 − 1 
1

 − 1
and

 =  + − =
1− −

 − 1 + −

=
1− 2− + −(−1)

 − 1 ≥ 1

 − 1
where in the last line we have used  ≥ 2 and

1− 2− + −(−1) ≥ 1− − + −(−1) = 1

Hence, 1
−1 ∈ [ ], which was to be proved.

Example. Let us give an example showing that the representation of a number  as a

-ic fraction may be not unique. Indeed, if 1 = 0 and  =  − 1 for all  ≥ 2 then by
(1.13)

 = 0 0 ( − 1) ( − 1) | {z }
−ic

= ( − 1) −2 + ( − 1) −3 + 

= −1 ( − 1) ¡−1 + −2 + 
¢

= −1

= 0 100| {z }
−ic
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Hence, this number  has two representations as an infinite -ic fraction.

To provide a unique representation of  in the form of a -ic fraction, one needs to

put an additional restriction on .

Definition. A -i fraction 0 123 is called proper if    − 1 occurs infinitely
often3.

Theorem 1.13 Let   1 be a natural number. For any  ∈ [0 1), there exists a unique
representation of  as a proper -ic fraction.

Let us use Theorems 1.11 and 1.13 to represent any non-negative real number  in the

-ic system. Any  ≥ 0 can be uniquely represented in the form  =  +  where  is a

non-negative integer and  ∈ [0 1) (indeed,  is the integer part of  and  is the fractional
part of  defined by  =  − ). If  = 0 then  ∈ [0 1) and its -ic representation is
given by Theorem 1.13. Assume   0. Then, by Theorem 1.11,  can be represented in

the form

 =

X
=0


 = −10| {z }

−ic

where  are -ic digits and  6= 0. By Theorem 1.13,  can be represented in the form

 =

∞X
=1


− = 0 123| {z }

−ic



where  are -ic digits. Hence, we obtain the following representation of  in the -ic

system

 =

X
=0


 +

∞X
=1


−

which is symbolically written in the form

 = −10 123| {z }
−ic



The expression −10 123 (where  and  are -ic digits) is called a -ic numeral
(or a -ic number). Hence, any non-negative real number can be represented by a -ic

numeral.

Proof of Theorem 1.13. By definition, the identity  = 0 12 means that, for

any  ∈ N,
X

=1


− ≤  ≤

X
=1


− + − (1.14)

Also, the fraction0 12 is proper if the following set

 = { ∈ N :    − 1}
3That is, the set

{ ∈ N :    − 1}
is infinite.
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is infinite (recall that 0 ≤  ≤  − 1).
Let us first prove the following property of the properness.

Claim A -ic fraction  = 0 12 is proper if and only if, for any  ∈ N,
X

=1


− ≤  

X
=1


− + − (1.15)

The distinction between (1.14) and (1.15) is that the right inequality in (1.15) is strict4.

Let us prove that if (1.15) holds then the fraction 0 12 is proper. Assume from

the contrary, that the fraction 0 12 is not proper and prove that the right inequality

in (1.15) fails for some . The fact that the fraction is not proper means that the set 

is finite and, hence, has an upper bound (see Exercise 14). This means that there exists

 ∈ N such that  =  − 1 for all  ≥ . Setting

 =

−1X
=1


−

we obtain

 =

∞X
=1


− =

−1X
=1


− +

∞X
=


−

=  +

∞X
=

( − 1) −

=  + ( − 1) −(−1) ¡−1 + −2 + 
¢

=  + ( − 1) −(−1) 1

 − 1
=  + −(−1)

where we have used the formula (1.13) for the sum of the infinite geometric series.

On the other hand, using  =  − 1, we obtain
X

=1


− + − =

−1X
=1


− + 

− + −

=  + ( + 1) 
−

=  + −(−1)

4For example, consider in the decimal system the fraction

 = 0 19999

For any  ≥ 2, the right hand side of (1.15) is equal to

0 1999| {z }


+ 10− = 0 2 = 

Hence, the right inequality in (1.15) fails.
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whence

 =

X
=1


− + −

which means that the strict inequality in (1.15) does not take place.

Assuming now that the fraction 0 12 is proper, let us prove that (1.15) holds for

any  ∈ N. We need only to prove that, for any  ∈ N

 

X
=1


− + −

By definition of a proper fraction, the set

 := { ∈ N :    − 1}
is infinite, which implies that it has no upper bound (see Exercise 14). Hence, for any

 ∈ N there exists    such that  ∈ , that is,    − 1. Applying (1.14) with 

replaced by , we obtain

 ≤
X
=1


− + −

=

X
=1


− +

X
=+1


− + −



X
=1


− + ( − 1)

X
=+1

− + −

where we have applied  ≤  − 1 and    − 1. Using the formula

1 +  + 2 + + −1 =
 − 1
 − 1 =

1− 

1− 

for the sum of a finite geometric series (see Exercise 10), we obtain

X
=+1

− = −(+1) + −(+2) + + −

= −(+1)
¡
1 + −1 + + −(−−1)

¢
= −(+1)

1− −(−)

1− −1

= −(+1)
1− −(−)

 − 1 =
− − −

 − 1 

whence

 

X
=1


− + ( − 1) 

− − −

 − 1 + −

=

X
=1


− + −
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which was to be proved.

In the view of the above Claim, Theorem 1.13 can be restated as follows: for any

 ∈ [0 1) there is a unique sequence {}∞=1 of -ic digits such that (1.15) holds for all
 ∈ N. Let us construct  by induction in .

Inductive basis for  = 1. The relations (1.15) for  = 1 look as follows:

1
−1 ≤   1

−1 + −1 (1.16)

which is equivalent to

1 ≤   1 + 1 (1.17)

By the Archimedes principle (see Theorem 1.6), such integer 1 exists and is unique; in

fact, (1.17) means that 1 = [], which is the integer part of . In particular, 1 is

uniquely defined. Let us show that 1 is a digit. Indeed, the hypothesis 0 ≤   1 implies

0 ≤    and, hence, 0 ≤ []  , which means that 1 = [] is a -ic digit.

Inductive step. Assuming that 1   are already defined, let us show that there

exists a unique digit +1 such that

+1X
=1


− ≤  

+1X
=1


− + −(+1) (1.18)

Setting  =
P

=1 
−, let us rewrite (1.18) in the form

 + +1
−(+1) ≤    + +1

−(+1) + −(+1)

or

+1 ≤ +1 (− )  +1 + 1

which is equivalent to

+1 =
£
+1 (− )

¤


In particular, +1 is unique. Let us show that +1 defined by this formula, is a -ic

digit, that is 0 ≤ +1  . Indeed, by the inductive hypothesis (1.15), we have

 ≤    + −

which implies

0 ≤ −   −

0 ≤ +1 (− )  

0 ≤ £
+1 (− )

¤
 

which was to be proved.

Remark. A positional numeral system can be used to prove the existence of a set R
satisfying the axioms of real numbers. For example, one can define non-negative real

numbers as binary numerals

−10 12 

where each ,  is a binary digit, that is, 0 or 1. Then one defines addition, multipli-

cation, and the order of binary numerals using operations with the digits, and proves all

the axioms of reals. However, the proofs are quite long and technical, and will not be

considered here.
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1.6 Cardinal numbers

The purpose of this section is to introduce the tools that will allow to compare two sets in

order to determine which set is “larger”. Recall the equivalence relation between arbitrary

sets:  ∼  if there is a bijection between  and  .

Definition. The family of all sets that are equivalent to  is called the cardinal number

of  (or the cardinality of ) and is denoted by ||.
Although || is not a real number but a family of sets, || possesses various properties

reminiscent of those of real numbers, which justify this notation and the term “the cardinal

number”.

Claim || = | | if and only if  ∼  .

Proof. Indeed, assuming  ∼  , we obtain

 ∈ || ⇐⇒  ∼  ⇐⇒  ∼  ⇐⇒  ∈ | |
Hence, if  ∼  then || = | |  Conversely, if || = | | then  ∈ | | (because
 ∈ ||) whence  ∼ 

One can define inequality between cardinal numbers as follows.

Definition. We write || ≤ | | if  is equivalent to a subset of  .

Claim || ≤ | | if and only if there exists an injective mapping  :  →  .

Proof. If  is equivalent to a subsets  0 ⊂  then there is a bijection  :  →  0.
Defining  :  →  by  () =  () we obtain an injection. Conversely, if there exists an

injection  :  →  then restricting the target  to  (), we obtain a bijection between

 and  (), which means that  ∼  (). Hence,  is equivalent to a subset of  ,

which means || ≤ | |.
Let us list some further properties of the inequality between cardinal numbers:

1. If || ≤ | | and | | ≤ || then || ≤ || (see Exercise 18).
2. If || ≤ | | and | | ≤ || then || = | |.
3. for any two sets  , either || ≤ | | or | | ≤ || is true.

The properties 2 and 3 are, in fact, deep theorems that we do not prove here (and

which will not be used).

Example. Let  = N and  be the set of even natural numbers, that is,

 = {2 :  ∈ N} = {2 4 6 } 
Since ⊂  , we obtain || ≤ | |. However, in fact || = | | because there is a bijection
 :  →  given by  () = 2.

This example shows that a proper subset of a set  can be equivalent to  . By

Theorem 1.8, this can occur only if  is infinite.

Definition. A set  is said to be countable (̈) if || = |N| 
For example, the set of all even numbers is countable. If  is a countable set then

there is a bijection  : N → . Denoting  () = , we see that  can be identified

with the sequence {}∞=1. We write this as follows:  = {1 2 } and say that the
set  is enumerated by natural numbers.
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Theorem 1.14 () A subset of a countable set is either finite or countable.

() The direct product of two countable sets is countable.

() If {}∞=1 is a sequence of countable sets then their union  =
S∞

=1 is also

countable.

Proof. () It suffices to prove that any subset  of N is either finite or countable.
Assume that  is infinite, and construct a bijection  :  → N, which will prove that 
is countable. Let us construct by induction in  a sequence {}∞=1 of infinite subsets of
 as follows.

Inductive basis  = 1: define 1 = .

Inductive step. If  is already defined and  = min then set +1 =  \ {}.
Note that +1 is also infinite because if +1 is finite then  = +1 ∪ {} is also
finite by Theorem 1.7.

By construction, the sequence {}∞=1 is nested, that is, +1 ⊂ , and\+1 =

{}. Since  is a lower bound for +1 and  ∈ +1, we obtain that

+1 = min+1  

The sequence {}∞=1 belongs to . Let us show that  coincides with this sequence,

which will prove that || = |N|. Consider an arbitrary  ∈  and define the set

 = { ∈ N :  ∈ } 

This set is non-empty because 1 ∈ . Let us show that  is bounded. The inequalities

1 ≥ 1 and +1   imply by induction that  ≥ . Therefore, for any    we have

   and, hence,  ∈  and  ∈ . This implies that  is an upper bound for .

Since  is a bounded subset of N,  has the maximum; let  = max. This means that

 ∈  but  ∈ +1, that is,

 ∈  \+1 = {} 

We conclude that  = , which finishes the proof.

() Let  and  be two countable sets. The direct product  ×  is the set of pairs

( ) where  ∈  and  ∈  , that is,

 ×  = {( ) :  ∈   ∈  } 

Without loss of generality, we can assume that  =  = N and prove that the set

N2 = N×N is countable. For any  ∈ N, consider the set

 = {() :  ∈ N + = } 

Clearly, each set , is finite and N2 is a disjoint union of all the sets ,  ∈ N. On
the diagram below, the elements of N2 are arranged in a table and the sets  are the

diagonals of this table. Clearly, N2 is a disjoint union of all the sets . Then one can

enumerate N2 by enumerating successively each diagonal — the number of each element
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() is shown as a subscript:

 = 1  = 2  = 3  = 4  = 5 

 = 1 (1 1)1 (1 2)3 (1 3)6 (1 4)10 (1 5)15 

% % % %

 = 2 (2 1)2 (2 2)5 (2 3)9 (2 4)14 

% % %

 = 3 (3 1)4 (3 2)8 (3 3)13 

% %

 = 4 (4 1)7 (4 2)12 

%

 = 5 (5 1)11 

 

To describe this more precisely, denote by  be the total number of elements in all sets

12  . Since card =  − 1, we obtain

 =

−1X
=0

 =
( − 1) 

2

(the right equality can be easily verified by induction in ). Then define a mapping

 : N2 → N as following: if () ∈  then set

 () = −1 +

Since  runs from 1 to  − 1 in , we obtain

 () = {−1 + 1  −1 + ( − 1)}
= {−1 + 1  }

where we have used the fact that  = −1 + ( − 1). In other words, we have
 () = { ∈ N: −1   ≤ } 

whence it follows that N is a disjoint union of the sets  (). Hence,  is a bijection

between N2 and N, which finishes the proof.
() Let each set  be enumerated as follows:  = {}∞=1. Define a mapping

 : N2 →  by setting

 () = 
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(that is,  () is the -th element of ). Next, use the following result: if  :  → 

is a surjection then || ≤ | | (see Exercise 18). In our case,  is a surjection, and we
conclude that that || ≤ |N2| Using |N2| = |N|, we obtain || ≤ |N|. Since set  is

infinite as a union of infinite sets, we conclude that || = |N| 
Definition. A real number  is called rational if it can be represented in the form  = 



where  are integers, and irrational otherwise.

The set of all rational numbers is denoted by Q, so that the following inclusions take
place Z ⊂ Q ⊂ R It follows from Exercise 2 that the set Q is closed under the arithmetic
operations of addition, subtraction, multiplication, and division.

Proposition The set Q is countable, that is |Q| = |N| 
Proof. Let us construct a mapping  : N2 → Q as follows: for any couple () ∈ N2,

set

 () =

½


  6= 0

0  = 0

Then  is a surjection which implies |Q| ≤ |N2|. By Theorem 1.14 we have |N2| = |N|,
and by the same theorem |Q| ≤ |N| implies that Q is countable (because Q is infinite).
For any two sets  , we write ||  | | if || ≤ | | but || 6= | |.

Definition. A set  is called uncountable if |N|  ||.
The next theorem provides an important example of an uncountable set.

Theorem 1.15 The set R is uncountable, that is, |N|  |R|.

The cardinal number |R| is called continuum.
Proof. Assume that R is countable so that R = {1 2 }. Let us construct a

nested sequence of closed bounded intervals {}∞=1 as follows. Choose 1 arbitrarily

that 1 does not contain 1, for example, 1 = [1 + 1 2 + 2]. If  = [ ] has been

defined, then choose +1 ⊂  so that +1 does not contain +1. Indeed, if +1 ∈ 
then set +1 = . If +1 ∈  then ether +1   or +1  . In the first case,

set  =
h
+1+

2
 

i
and in the second case set  =

£


++1
2

¤
 By construction, we

obtain a nested sequence of closed bounded intervals {}∞=1 such that  ∈  for any

 ≥ 1. By the principle of nested intervals, there is a point  that belongs to all . Then
 6=  for any  ≥ 1 because  ∈ . This means that the point  is not in the sequence

{} and, hence, R cannot be enumerated.
Corollary. There are irrational numbers.

Indeed, we have by the previous theorems, |Q|  |R| which implies that R \ Q is

non-empty.

Theorem 1.16 If || = |R| and | | ≤ |N| then | ∪  | = |R| and | \  | = |R|.

In the next argument, we use the following notation:  t denotes the union  ∪
provided the sets  and  are disjoint, that is,  ∩ = ∅
Proof. Observe that

 ∪  =  t ( \)
and | \| ≤ | | ≤ |N|  Hence, renaming  \ into  , we can assume that  and 

are disjoint.
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Let us use the following fact: any infinite set contains a countable subset (see Exercise

19). Let 0 be any countable subset of  and set 1 =  \0. Then

 = 0 t1

and, hence,

 ∪  = 0 t1 t  = (0 t  ) t1 (1.19)

However, since0 us countable and  is either countable or finite we conclude by Theorem

1.14 that 0 ∪  is also countable (see also Exercise 20). In particular, we have

0 t  ∼ 0

which together with (1.19) implies

 ∪  ∼ 0 t1 = 

which was to be proved.

Remark. As we see from the above argument, the assumption || = |R| was not used
at all. All we need is the fact that set  is infinite. Hence, this part of Theorem 1.16 can

be stated as follows: If set  is infinite and | | ≤ |N| then | ∪  | = ||.
Let us prove now the second claim of Theorem 1.16 in the following stronger form: if

 is uncountable and | | ≤ |N| then | \  | = ||. Since  \  =  \ ( ∩  ) and
| ∩  | ≤ | | ≤ |N|, we can rename  ∩  by  and assume in the sequel that  ⊂ .

Then we have

 = ( \  ) ∪  (1.20)

Applying the above Remark to the difference  \  and noticing that  \  is infinite

(indeed, if  \ is finite then by (1.20)  is at most countable, which contradicts to the

assumption that  is uncountable), we obtain

|( \  ) ∪  | = | \  | 

Combining this with (1.20), we conclude that || = | \  |, which was to be proved.
Using Theorem 1.16, one can prove that any of the intervals ( )  [ ]  [ ) ( ]

where   , is equivalent to R (see Exercise 24).

Algebraic numbers. We know already the following classes of real numbers:

N ⊂ Z ⊂ Q ⊂ R

and that their cardinal numbers satisfy the relations:

|N| = |Z| = |Q|  |R| 

Let us introduce yet another class of real numbers.

Definition. A real number  is called algebraic, if  satisfies an equation of the form

 + 1
−1 + 2

−2 + +  = 0
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where  is a natural number and all the coefficients  are rational numbers. In other

words,  is a root of a polynomial with rational coefficients.

For example, any rational number  is algebraic since it satisfies the equation +1 = 0

with 1 = − ∈ Q (here  = 1). Also, the number  =
√
2 is an algebraic number because

it satisfies the equation 2 − 2 = 0 (with  = 2).

It is possible to prove that the sum, difference, product, and ratio of algebraic numbers

is again algebraic.

Denote by A the set of algebraic real numbers Then Q ⊂ A ⊂ R and Q 6= A.

Theorem 1.17 |A| = |N|.

The real numbers that are not algebraic are called transcendental.

Corollary. The set of transcendental numbers has the cardinality of |R|. In particular,
there exists at least one transcendental number.

Proof. Indeed, the set of transcendental numbers is R\A, and by Theorems 1.17 and
1.16, we obtain that

|R \A| = |R \N| = |R| 

Proof of Theorem 1.17. For any  ∈ N, let  be the set of the polynomials

of the form  + 1
−1 +  +  with  ∈ Q. Let  be the set of all roots of the

polynomials from . Let us prove that || = |N|. We use without proof the fact that
each polynomial has a finite number of roots (in fact, at most ). Note that  can be

identified with the set of all sequences {}=1 of  rational numbers . This implies
that +1 =  ×Q because

{1 2  +1} = ({1  }  +1) ∈  ×Q

Using 1 = Q and |Q| = |N| as well as |N× N| = |N| (by Theorem 1.14), let us prove by

induction that || = |N| 
Inductive basis: |1| = |Q| = |N| 
Inductive step: |+1| = | ×Q| = | ×N| = |N× N| = |N| 
Then  is the union of the sets of roots of all polynomials from , that is, 

is the union of a sequence of finite sets, which is countable by Theorem 1.14. Hence5,

|| = |N| 
Finally, we have A =

S∞
=1, and by Theorem 1.14 we conclude that |A| = |N|.

All the infinite sets considered above had the cardinal numbers |N| or |R|. It is

natural to ask whether there exist other infinite cardinal numbers. The question whether

there exists a cardinal number strictly between |N| and |R| is known as the continuum
hypothesis. It happens to be extremely difficult and to have an amazing answer: this

question cannot be resolved within the conventional axiomatic system of the set theory

and the existence or non-existence of such a set could be regarded as an independent

axiom. On the contrary, the question of the existence of a cardinal number strictly larger

than |R| is solved easily by Theorem 1.18 below.

5Strictly speaking, this argument only shows that || ≤ |N|, which is enough for the proof of Theorem
1.17. The identity || = |N| follows from the observation that  is infinite because  contains all the

numbers of the form  where  ∈ Q.
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Definition. For any set  denote by 2 the set of all subsets of  (including ∅ and ).

The notation 2 is motivated by the following observation.

Claim If  is finite and card =  then card 2 = 2 (in other words, there exist 2

subsets of ).

See Exercise 23.

Theorem 1.18 For any set , we have || 
¯̄
2
¯̄


In particular, we have
¯̄
2R
¯̄
 |R|. Another consequence of this theorem is that there

is no largest cardinal number.

Proof. By definition, ||  | | if || ≤ | | and || 6= | |  Recall also that || ≤ | |
if there exists a injection  :  →  , and || = | | if there is a bijection  :  →  .

So, in order to prove that ||  | |, we need to show that:

• there is an injection  :  →  ,

• there is no bijection  :  → 

It is easy to construct an injection  :  → 2 , for example, as follows:  () = {},
where {} is the subset of  that consists only of .

Let  :  → 2 be any mapping, and let us prove that  is not even surjective (then

 is not a bijection). Consider the following set

 = { ∈  :  ∈  ()} (1.21)

which is a subset of  and, hence, is an element of 2 (note that  () is a subset of 

so it makes sense to ask whether  ∈  () or not). Let us show that  has no preimage,

which will prove the above claim. Assume that  () =  for some  ∈ , and consider

two cases:

1. If  ∈  then by (1.21)  ∈  () =  so we obtain a contradiction.

2. If  ∈  then by (1.21)  ∈  () =  — again a contradiction.

Hence,  () 6= , which was to be proved.

1.7 Complex numbers

Definition. The set C of complex numbers is the set of all couples ( ) of real numbers
 , with the following operations of addition and multiplication:

• ( ) + (0 0) = (+ 0  + 0)

• ( ) · (0 0) = (0 − 0 0 + 0) 
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One can also say that C is R2 = R×R endowed with the above two operations.
Consider the complex numbers of the form ( 0). It follows from the definition that

( 0) + ( 0) = (+  0)

( 0) · ( 0) = ( 0) 

Hence, the addition and multiplication of complex numbers of the form ( 0) matches

those for real numbers. For that reason, the set of complex numbers of the form ( 0)

is identified with R by the rule ( 0) 7→ . By this identification, we can assume that

R ⊂ C and write ( 0) = .

The complex number (0 1) plays a particularly important role and is denoted by . It

is called the imaginary unit. By definition, we have

2 = (0 1) · (0 1) = (−1 0) = −1

so that 2 = −1.
Note also, that for all  ∈ R and ( ) ∈ C,

 · ( ) = ( 0) · ( ) = ( ) 
This implies that

( ) = ( 0) + (0 1) ( 0) = +  · (0 1) = + 

Hence, any complex number can be written in the form + (or +) and this notation

is usually preferred to ( ).

Normally, we denote complex number by a single letter, say  = + . The number

 is called the real part of  and  is called the imaginary part of , and they are denoted

by  = Re ,  = Im . In particular, we have

 = Re  +  Im 

Clearly,  ∈ R if and only if Im  = 0

For what follows, we need the following lemma.

Lemma 1.19 For any non-negative real number  there exists a unique non-negative real

number  such that 2 = 

Definition. The unique number  as above is called the square root of  and is denoted

by
√
.

For the proof of existence of the square root see Exercise 21 where the case  = 2 was

considered. The general case is treated exactly in the same way. The uniqueness of the

square root is trivial: for any two distinct positive real numbers   we have either   

or    which imply, respectively, that either 2  2 or 2  2 so that 2 = 2 is

impossible. This argument not only proves the uniqueness of
√
 but also yields that if

0 ≤  ≤  then
√
 ≤
√
.

Definition. For any complex number  = +, itsmodulus or absolute value ( )

|| is defined by
|| =

p
2 + 2 =

q
(Re )

2
+ (Im )

2
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It follows that || is a non-negative real and || = 0 if and only if  = 0
If  ∈ R that is,  =  then

|| =
√
2 = || 

Hence, in this case the modulus of  as a complex number coincides with the modulus of

 as a real number.

Consider one more operation on complex numbers: conjugation. For any  = + ∈ C
define its conjugate ̄ by

̄ = −  = Re  −  Im 

Clearly,  = . In the next statement, we collect useful properties of the operations on

complex numbers.

Theorem 1.20 () The following relations hold for complex numbers:

1 + 2 = 2 + 1 (1 + 2) + 3 = 1 + (2 + 3) (1.22)

12 = 21 (12) 3 = 1 (23) (1.23)

(1 + 2) 3 = 13 + 23 (1.24)

 + ̄ = 2Re  ̄ = ||2 (1.25)

1 + 2 = ̄1 + ̄2 12 = ̄1̄2 (1.26)

|12| = |1| |2| and |1 + 2| ≤ |1|+ |2|  (1.27)

() For any 1 2 ∈ C such that 2 6= 0, there exists a unique complex number  (denoted
also as 1

2
) such that 2 = 1. Also we have the identities

1

2
= |2|−2 1̄2 and

¯̄̄̄
1

2

¯̄̄̄
=
|1|
|2|  (1.28)

Proof. () The identities (1.22), (1.24), and the first identity in (1.23) (the commuta-

tive law for multiplication) are trivially verified by direct computation. Let us prove the

second identity in (1.23) (the associative law for multiplication). Setting  = +  we

obtain

12 = (12 − 12) +  (12 + 12)

and

(12) 3 = ((12 − 12) +  (12 + 12)) (3 + 3)

= (12 − 12)3 − 3 (12 + 12) +  (12 − 12) 3 + (12 + 12) 3

= 123 − 123 − 123 − 123 +  (123 − 123 + 123 + 123) 

Obviously, the above expression is invariant under the cyclic permutation of indices:

1 7→ 2 2 7→ 3 3 7→ 1

(for example, the term 123 does not change, the term 123 goes to 231 = 123,

the term 123 goes to 231 = 123, etc). This implies that

(12) 3 = (23) 1 = 1 (23)
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where in the last identity we have used the commutative law.

To prove (1.25), set  = + . Then ̄ = −  and

̄ = (+ ) (− ) =
¡
2 + 2

¢
+  ( − ) = 2 + 2 = ||2

and  + ̄ = 2 = 2Re 

The first identity in (1.26) is trivial, the second is proved as follows:

12 = (12 − 12) +  (12 + 12) = (12 − 12)−  (12 + 12)

and

̄1̄2 = (1 − 1) (2 − 2) = (12 − 12)−  (12 + 12)

whence 12 = ̄1̄2.

The first identity in (1.27) is proved as follows:

|12|2 = (12 − 12)
2
+ (12 + 12)

2

= 21
2
2 − 21212 + 21

2
2 + 21

2
2 + 21212 + 21

2
2

= 21
2
2 + 21

2
2 + 21

2
2 + 21

2
2

=
¡
21 + 21

¢ ¡
22 + 22

¢
= |1|2 |2|2 

Before we prove the second relation in (1.27), observe that

|1 + 2|2 = (1 + 2) (̄1 + ̄2) = 1̄1 + 1̄2 + 2̄1 + 2̄2

= |1|2 + 2Re (1̄2) + |2|2 

where we have used

1̄2 + 2̄1 = 1̄2 + 12 = 2Re (1̄2) 

Since |Re | ≤ ||, we obtain

|1 + 2|2 ≤ |1|2 + 2 |1̄2|+ |2|2 = |1|2 + 2 |1| |2|+ |2|2 = (|1|+ |2|)2 

whence |1 + 2| ≤ |1|+ |2|. This inequality is referred to as the triangle inequality.
()Multiplying the equation 2 = 1 by ̄2 and using (1.25), we obtain |2|2 = 1̄2.

Noticing that |2| is a positive real and multiplying by |2|−2, we obtain

 = |2|−2 1̄2 (1.29)

Conversely, defining  by (1.29), we obtain

2 = |2|−2 1̄22 = |2|−2 1 |2|2 = 1

This proves the existence and uniqueness of  as well as the first identity in (1.28). Taking

the modulus of the both sides of (1.29), we obtain¯̄̄̄
1

2

¯̄̄̄
= || = |2|−2 |1| |̄2| = |2|−1 |1| = |1|

|2| 
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2 Limits of sequences

2.1 Convergent and divergent sequences

Let {}∞=1 be a sequence of reals. We will be interested what happens with  when 

becomes very large. Different sequences may exhibit different behavior. For example, in

the sequence  = (−1) the common term  jumps between 1 and −1. In the sequence
 =

1

the common term becomes smaller and very close to zero when  increases and

becomes very large. It is natural to say that the sequence {} has the limit 0 whereas
{} has no limit at all.
Definition. We say that a sequence {}∞=1 of reals converges to  ∈ R if for any real
  0 there exists  ∈ N such that | − |   for any natural  ≥ N. Shortly, this is
written as follows:

∀  0 ∃ ∈ N such that | − |   ∀ ≥  . (2.1)

The number  is called the limit ( ) of {}, and this is denoted by

 → 

( converges to , or  tends to , or  goes to ) or by

lim
→∞

 = 

(the limit of  is ). A sequence is called convergent if it converges to some  ∈ R. A
sequence is called divergent if it is not convergent.

The definition (2.1) of the limit can be stated also as follows:

∀  0 ∃ ∈ N such that  ≥  =⇒ | − |  

Or, one can say that, for any   0, the condition | − |   holds for all large enough

.

One can regard the convergence  →  as an approximation of  by the elements of

the sequence {}. Let   0 be a prescribed bound for the error of the approximation.
Then the convergence  →  means that, whatever is   0, all the terms  with

large enough  are approximations of  with error  . It is important that  must take

arbitrary positive values to ensure that the approximation of  by  occurs with an

arbitrary precision.

Definition. For any  ∈ R and   0, the interval  () = (−  + ) is called the

-neighborhood of  ( -).

The condition | − |   means that  ∈  (). Hence, the definition of conver-

gence  →  can be stated as follows:

∀  0 ∃ ∈ N such that  ∈  () for all  ≥ 

Or one can say that  →  if, for any   0,  ∈  () for all large enough .
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Theorem 2.1 ()  →  if and only if the set

 = { ∈ N :  ∈  ()}

is finite for any   0

() If the limit exists then it is unique.

() If the limit exists then the sequence is bounded from above and below.

()  →  if and only if | − |→ 0.

() If  → ,  →  and  ≤  then  ≤ .

() If {}  {}  {} are three sequences such that  → ,  →  for some  and

 ≤  ≤  for all large enough  then also  → .

Proof. () If  →  then for any   0 there exists  ∈ N such that  ∈  () for

all  ≥  which means that  ∈  for any  ≥  . Therefore,  ∈  implies    so

that  is bounded and, hence, finite.

If  is finite then  has an upper bound, say  . Then    implies  ∈  that

is,  ∈ , which means that  → .

() Let  and  be two distinct limits of the same sequence {}, and let   . Set

 = −
2
and observe that the intervals  () and  () are disjoint. By part (), outside

 () there can be only finitely many terms . But if  ∈  () then  ∈  () which

means that only finitely many terms  belong to (), which contradicts the condition

 → .

() Let  → . Fix some   0 say  = 1. The part of the sequence  that is

contained in  () is bounded because  () is bounded. Outside  () there are only

finitely many terms, and any finite set of reals is bounded (see Exercise 14). Hence, the

sequence is bounded as the union of two bounded sets.

() Set  = | − |. By definition,  → 0 if, for any   0, there exists  ∈ N such
that | − 0|   for all  ≥  . But this exactly means | − |   that is,  → .

() Assume    and set  = −
2

 0 so that the neighborhoods  () and  ()

are disjoint. By definition, there exists  0 ∈ N such that  ∈  () for all  ≥  0, and
 00 ∈ N such that  ∈  () for all  ≥  00. Hence, for all  ≥  = max ( 0  00),
we have both conditions  ∈  () and  ∈  () which implies    and which

contradicts the hypothesis.

() For any   0 there exists  0 ∈ N such that  ∈  () for all  ≥  0 and there
exists  00 ∈ N such that  ∈  () for all  ≥  00. Then, for all  ≥ max ( 0  00), both
 and  are in  (), which implies that also  ∈  (). Hence, we obtain  → .

Example.

1. Let us show that the sequence  =
1

converges to 0. Indeed, by the Archimedes

principle, for any   0 there exists  ∈ N such that 1

 . Then, for any  ≥  ,

1

  which can be written as

¯̄
1

− 0
¯̄
 . Hence, 1


→ 0.

2. Let us show that the sequence  = (−1) does not converge. The term  takes

two values 1 and −1. If  6= 1 and  6= −1 then  cannot be the limit because there
is a small neighborhood  () that contains no elements . If  = 1 then outside

1 () there are infinitely many terms that are equal to −1, and if  = −1 then
outside 1 () there are infinitely many terms that are equal to 1. Hence, there is

no limit. This example also shows that a bounded sequence need not be convergent.
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3. Consider a sequence {} such that  =  for all  ≥ 0. Then  → . Indeed,

for any   0, | − | = 0   for all  ≥ 0.

4. Consider a sequence {} = . We claim that it is divergent. Indeed, if  is any

real and   0 then there is  such that    + . Hence,  ∈  () for any

   which implies the divergence.

5. Consider the sequence  =  for a real  and prove that {} converges if and
only if  ∈ (−1 1].
Let   1, say  = 1 +  where   0. Then, by Bernoulli’s inequality,

 = (1 + )
 ≥ 1 + 

which implies that  is unbounded and, hence, cannot converge. If   −1 then
|| = || and by the same argument {||} is unbounded. Hence, {} is un-
bounded and cannot converge.

If  = −1 then the sequence  = (−1) has been already considered and it is
divergent.

If  = 1 then {} is a constant sequence  = 1 that converges to 1.
If  = 0 then  = 0 and  → 0.

Let 0    1. Then set  = 1

 1 so that  = 1


. Writing  = 1 +  where   0

we obtain  ≥ 1 +    and, hence,

0   
1




Similarly to one of the previous examples, we see that 1

→ 0. Hence, by Theorem

2.1() we conclude  → 0.

If −1    0 then 0  ||  1 and || = || → 0 by the previous argument,

which implies that also  → 0.

2.2 General properties of limit

Theorem 2.2 If  →  and  →  then +  → +  and  →  If  6= 0 and
 6= 0 then also 


→ 




In particular, if  =  is a constant sequence then we obtain  → . This implies

that − → − and, hence,  −  → − .

Proof. We have

| +  − (+ )| = | − +  − | ≤ | − |+ | − | 

For any   0 ∃ 0 ∈ N such that | − |   for all  ≥  0, and ∃ 00 ∈ N such that
| − |   for all  ≥  00. Hence, for any  ≥  = max ( 0  00), we obtain

| +  − (+ )|  +  = 2

38



Since 2 takes arbitrary positive values when  varies in (0+∞), we can rename 2 to 
and conclude that for any   0 there exists  ∈ N such that

| +  − (+ )|  

whence  +  → + 

To prove the second claim of the theorem, estimate the difference − as follows:
| − | = | − + − |

≤ | ( − )|+ |( − ) |
≤ sup {||} | − |+ || | − |  (2.2)

Before we can proceed, let us prove the following claim.

Claim If  → 0 then also  → 0 for any  ∈ R.
If  = 0 then there is nothing to prove. Assume  6= 0. The hypothesis  → 0 means

that, for any   0 there exists  ∈ N such that ||   for all  ≥  . The latter implies

||  ||  for all  ≥  . Since ||  takes arbitrary positive values, renaming ||  to 
we obtain  → 0.

Returning to (2.2), observe that the sequence {} is bounded and, hence, sup {||}
exists as a real number (see Theorem 2.1). Since | − |→ 0 and | − |→ 0, we obtain

by the above claim that also

|| | − |→ 0

and

sup {||} | − |→ 0

By the first part of Theorem 2.2, we obtain that

 := sup {||} | − |+ || | − |→ 0

Since

0 ≤ | − | ≤ 

we conclude by Theorem 2.1 that also | − |→ 0 and, hence,  → .

For the third part of this theorem, it suffices to prove that 1

→ 1


since then we can

multiply this convergence by  →  to obtain 

→ 


. Assume for simplicity that   0

(the case   0 is similar). There exists  ∈ N such that  ∈ 2 () = (2 32) for

all  ≥  . In particular,   2 for all  ≥  . For such , we have¯̄̄̄
1


− 1



¯̄̄̄
=

¯̄̄̄
− 



¯̄̄̄
≤ |− |

22


Since |− |→ 0, it follows that also
¯̄̄
1

− 1



¯̄̄
→ 0 and, hence 1


→ 1


.

Example. Consider the sequence

 =
2 + + 

02 + 0+ 

where 0 6= 0. Then
 =

2
¡
+ 


+ 

2

¢
2
¡
0 + 0


+ 

2

¢ = + 

+ 

2

0 + 0

+ 

2



As we have seen above, 1

→ 0. Hence, also 1

2
→ 0 and 


→ 0, 

2
→ 0 etc. Applying all

the parts of Theorem 2.2, we conclude that  → 
0 .

39



2.3 Existence of limit

Subsequence. We start with the following definition.

Definition. Let {}∞=1 be a sequence of reals and {}∞=1 be a sequence of natural
numbers such that   +1 for any  ∈ N. Then the sequence {}∞=1 is called a
subsequence of {}∞=1.
For example, if  = 2 then {} = {2 4 } consists of all even elements of the

sequence {}.
Claim If  →  then also  →  for any subsequence {} 
Proof. By definition of the convergence  → ,

for any   0 there is  ∈ N such that | − |   for all  ≥ 

The conditions 1 ≥ 1 and +1   imply by induction  ≥  for all natural . Hence,

if  ≥  then  ≥  , which implies | − |  . We obtain that

for any   0 there is  ∈ N such that | − |   for all  ≥ 

which exactly means that  → .

Of course, the fact that a subsequence converges does not imply in general that the

sequence converges. For example, the sequence  = (−1) does not converge while its
subsequence 2 = 1 does.

Theorem 2.3 (Theorem of Bolzano-Weierstrass) Any bounded sequence has a convergent

subsequence.

Proof. By hypothesis, all terms of the sequence {} are located in some interval
[ ],   . Set  = +

2
. At least one of the interval [ ] and [ ] contains infinitely

many terms of the sequence {}. Denote this interval by [1 1] so that [1 1] ⊂ [ ],

1 − 1 =
− 

2


and [1 1] contains infinitely many terms of {}. Let 1 = 1+1
2

and select one of the

intervals [1 1], [1 1] that contains infinitely many terms of {}; denote this interval
by [2 2], etc. By induction, we obtain a sequence {[ ]}∞=1 such that [ ] ⊂
[−1 −1],

 −  =
−1 − −1

2
=

− 

2


and [ ] contains infinitely may terms of {}. The sequence {[ ]} is nested and,
hence, it has a common point, say .

Let us construct a subsequence {} such that  → . Choose 1 so that 1 ∈
[1 1]  Then choose 2 so that

2  1 and 2 ∈ [2 2] 

Such 2 exists because [2 2] contains infinitely many terms of the sequence {}. Then
choose 3 so that

3  2 and 3 ∈ [3 3] 
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etc. Each time we can select   −1 so that  ∈ [ ] because [ ] contains
infinitely many terms of {}. Let us prove that the subsequence {} constructed in
this way converges to . Indeed, since both  and  are located in [ ], we have

| − | ≤  −  → 0 as  →∞

whence  → .

Cauchy sequences. Let us define the notion of a Cauchy sequence.

Definition. A sequence {} is called Cauchy (or a Cauchy sequence)

for any   0 there is  ∈ N such that | − |   for all  ≥  (2.3)

Shortly this can be stated as follows:  −  → 0 as →∞

Theorem 2.4 A sequence of reals converges if and only if it is a Cauchy sequence.

Proof. Convergent =⇒ Cauchy. If  →  then

for any   0 there is  ∈ N such that | − |   for all  ≥ 

Then we have, for all  ≥  ,

| − | = |( − )− ( − )| ≤ | − |+ | − |  2

Renaming 2 to  we obtain that {} satisfies the definition of a Cauchy sequence.
Cauchy =⇒ Convergent. Let {} be a Cauchy sequence. Let us first show that this

sequence is bounded. Indeed, by definition there exists  such that | −  | ≤ 1 for any
 ≥  . Hence, all sequence {}∞= is contained in the interval [−   ] and, hence, is
bounded. The remaining part {}−1=1 is bounded as a finite sequence. Hence, the whole

sequence {}∞=1 is bounded as well.
By Theorem 2.3 there exists a convergent subsequence {}. Assume that  → 

and prove that, in fact, all sequence {} goes to . The convergence  →  means that

for any   0 there is  ∈ N such that | − |   for all  ≥ 

Choose  so big that  ≥  and  ≥  (this is the case if  ≥ max ()). Then, for

any  ≥  , we obtain by (2.3) (just put  =  there) that

| −  |  

Together with | − |  , this implies

| − | = | −  +  − | ≤ | −  |+ | − |  2

Hence, | − |  2 for any  ≥  , which means that  → .
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Monotone sequences. The last type of sequences we consider here are the monotone

sequences.

Definition. A sequence {}∞=1 of reals is called monotone increasing if +1 ≥  for

any  ∈ N, and monotone decreasing if +1 ≤  for any  ∈ N. A sequence is called
monotone if it is either monotone increasing or monotone decreasing.

Example. The sequence  =  is monotone increasing, the sequence  =
1

is monotone

decreasing, the constant sequence  =  is both monotone increasing and decreasing,

the sequence  = (−1) is not monotone.
If {} is monotone increasing then  is bounded from below, for example, 1 is a

lower bound for {}. If {} is monotone decreasing then 1 is an upper bound for {}
and, hence, this sequence is bounded from above.

Theorem 2.5 Any bounded monotone sequence converges.

Recall that, by Theorem 2.1, any convergent sequence is bounded. Hence, a monotone

sequence is convergent if and only if it is bounded.

Proof. Let {}∞=1 be a bounded monotone increasing sequence. The boundedness
implies that the supremum  = sup {} exists and is a real number (see Theorem 1.1).

Let us prove that  →  For any   0, the number  −  is not an upper bound for

{}. Hence, there exists  ∈ N such that    − . Since the sequence {} is
monotone increasing, we have that also    −  for any  ≥  . On the other hand,

by the definition of ,  ≤  whence  ∈ (−  ] and | − |  , for any  ≥  . We

conclude that  → .

In the same way one proves that a bounded monotone decreasing sequence converges

to its infimum.

2.4 Limits +∞ and −∞
We’ll define here what it means that  → +∞ or −∞. Recall that the definition of the
convergence  →  can be stated as follows:

for any   0 there exists  ∈ N such that  ∈  () for all  ≥ 

To adapt this definition to the case  = ±∞, let us define the neighborhoods of ∞ as

follows: for any  ∈ R, set

 (+∞) = (+∞) = { ∈ R :   }

and

 (−∞) = (−∞ ) = { ∈ R :   } 
Definition. We say that a sequence {} has limit +∞ (or tends to +∞, or goes to
+∞, or diverges to +∞) and write lim→∞  = +∞ or  → +∞ if

for any  ∈ R there exists  ∈ N such that  ∈  (+∞) for all  ≥  (2.4)

Similarly,  → −∞ if

for any  ∈ R there exists  ∈ N such that  ∈  (−∞) for all  ≥  (2.5)
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Note the terminology: if  →  where  ∈ R then we say that  converges to ,

while if  = +∞ or −∞ then we say that  diverges to , although in the both cases

lim exists as an element of the extended real line R = R ∪ {−∞+∞}.
Example. 1. The sequence  =  tends to +∞ because for any  ∈ R there exists
 ∈ N such that   . Hence, for any  ≥  , we have   , that is,  ∈  (+∞),
which means  → +∞. Similarly, the sequence  = − diverges to −∞. A small

modification of this argument shows that the sequence  =  diverges to +∞ if   0

and to −∞ if   0.

2. Consider the sequence  =  and show that if   1 then  → +∞ (recall that

if −1   ≤ 1 then the sequence {} is convergent). Indeed, writing  = 1 +  where

  0 and using Bernoulli’s inequality, we obtain

 = (1 + )

 

Since → +∞, we obtain that also  → +∞

If   −1 then the sequence  =  switches the sign (“+” if  is even and “−” if
 is odd) so that it does not satisfy (2.4) or (2.5) with  = 0. Hence, in this case {}
diverges without having limit.

Operations with +∞ and −∞. For any  ∈ R define

(+∞) +  = + (+∞) =
½
+∞ −∞   ≤ +∞
undefined,  = −∞

and a similar rule holds for (−∞) + . The multiplication is defined by

(+∞) ·  =  · (+∞) =
⎧⎨⎩ +∞ 0   ≤ +∞
−∞ −∞ ≤   0

undefined,  = 0

and a similar rule holds for −∞ · . Finally, division by ∞ is defined by



+∞ =

½
0  ∈ R
undefined,  = +∞ or  = −∞

Hence, the following operations are undefined: ∞−∞, ∞ · 0, and ∞
∞ . For completeness,

recall that 
0
is not defined either.

In the next statement, we collect extensions of Theorems 2.2, 2.3, and 2.5 in the case

when the limit may be ±∞

Theorem 2.6 () If {} and {} are sequences of reals such that  →  and  → 

where   ∈ R then + → +,  →  and  →  provided the expressions

+ , ,  are defined (and  6= 0 in the latter case).
() Any sequence of reals has a subsequence whose limit exists in R.
() If {} is a monotone increasing sequence of reals then

lim
→∞

 = sup {}  (2.6)

and if {} is a monotone decreasing sequence of reals then
lim
→∞

 = inf {} 
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Proof. () See Theorem 2.2 and Exercise 37.

() See Theorem 2.3 and Exercise 36.

() If sup {} is finite then (2.6) was proved in Theorem 2.5. In the case when

sup {} = +∞, one needs to prove that if {} is an unbounded monotone increasing
sequence then

lim
→∞

 = +∞

which is done using the same argument as in the proof of Theorem 2.5.

2.5 Limit points

Definition. A number  ∈ R is called a limit point of a sequence {} if  is the limit of
a subsequence of {} 
Of course, if a sequence {} has limit , then  is a limit point of {}. The converse

is not true. For example, if  = (−1) then both 1 and −1 are limit points of {},
while this sequence has no limit.

Denote by  the set of all limit points of a sequence {}  By Theorem 2.6, the set 
is non-empty.

Definition. For a sequence {}, its limit superior is defined by

lim sup
→∞

 := sup

(limsup of  as →∞), the limit inferior is defined by

lim inf
→∞

 := inf 

(liminf of  as →∞).
Alternative notation:

lim sup
→∞

 = lim
→∞

 and lim inf
→∞

 = lim
→∞



Theorem 2.7 () The number  ∈ R is a limit point of {} if and only if any neigh-
borhood of  contains infinitely many terms of {}.
() The following identities take place:

lim sup
→∞

 = lim
→∞

sup
≥

{} and lim inf
→∞

 = lim
→∞

inf
≥

{}  (2.7)

() Both lim sup and lim inf  are limit points of the sequence {} 

Hence, lim sup is the maximal limit point and lim inf  is the minimal limit point.

Proof. () Assume for simplicity that  ∈ R (the cases  = +∞ or −∞ are handled

similarly). Assume that, for any   0, the -neighborhood  () contains infinitely

many terms of {}, and prove that  is a limit point. For that, we need to construct
a subsequence {} such that  → . Select 1 so that 1 ∈ 1 (). If −1 is

already defined then choose   −1 so that  ∈ 1 () (this is possible because

1 () contains infinitely many terms, in particular those with the index   −1).
Then | − |  1


whence | − |→ 0 and  → .
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Assume now that  is a limit point and prove that  () contains infinitely many

terms of {}. Indeed, let  be the limit of a subsequence {}. Then by Theorem
2.1,  () contains all the terms of {} except for finitely many terms; hence,  ()

contains infinitely many terms of {}.
() + () Denote

 = sup
≥

{} = sup { +1 } 

Comparing with +1 = sup {+1 +2 }, we see that the supremum in the definition

of  is taken over a larger set, which implies  ≥ +1. Hence, the sequence {} is
decreasing and, by Theorem 2.6, has a limit  ∈ R Note that

 = lim
→∞

 = lim
→∞

sup
≥

{} 

We need to prove that  = sup. Let us first prove that  ∈ . Assume for simplicity

that  ∈ R and show that, for any   0 and for any  ∈ R there is  ≥  such that

 ∈  () — this will imply that  () contains infinitely many terms of {} and, hence,
 is a limit point. Indeed,  () contains all  with large enough ; in particular, there

exists  ≥  such that  ∈  (). Find   0 so small that  () ⊂  (). Since

 = sup≥ {}, there exists  ≥  such that  ∈  ()  Hence, for this  we have

 ≥  and  ∈  (), which was to be proved.

Now let us prove that  is an upper bound for . Indeed, if  ∈  then  is a limit

point of {} and, hence,  is also a limit point of any sequence { +1 }. Clearly, a
limit point of a sequence is bounded by its supremum. This implies

 ≤ sup { +1 } = 

Passing in the inequality  ≤  to the limit as →∞, we obtain  ≤ . Therefore,  is

an upper bound for .

Since  ∈  and  is an upper bound for , we conclude that  = sup. This proves

the first identity in (2.7) and at the same time the fact that lim sup belongs to  and,

hence, is a limit point of {} 
In the same way one treats lim inf.

2.6 Series

2.6.1 Definitions and examples

A series ( ) is an infinite sum of the form
P∞

=1  where {}∞=1 is a sequence of
reals. We have seen series of specific form before in the context of -ic numeral systems.

Here we define the notion of the sum of a general series as follows. First, define the -th

partial sum of the series
P∞

=1  by

 =

X
=1



Definition. If lim→∞  exists (either finite or infinite) then the value of
P∞

=1  is

defined to be lim→∞ , that is,

∞P
=1

 = lim
→∞
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Hence, there are three possibilities:

1. lim→∞  is finite, that is, the sequence {} converges. Then one says that the
series

P∞
=1  also converges, and the value of

P∞
=1  is a real number.

2. lim→∞  = +∞ (or −∞). Then one says that the seriesP∞
=1  diverges to +∞

(or −∞), and the value of P∞
=1  is +∞ (or −∞).

3. lim→∞  does not exist. Then one says that the series
P∞

=1  diverges, and in

this case the value of
P∞

=1  is undefined.

Example. (The geometric series) Let  =  where −1    1 By Exercise 10,

 = + 2 + +  =
1− +1

1− 
− 1 = − +1

1− 


Since ||  1, we have +1 → 0 as →∞, which implies  → 
1−  Hence,

∞X
=1

 =


1− 


Example. Consider the series

1

1 · 2 +
1

2 · 3 + +
1

 · ( + 1) +  =

∞X
=1

1

 ( + 1)


To evaluate the partial sum , use the following identity

1

 · ( + 1) =
1


− 1

 + 1


which implies that

 =

X
=1

1

 ( + 1)
=

µ
1− 1

2

¶
+

µ
1

2
− 1
3

¶
+ +

µ
1


− 1

+ 1

¶
= 1− 1

+ 1


Alternatively, one can prove by induction that  = 1− 1
+1

using the identity

+1 =  +
1

(+ 1) (+ 2)
=  +

1

+ 1
− 1

+ 2


Since 1
+1
→ 0 as →∞, we obtain that  → 1 and, hence,

∞X
=1

1

 ( + 1)
= 1
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2.6.2 Non-negative series

Definition. A series
P∞

=1  is called non-negative if all the terms  are non-negative

reals.

For a non-negative series, the sequence {} of the partial sums is monotone in-
creasing and, hence, lim exists in R. Therefore, the sum

P∞
=1  of a non-negative

series is always defined and, moreover,

∞X
=1

 ∈ [0+∞] 

Hence, for a non-negative series only two possibilities occur: either
P∞

=1   +∞ and

the series
P∞

=1  is convergent, or
P∞

=1  = +∞ and the series is divergent to +∞.
Example. (The harmonic series) Consider the series

1 +
1

2
+
1

3
+  =

∞X
=1

1



and prove that it diverges to +∞. The partial sum of this series is

 = 1 +
1

2
+ +

1




Let us show that the sequence {} is not Cauchy. Indeed, we have

2 −  =
1

+ 1
+

1

+ 2
+ +

1

2| {z }
 terms

≥ 
1

2
=
1

2


whereas if {} is Cauchy then 2 −  → 0 as →∞. Hence, {} is not convergent,
whence it follows that  → +∞ and

P∞
=1

1

=∞

Note that the sequence {} of partial sum of this series increases with  very slowly.
For example,

1000 =

1000X
=1

1


≈ 7 4854709 and 10000 =

10000X
=1

1


≈ 9 787 606

2.6.3 General tests for convergence

Theorem 2.8 (The tail test) The series
P∞

=1  and
P∞

=  converge or diverge si-

multaneously, for any  ∈ N

The series
P∞

=  is called a tail of the series
P∞

=1 .

Proof. Let  =
P

=1  and  =
P

=  where   . Then

 −  =

−1X
=1

 =: 
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where  does not depend on . Therefore,  = − and, hence, if the sequence {}
converges then so does {} and vice versa.
Example. The series

P∞
=1

1
+2006

diverges because

∞X
=1

1

 + 2006
=

1

2007
+

1

2008
+  =

∞X
=2007

1




which is a tail of the harmonic series
P∞

=1
1

.

Theorem 2.9 (The divergence test) If
P∞

=1  converges then lim→∞  → 0 In other

words, if  does not tend to 0 then the series
P∞

=1  diverges.

Proof. We have

 − −1 =
X

=1

 −
−1X
=1

 = 

If the series
P

 converges then the sequence {} converges, say,  → . Then also

−1 → , which implies  =  − −1 → 0

Example. Consider again the geometric series
P∞

=1 
 where || ≥ 1. In this case, 

does not tend to 0 (because
¯̄

¯̄
= || ≥ 1) and we conclude that the series P∞

=1 


diverges. If  ≥ 1 then this series is non-negative and, hence,P∞
=1 

 = +∞. If  ≤ −1
then the sum

P∞
=1 

 is not defined. For example, the sum
P∞

=1 (−1) is not defined.

Theorem 2.10 Let
P∞

=1  =  and
P∞

=1  =  where  ∈ R.

() If + is defined then
P∞

=1 ( + ) = +

() If  ∈ R and  is defined then
P∞

=1  = 

() If  ≤  for all  ∈ N then  ≤ .

Proof. Parts () and () follow immediately from Theorem 2.6, and part () — from

Theorem 2.1.

Corollary. (The comparison test for non-negative series) If
P∞

=1  and
P∞

=1  are

non-negative series such that  ≤  then

∞X
=1

 ≤
∞X
=1

 (2.8)

In particular, if
P∞

=1  converges then so does
P∞

=1 , and if
P∞

=1  diverges then so

does
P∞

=1 .

Proof. This follows from Theorem 2.10() and the fact that the values of
P∞

=1 
and

P∞
=1  are always defined.

Example. Consider the series
P∞

=1
1
2
and let us prove that this series converges by

comparing it with the convergent series
P∞

=1
1

(+1)
. The obvious inequality 1

2
 1

(+1)
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does not help here because we need the estimate in the opposite direction. Using  ≥
1
2
( + 1), we obtain

1

2
≤ 2

 ( + 1)


Hence, (2.8) yields
∞X
=1

1

2
≤ 2

∞X
=1

1

 ( + 1)
= 2

In particular, the series
P∞

=1
1
2
converges. In fact, we have6

∞X
=1

1

2
≈ 1 644 9341

For another proof of the convergence of
P∞

=1
1
2
see Exercise 41.

2.6.4 Complex-valued sequences and series

One can consider sequences {}∞=1 of complex numbers and define the notion of the
limit exactly as in the real case.

Definition. A sequence {} of complex numbers converges to  ∈ C if | − |→ 0 as

→∞

Theorem 2.11  →  if and only if Re  → Re  and Im  → Im 

Proof. Let  =  +  and  =  +  where     ∈ R. Then  −  =

( − ) +  ( − ) and

| − |2 = | − |2 + | − |2 

which implies that | − |→ 0 if and only if | − |→ 0 and | − |→ 0.

By means of Theorem 2.11, many results on real-valued series can be transferred to

those with complex terms.

Definition. A sequence {} of complex numbers is called Cauchy if | − | → 0 as

→∞. That is,

for any   0 there exists  ∈ N such that | − |   for all  ≥ 

Similarly to Theorem 2.11, one proves that a sequence {} is Cauchy if and only if
the both sequences {Re } and {Im } are Cauchy.
Corollary. A sequence {} of complex numbers converges if and only if it is Cauchy.

6It is possible to show that
∞X
=1

1

2
=
1

6
2
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Proof. Let  = Re  and  = Im . Then we have the following equivalences:

{} converges ⇐⇒ {} and {} converge
⇐⇒ {} and {} are Cauchy
⇐⇒ {} is Cauchy.

Definition. A series
P∞

=1  of complex numbers converges to  ∈ C if the sequence
{} of its partial sums converges to .
Definition. A series

P∞
=1  with of complex numbers is called absolutely convergent ifP∞

=1 || ∞.
The next theorem extend the comparison test of the previous section to complex-valued

series.

Theorem 2.12 (The comparison test) Assume that || ≤  for all  ≥ 1 where  ∈ C
and

P∞
=1  is a non-negative convergent series. Then also the series

P∞
=1  converges

and ¯̄̄̄
¯
∞X
=1



¯̄̄̄
¯ ≤

∞X
=1

 (2.9)

If the condition || ≤  holds for all  ≥ 1 then one says that the series
P

 is

dominated by
P



Corollary. If a series
P

 converges absolutely then it converges.

Proof. Indeed, set  = ||. Then the series
P

 converges and || ≤ . By

Theorem 2.12 we conclude that
P

 is also convergent.

Proof of Theorem 2.12. Let  =
P

=1  and  =
P

=1 . Then, for all indices

  , we have

| −| =
¯̄̄̄
¯

X
=+1



¯̄̄̄
¯ ≤

X
=+1

|| ≤
X

=+1

 =  − (2.10)

Since the sequence {} converges, it is Cauchy, that is,  −  → 0 as  → ∞.
Hence, also | −|→ 0, the sequence {} is Cauchy, and the series

P
 converges.

The inequality (2.9) follows from || ≤  which is proved similarly to (2.10).

Example. Consider the series
P∞

=1

2
where {} is any bounded sequence of complex

numbers (for example,  = (−1)). We claim that this series converges absolutely.

Indeed, let  be an upper bound for {||}. Then¯̄̄


2

¯̄̄
≤ 

2

and since
P


2
= 

P
1
2
is a non-negative convergent series, we conclude by Theorem

2.12 that
P


2
converges absolutely.
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2.6.5 Specific tests for convergence

Theorem 2.13 (The ratio test) If {}∞=1is a sequence of non-zero complex numbers
such that

lim sup
→∞

¯̄̄̄
+1



¯̄̄̄
 1

then the series
P∞

=1  converges absolutely.

Proof. Denote for simplicity  =
¯̄̄
+1


¯̄̄
and let  = lim sup→∞ . Note that   1

and choose a number  such that     1. We claim that    for all large enough ,

that is, the following set

 = { ∈ N :  ≥ }
is finite. If  is infinite then we obtain a subsequence of {} such that all its terms are in
[+∞). This subsequence has a limit point, say , and it follows that  ∈ [+∞]. In
particular,   . However,  is a limit point also for {}, which contradicts to   

because the maximal limit point of {} is .
Hence, we have proved that the set  is finite, that is, there exists  such that   

for all  ≥  . It follows that

|+1| ≤  || for all  ≥ 

By induction, we obtain

|| ≤ − | | 
whence by 0    1

∞X
=

|| ≤ | |
∞X

=

− = | |
∞X
=0

 ∞

Hence, the series
P∞

=1 || converges, which was to be proved.
Example. Consider the series

P∞
=0



!
and prove that it converges absolutely for any

 ∈ C. Setting  = 

!
, we obtain¯̄̄̄
+1



¯̄̄̄
=

¯̄̄̄
+1!

(+ 1)!

¯̄̄̄
=

¯̄̄̄


+ 1

¯̄̄̄
=

||
+ 1

→ 0

Hence, lim→∞
¯̄̄
+1


¯̄̄
= 0 and the series converges absolutely by the ratio test.

Definition. The series
P∞

=0


!
is called the exponential series and its sum is called the

exponential function of  and is denoted by

exp () =

∞X
=0



!
 (2.11)

The number exp (1) is also denoted by  so that

 =

∞X
=0

1

!
= 1 +

1

1!
+
1

2!
+ +

1

!
+ 
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The approximate value of  is

 = 2 718281828459045

and  is known to be a transcendental number.

The graph of function  = exp () for  ∈ R looks as follows:
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If  is complex, for example,  =  where  ∈ R then exp () is a complex number, and
the graph of its real part  = Re exp () is as follows:
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The graph of the function  = Imexp () is as follows:
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2.6.6 Product series

Let
P∞

=0  and
P∞

=0  be two series of complex numbers. The Cauchy product of these

two series is the series
P∞

=0  where

 =

X
=0

−

To understand the meaning of , consider the following infinite table containing all

possible terms  with non-negative integers  :

00 01 02  0−  0−1 0 

10 11 12    1−1 

      

0    − 

    

   

−10 −11   

0    

   

The terms of the form − with fixed  lie on the -th diagonal of this table (see the

boxed terms). Hence,  is the sum of all the terms on the -th diagonal. Then the sumP∞
=0  “contains” all the terms  in this table, and we expect that

∞X
=0

 =
X


 =

∞X
=0



∞X
=0

 (2.12)

However, this argument is non-rigorous since it requires change of the summation order

in series, which does not always preserve the sum. The next statement provides the

conditions under which (2.12) is true.

Theorem 2.14 (The Cauchy product theorem) If
P∞

=0  and
P∞

=0  are absolutely

convergent series of complex numbers then their Cauchy product
P∞

=0  converges ab-

solutely and
∞X
=0

 =

Ã ∞X
=0



!Ã ∞X
=0



!


Proof. Set

 =

X
=0

  =

X
=0

  =

X
=0



and notice that lim→∞ =
P∞

=0  and

lim
→∞

 =

Ã ∞X
=0



!Ã ∞X
=0



!
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We need to prove that the sequence {} converges and

lim
→∞

 = lim
→∞

  (2.13)

Observe that

 =

X
=0

 =

X
=0

X
=0

− =
X

{:+≤}


That is,  is the sum of all terms  in the triangle {  :  +  ≤ }  For  we

have

 =

X
=0



X
=0

 = (0 + + ) (0 + + ) =
X

{:≤≤}


Hence,  is the sum of all  in the rectangle {  :  ≤   ≤ } 
Consider first the case when all terms  and  are non-negative real numbers. Ob-

viously, we have the inclusions

{ +  ≤ } ⊂ { ≤   ≤ }

and, for  = [2],

{ ≤   ≤ } ⊂ { +  ≤ }
(that is, the triangle { +  ≤ } is “squeezed” between two rectangles), which implies

 ≤  ≤ 

Since the both sequences {} and
©
[2][2]

ª
have the same limit as  → ∞,

we obtain that {} has the same limit as {}. In particular, the sequence {}
converges, which means that the series

P∞
=0  also converges. Since  ≥ 0 this series

converges absolutely.

Consider now the general case when  and  are complex. By hypothesis, the seriesP || and
P || converge. Set

∗ =
X

=0

|| |−| 

that is,
P

∗ is the Cauchy product of
P || and

P ||. By the first part of the proof,
the series

P
∗ is convergent. Then we have

|| =
¯̄̄̄
¯

X
=0

−

¯̄̄̄
¯ ≤

X
=0

|| |−| = ∗

which implies by the comparison test that
P

 converges absolutely.

We are left to show that  −  → 0, which will imply (2.13). We have

 −  =
X

{:≤≤}
 −

X
{:+≤}

 =
X

{:≤≤+}
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It follows by the triangle inequality that

| − | ≤
X

{:≤≤+}
|| || 

Denote by ∗ 
∗
 

∗
 the partial sums of the series

P ||,
P ||, and

P
∗, respectively.

Then we have

∗
∗
 − ∗ =

X
{:≤≤+}

|| ||

whence it follows that

| − | ≤ |∗∗ − ∗| 
Since by the first part of the proof |∗∗ − ∗|→ 0, we conclude that also | − |→
0, which was to be proved.

Example. Let us prove some properties of the exponential function.

1. For all   ∈ C,
exp (+ ) = exp () exp ()  (2.14)

Consider the series

exp () =

∞X
=0



!
and exp () =

∞X
=0



!
(2.15)

and let
P∞

=0  be the Cauchy product of these series, that is,

 =

X
=0



!

−

(− )!


By the binomial formula, we have

(+ )

=

X
=0

µ




¶
− =

X
=0

!

! (− )!
− = !

whence

 =
(+ )



!


Hence, we obtain
∞X
=0

 =

∞X
=0

(+ )


!
= exp (+ ) 

By Theorem 2.14, we conclude that

exp (+ ) =

∞X
=0

 =

Ã ∞X
=0



!

!Ã ∞X
=0



!

!
= exp () exp () 

which finishes the proof.

2. Recall the notation exp (1) = . Let us show that, for any integer ,

exp () =  (2.16)
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Let us first prove by induction that (2.16) holds for all  ∈ N. If  = 1 then (2.16)

amounts to the definition of . Inductive step: if (2.16) holds for some  then by (2.14)

exp ( + 1) = exp () exp (1) =  = +1

If  = 0 then exp () = 1 by (2.15), which matches 0 = 1. Before we consider the case

  0, observe that, by (2.14) with  = −,
exp () exp (−) = exp (0) = 1 (2.17)

Hence, if   0 then

exp () =
1

exp (−) =
1

−
= 

3. For any  ∈ C, exp () 6= 0 and, for any  ∈ R, exp () is real and positive.
Indeed, it follows from (2.17) that exp () 6= 0. If  ∈ R then exp () ∈ R just by the

definition

exp () =

∞X
=0



!


If  ≥ 0 then exp ()  0 because all the terms of the series are non-negative and the

term with  = 0 is 1. If   0 then we obtain by (2.17)

exp () =
1

exp (−)  0

The identity (2.16) motivates the following definition of  for any complex :

 = exp () 

For example, we obtain 12 =
√
 because 1212 = 12+12 =  and, hence, 12 satisfies

the definition of
√
.

Naturally, the question arrises how to define  for any positive  and any real (or

complex) . This question will be addressed later on in the next Chapter.

2.6.7 Conditionally convergent series

Definition. A series
P∞

=1  is said to converge conditionally if it converges but does

not converge absolutely, that is,
∞X
=1

|| = +∞

Example. Consider the alternating harmonic series

1− 1
2
+
1

3
− 1
4
+  =

∞X
=1

(−1)−1


≈ 0 69314718 (2.18)

By Exercise 42 this series converges. However, it does not converge absolutely because

∞X
=1

1


= +∞
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One should be careful with conditionally convergent series: they do not satisfy the

commutative and associative laws! For example, by changing the order of terms in such a

series one can obtain a divergent series (or even make its sum to be equal to any prescribed

number). Let us illustrate this phenomenon on the example of the series (2.18). Observe

first that ∞X
=1

1

2
=
1

2

∞X
=1

1


= +∞

and ∞X
=1

1

2 − 1 = +∞

because 1
2−1 ≥ 1

2
. Therefore, there exists 1 ∈ N such that

1 +
1

3
+ +

1

21 − 1  1

Consider now the tail of the series
∞X

=1+1

1

2 − 1 

which also diverges to +∞. Therefore, there exists 2  1 such that

1

21 + 1
+

1

21 + 3
+

1

22 − 1  1

Then there exists 3 such that

1

22 + 1
+

1

22 + 3
+ +

1

23 − 1  1

etc. Now consider the series, which is obtain by changing the order of the alternating

harmonic series: µ
1 +

1

3
+ +

1

21 − 1
¶
− 1
2

+

µ
1

21 + 1
+

1

21 + 3
+

1

22 − 1
¶
− 1
4

+

µ
1

/22 + 1
+

1

22 + 3
+ +

1

23 − 1
¶
− 1
6
+ 

Then sum in each row is at least 1− 1
2
= 1

2
, hence, the series is divergent.

Let us state without proof the following theorem.

Theorem () If
P

 is an absolutely convergent series of complex numbers and
P


is a series that is obtained from

P
 by changing the order of summation and/or by

grouping the terms, then
P

 also converges absolutely andX
 =

X


() If
P

 is a conditionally convergent series of real numbers, then, for any  ∈ R there
exists a series

P
, which is obtain from

P
 by changing the order of terms and such

that
P

 = .
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3 Continuous functions

3.1 Limit of a function

We introduce the notion of the limit of a function, which is similar to the notion of the

limit of a sequence. Let us start with a particular case.

Definition. Let  be a real-valued function defined in some interval  = (+∞) where
 ∈ R, and let  ∈ R. We write that

lim
→+∞

 () =  (3.1)

if, for any   0 there exists  ∈ R such that | ()− |   for all    (more

precisely, for all    and  ∈  so that  () is defined).

Recall the definition of a neighborhood: for any real , a neighborhood of  is an

interval

 () = (−  + ) 

where   0, a neighborhood of +∞ is an interval

 (+∞) = (+∞) 

a neighborhood of −∞ is an interval

 (−∞) = (−∞ ) 

where  ∈ R.
Then the above Definition can be stated as follows: lim→+∞  () =  if, for any

  0, there exists  ∈ R such that

 ∈  (+∞) ∩  =⇒  () ∈  ()  (3.2)

Suppressing the subscripts in the notation of neighborhood, we state this Definition in

yet another form: lim→+∞  () =  if, for any neighborhood  () of  there is a neigh-

borhood  (+∞) of +∞ such that

 ∈  (+∞) ∩  =⇒  () ∈  () 

Terminology: as in the case of sequences, we also say that  () converges (tends, goes)

to  as  goes to +∞ and write  ()→  as → +∞.
In the last form, the definition of the limit can be extended as follows.

Definition. Let  be an open interval in R and  ∈ R be either a point in  or one of

the endpoints of . Set  =  \ {} and let  :  → R be a real-valued function on  . Let
 ∈ R. We write

lim
→

 () = 

if, for any neighborhood  () of , there exists a neighborhood  () of  such that

 ∈  () ∩  =⇒  () ∈  () 
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For simplicity of terminology, for any interval  = ( ) denote by  the closed interval

[ ]  The interval  is called the closure of  in R. Hence, the condition that either  ∈ 

or  is an endpoint of  can be equivalently stated that  ∈ . The above definition can

be stated as follows:

Definition. Let  be an open interval in R and let  ∈ . Set  =  \ {} and let
 :  → R be a real-valued function on  . We write

lim
→

 () =  (3.3)

where  ∈ R, if, for any neighborhood  () of , there exists a neighborhood  () of 

such that

 ∈  () ∩  =⇒  () ∈  () 

A more precise notation would be

lim
→
∈

 () = 

which indicated the domain  of  . Note that by definition  ∈  . We will normally

used a simplified notation (3.3). We also write  () →  as  →  and say that  ()

goes (tends) to  as  goes to  (if  ∈ R then one says that  () converges to , and if
 = +∞ or −∞ then  () diverges to ).

The case  = +∞ considered above fits also into this definition since in this case

 =  = (+∞).
Consider the case when   ∈ R, denote the neighborhood of  by  () and the

neighborhood of  by  (). Then this definition reads as follows: lim→  () =  if, for

any   0 there exists   0 such that

|− |   and  ∈  =⇒ | ()− |  

In this form the definition of the limit is stated in most textbooks, and it is convenient

for applications.

Example. Let  () = 2,  ∈ R, and let us show that  ()→ 2 as →  ∈ R. Indeed,
for any  ∈  = R \ {}, we have¯̄

 ()− 2
¯̄
=
¯̄
2 − 2

¯̄
= |− | |+ | 

If |− |   then  ∈ (−  + ) whence || ≤ ||+ || and |+ | ≤ 2 ||+ ||. Since
 can be chosen, we can assume that  ≤ 1, whence also |+ | ≤ 2 ||+ 1. This implies
that under condition |− |  , we have¯̄

 ()− 2
¯̄
  (2 ||+ 1) 

It follows that ¯̄
 ()− 2

¯̄
 

where   0 is given, provided

 ≤ 

2 ||+ 1 
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Hence, we can take  = min
³
1 

2||+1

´


Example. Let  () = exp () and let us show that  ()→ 1 as → 0. For that, write

|exp ()− 1| =
¯̄̄̄
¯
∞X
=1



!

¯̄̄̄
¯ ≤

∞X
=1

|| = ||
1− ||

assuming ||  1. Given   0 let us find 0   ≤ 1 such that

||   =⇒ ||
1− ||   (3.4)

Indeed, using
||
1−|| =

1
1−|| − 1 we rewrite the last inequality in the form

1

1− ||  1 + 

which is equivalent to 1− ||  1
1+

and to ||  
1+
. Hence, taking  = 

1+
(and noticing

that   1) we obtain from (3.4)

||   =⇒ |exp ()− 1|  

which proves that  ()→ 1 as → 0.

Example. Consider  () = 1
|−1| and show that  () → +∞ as  → 1. For that we

need to show that, for any  ∈ R, there exists   0 such that

0  |− 1|   =⇒ 1

|− 1|  

Indeed, just take  = 1

is   0 (and  is any if   0).

Theorem 3.1 Let  be an open interval in R and let  ∈ . Let  be a real-value function

defined on  =  \ {}. Then the condition

lim
→

 () = 

(where  ∈ R) is equivalent to the following: for any sequence {} ⊂ ,

lim
→∞

 =  =⇒ lim
→∞

 () = 

Proof. Consider the case when both  and  are real numbers. If  ()→  as → 

then, for any   0, there exists   0 such that

|− |   and  ∈  =⇒ | ()− |  

If {} ⊂  is a sequence such that  →  then there exists  ∈ N such that

 ≥  =⇒ | − |  
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Hence, we conclude by the previous lines that

 ≥  =⇒ | ()− |  

which means that  ()→  as →∞.
Conversely, assume that for any sequence {} ⊂  , the condition  →  implies

 ()→ , and prove that lim→  () = . Assume from the contrary that the latter is

not true. Then this means that there exists   0 such that for any   0 for some  ∈ 

holds |− |   while | ()− | ≥  Fix   0 that exists by this condition and set

 = 1

,  ∈ N. Then there is  ∈  such that | − |  1 and | ()− | ≥  Hence,

we obtain a sequence {} ⊂  such that  →  while  () 6→ .

In the same way one treats the cases when  and/or  are infinite.

Theorem 3.2 Let  be an open interval in R and let  ∈ . Let   be a real-valued

functions defined in  =  \ {} such that

lim
→

 () =  and lim
→

 () = 

where   ∈ R.
() Then

lim
→

( + ) = +  lim
→

 =  lim
→




=





provided the expressions +   

are defined (and  6= 0 in the case of 


).

() Let  () ≤  () for all  ∈ . Then  ≤ .

() If    are three functions on  such that  ≤  ≤  and

lim
→

 () = lim
→

 () = 

then also

lim
→

 () = 

Proof. () Indeed, for any sequence {}∞=1 ⊂  such that  → , we have by

Theorem 3.1  () →  and  () → . By Theorem 2.6, we obtain ( + ) () →
 +  provided  +  is defined. Hence, applying once again Theorem 3.1, we conclude

( + ) ()→ +  as → . In the same way one treats other cases.

() Taking any sequence  → , we obtain by Theorem 3.1 that  ()→ ,  ()→
. Since  () ≤  ()  Theorem 2.1 implies that  ≤ .

() Taking any sequence  →  and applying Theorem 2.1, we obtain the claim.

3.1.1 Composite functions

Let  be three sets and consider two mappings  :  →  and  :  → . Then

 ( ()) is defined as an element of  for any  ∈ . The mapping  ( ()) : →  is

called the composition of  and  or a composite mapping and is denoted by  ◦  :

 ◦  () =  ( ()) 
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If  are subsets of R then we use the term function instead of mapping. Let us

emphasize that the composition  ◦  is defined whenever the image of  is contained in
the domain of .

Let us further extend the definition of the limit of a function to the case when the

domain of the function is not necessarily an interval.

Definition. For any set  ∈ R, its closure  in R is defined by

 =
©
 ∈ R : for any neighborhood  () ,  () ∩ 6= ∅ª 

Clearly, we always have  ⊂ .

Example. Let  be any interval with endpoints   ∈ R. Then  = [ ], which matches
the previous definition of . Furthermore, let  =  \ {} where  ∈ R. Then  = [ ] 

Example. Q = R because for any  ∈ R and any neighborhood  () there are rational

numbers in  ().

Definition. Let  ⊂ R be a non-empty set and  :  → R be a function on  . Let  ∈ 

and  ∈ RThen we write
lim
→
∈

 () = 

if, for any neighborhood  () of , there is a neighborhood  () of  such that

 ∈  () ∩  =⇒  () ∈  () 

In the previous lecture, we have considered the case when  =  \ {} where  is an
open interval and  ∈  This case is a particular case of the present definition because

 = . Theorems 3.1 and 3.2 remain true for an arbitrary set  .

Theorem 3.3 (Limit of a composite function) Let  be subsets of R and  and  be

real-valued functions on  and , respectively. Assume that, for some  ∈ ,  ∈ ,

 ∈ R,
lim
→
∈

 () = 

and

lim
→
∈

 () = 

If the composite function  ( ()) is defined on , that is, if  () ⊂ , then

lim
→
∈

 ( ()) = 

Proof. For any neighborhood  () of , there is a neighborhood  () of  such that

 ∈  () ∩ =⇒  () ∈  ()  (3.5)

Given the neighborhood  (), there exists a neighborhood  () such that

 ∈  () ∩ =⇒  () ∈  () 
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By the condition  () ⊂ , we have also  () ∈  for any  ∈ , whence we see that

 ∈  () ∩ =⇒  () ∈  () ∩

Applying (3.5) with  =  (), we obtain that, for any neighborhood  () of , there

exists a neighborhood  () of  such that

 ∈  () ∩ =⇒  ( ()) ∈  ()  (3.6)

which means that

lim
→
∈

 ( ()) = 

Example. Let us evaluate lim→0 exp
¡
1
2

¢
. Note that the domain of the function exp

¡
1
2

¢
is R \ {0}.
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We have

lim
→0

1

2
= +∞

which follows from 1
|| → +∞. Since exp ()   (which follows from the definition of

exp), we obtain

lim
→+∞

exp () = +∞

By Theorem 3.3, we obtain

lim
→0

exp

µ
1

2

¶
= lim

→+∞
exp () = +∞ (3.7)

Example. Consider now the function  () = exp
¡
1


¢
and find its limits as → 0 in the

two domains:   0 and   0.
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Using the fact that

lim
→0
0

1


= +∞

we obtain

lim
→0
0

exp

µ
1



¶
= lim

→+∞
exp () = +∞

Using that

lim
→0
0

1


= −∞

we obtain

lim
→0
0

exp

µ
1



¶
= lim

→−∞
exp () = lim

→−∞
1

exp (−) = lim
→+∞

1

exp ()
=

1

+∞ = 0

3.2 Continuous functions

Definition. Let  be a real-valued function on a set  ⊂ R. We say that  is continuous
() at a point  ∈  if

lim
→
∈

 () =  () 

If  is not continuous at  then we say that  is discontinuous at .

If  is continuous at all points of  then  is called continuous on  or just continuous.

Example. Trivial examples of continuous functions are  () = const and  () = .

Let us show that function  () = exp () is continuous at any point  ∈ R. It has
been shown already that

lim
→0

exp () = 1 = exp (0) 

that is, exp () is continuous at  = 0. For an arbitrary  ∈ R, we have

exp () = exp (− + ) = exp () exp (− ) 
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Since

lim
→

exp (− ) = lim
→0

exp () = 1

it follows that

lim
→

exp () = exp () 

Theorem 3.4 Let   be two functions defined on a set  ⊂ R. If  and  are continuous
at a point  ∈  then also the functions  + , ,  are continuous at  (for the case

 assume that  6= 0).
If   are continuous on  then also  + , ,  are continuous on  (for the case

 assume that  6= 0).

Proof. The first claim follows immediately from Theorem 3.2. For example, for the

sum  +  we have

lim
→

( + ) () = lim
→

 () + lim
→

 () =  () +  () = ( + ) () 

whence the continuity of  +  at  follows. Similarly one treats the functions  and

.

The second claim follows obviously from the first one.

Example. Since the functions  () =  and  () = const are continuous on R, it
follows that also any function  () =  is continuous on R for any  ∈ R and  ∈ R.
Furthermore, any polynomial

 () = 0 + 1+ 2
2 + + 



is continuous on R.
Consider a rational function  () =

()

()
where  and  are two polynomials, which

is defined in the set { 6= 0}  Then  is continuous in the domain { 6= 0} 

Theorem 3.5 Let  : → R and  :  → R are two functions, where  ⊂ R and let
the composition  ◦  be defined (that is,  () ⊂ ). If  is continuous at  ∈  and 

is continuous at  =  () then  ◦  is continuous at .
If  is continuous on  and  is continuous on  then  ◦  is continuous on .

Proof. By Theorem 3.3, we have

lim
→

 ( ()) = lim
→()

 () = lim
→

 () =  () =  ( ()) 

that is,  ( ()) is continuous at .

If  is continuous at any point  ∈  and  is continuous at any  ∈  then  is

continuous at  =  () ∈  (by the assumption that  () ⊂ ) and, hence,  ◦  is
continuous at . Therefore,  ◦  is continuous on .

Example. Let  () be a rational function. Then exp ( ()) is continuous on the domain

of  ().
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Example. Consider the function

 () =

½
exp

¡− 1
2

¢
  6= 0

0  = 0

and prove that  () is continuous on R. The function exp
¡− 1

2

¢
is continuous in the

domain { 6= 0} by Theorem 3.5. Hence, we are left to prove that  is continuous at 0,

that is,

lim
→0
∈R

 () = 0 (3.8)

As it follows from one of the above examples,

lim
→0
6=0

exp

µ
− 1
2

¶
= 0

that is, for any   0 there is   0 such that

||    6= 0 =⇒
¯̄̄̄
exp

µ
− 1
2

¶¯̄̄̄
 

Allowing now  = 0 and using the fact that  (0) = 0, we obtain that

||   =⇒ | ()|  

whence (3.8) follows.

3.3 Global properties of continuous functions

3.3.1 The intermediate value theorem

Theorem 3.6 (The intermediate value theorem - ) Let  () be a

continuous function defined on a closed interval [ ]. If  ()  0 and  ()  0, then

there exists  ∈ ( ) such that  () = 0

Proof. Consider the set

 = { ∈ [ ] :  () ≥ 0} 

This set is bounded and non-empty (indeed,  ∈ ). Hence, it has the infimum  = inf  ∈
[ ]. Let us show that  () = 0.

Let us first show that  () ≥ 0. If  =  then there is nothing to prove. If    then

 + 1

  for all large enough  ∈ N. Since  + 1


is not a lower bound for  (because 

is the greatest lower bound of ), there is  ∈  such that    + 1

. On the other

hand,  ≥  because  is a lower bound for . Hence,  ≤    + 1

and  () ≥ 0.

Taking limit as  →∞, we obtain  →  and, hence,  () →  (). Since  () ≥ 0,
we obtain  () ≥ 0.
Let us prove that  () ≤ 0. Note that  6=  because  () ≥ 0 while  ()  0. Hence,

 = − 1

  for all large enough  ∈ N. Since  is a lower bound for ,  ∈  whence

 () ≤ 0. Since  →  as  → ∞, we obtain that  () ≤ 0, which finishes the proof.
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Example. Let  () be a polynomial of an odd degree  with real coefficients; that is,

 () =  + 1
−1 + + 

where  ∈ R and  is odd. Let us prove that there is at least one real root, that is, there
is  ∈ R such that  () = 0. By Exercise 47, we have

lim
→+∞

 () = +∞

which implies that there is  ∈ R with  ()  0. Similarly, using the fact that  is odd

and lim→−∞  = −∞, we obtain that
lim

→−∞
 () = −∞

It follows that there is  ∈ R such that  ()  0. By Theorem 3.6, there is  ∈ R such
that  () = 0

Recall the following notation. If  is real-valued function defined on a set  then the

image of  is the set

 () = { () :  ∈ } 
Then define

sup


 = sup  ()

and

inf

 = inf  () 

Theorem 3.7 Let  be a continuous function on an interval . Then the image  =  ()

is an interval. Moreover, the endpoints of  are inf  and sup  .

Note that the types of the intervals   are not predefined: they may be open, semi-

open, or closed, as well as bounded or unbounded.

Proof. It suffices to show that if

inf     sup 

then  ∈  (). By definition of sup and inf, there are numbers   ∈  () such that

inf         sup 

Let  =  () and  =  () where   ∈ [ ]. Assume for simplicity that   . Consider

on [ ] ⊂  the function

 () =  ()− 

and observe that  () =  −   0 and  () =  −   0. Hence, by Theorem 3.6, the

function  vanishes at a point  ∈ ( ) which implies  () =  and  ∈  () 

Example. Let us show that exp (R) = (0+∞). Since exp ()  0 for any  ∈ R, we
have exp (R) ⊂ (0+∞)  Observing that

lim
→+∞

exp () = +∞
and

lim
→−∞

exp () = lim
→+∞

exp (−) = lim
→+∞

1

exp ()
=

1

+∞ = 0

we obtain that sup exp () = +∞ and inf exp () = 0. Hence, by Theorem 3.7, exp (R) is
an interval with the endpoints 0 and +∞, which can be only (0+∞) 
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3.3.2 The maximal value theorem

If  is a real-valued function defined on a set  then the maximal value (maximum) of 

is the maximum of  () if it exists. Notation:

max


 = max  () 

In general, max  may not exist, but if it exists then it is equal to sup  . Similarly one

defined the minimal value min 

Theorem 3.8 (The maximal value theorem) Let  be a continuous function on a closed

bounded interval . Then both max  and min  exist.

Proof. Let  = [ ]. Let us first show that  () is bounded from above, that is,

there is  ∈ R such that  () ≤  for all  ∈ [ ]. If such  does not exists then, for

any  ∈ N, there is  ∈ [ ] such that  ()  . The latter implies  () → +∞ as

→∞. The sequence {} is bounded and, hence, it contains a convergent subsequence,
say  → , where  ∈ [ ]. By the continuity of  , we have

 ()→  () as  →∞

which contradicts  ()→ +∞.
Since  () is a bounded set, it has a finite supremum  = sup  . Let us show that

function  takes the value  , that is, there is 0 ∈ [ ] where  (0) =  , which will

imply that = max  . By the definition of the supremum,− is not an upper bound
for any   0. Hence, for any   0 there is  ∈ [ ] such that  ()   − . Taking

 = 1

and denoting by  this value of , we obtain a sequence {} ⊂ [ ] such that

 ()   − 1

. Since also  () ≤  , we have  ()→  as →∞. The sequence

{} is bounded and, hence, has a convergent subsequence {}, say  → 0. By the

continuity of  , we have  ()→  (0) whereas by construction  ()→  . Hence,

 (0) = , which was to be proved.

Corollary. If  is a continuous function on a closed bounded interval  then the image

 () is also a closed bounded interval; moreover,

 () =
h
min


max



i


Proof. By Theorem 3.7  () is an interval with the endpoints  and , where

 = inf  and  = sup  . By Theorem 3.8, we have  = min  and  = max  ,

which in particular implies that both  and  belong to  (). Hence, we conclude that

 () = [], which proves the both claims.

3.4 The inverse function

Recall that a function  () on an interval  is called (monotone) increasing if  ≤ 

implies  () ≤  (). The function is called strictly (monotone) increasing if   

implies  ()   ()  Similarly one defines decreasing functions.
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Example. Function  () = exp () is strictly increasing on R. Indeed, if    then

exp () = exp ( − + ) = exp ( − ) exp ()  exp ()

because  =  −   0 and, hence,

exp () = 1 +  +
2

2!
+   1

Example. Function  () =  is strictly increasing on [0+∞) provided  ∈ N. Indeed,
if    then setting  =  −  we obtain

 = (+ )

=  +

−1X
=1

µ




¶
− +  ≥  +   

Example. Function  () =  is strictly decreasing on (0+∞) provided  is a negative
integer. This follows from  = 1

|| and the fact that 
|| is strictly increasing.

Definition. Consider a function (a mapping)  : →  where  and are two arbitrary

sets. The inverse function is a function −1 :  →  with the following property:

 =  () is equivalent to  = −1 ()

for all  ∈  and  ∈ .

The inverse function may not exist but if it exists then it is unique. Note that if −1

exists then also (−1)−1 exists and (−1)−1 = 

Note also the following useful identities that follow immediately from the definition:

−1 ( ()) =  for all  ∈ 


¡
−1 ()

¢
=  for all  ∈ 

In other words, −1 ◦  and  ◦ −1 are the identity functions.
Example. For the function  : R \ {0} → R \ {0} defined by  () = 1


the condition

 = 1

is equivalent to  = 1


. Hence, −1 exists and coincides with  .

Consider the function  : [0+∞) → [0+∞) defined by  () = 2. Since the

condition  = 2 for non-negative  and  is equivalent to  =
√
, we see that the inverse

function −1 exists and −1 () =
√
.

Claim The inverse function −1 exists if and only if  : →  is a bijection.

Proof. Assume that −1 exists. Then  is a bijection because, for any  ∈ , the

condition  () =  is equivalent to  = −1 () and, hence, is satisfied for exactly one
value of  ∈ . Conversely, if  is a bijection then for any  ∈  there exists a unique

 ∈  such that  () = , which defines the function  = −1 ().

Theorem 3.9 Let  be a strictly monotone function on an interval  and let  =  ().

Then the inverse function −1 :  →  exists, is strictly monotone and continuous.
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Example. The function exp () is strictly increasing on R and exp (R) = (0+∞).
Hence, it has the continuous inverse function defined on (0+∞). This function is called
the natural logarithm and is denoted by ln (sometimes also log). Hence, we have the

defining condition for ln  for any   0:

 = ln  ⇐⇒  = exp

0 1 2 3 4 5

-2

-1

0

1

x

ln x

The natural logarithm can be used to define  for any   0 and  ∈ R (or even
 ∈ C). Indeed, let us set

 = exp ( ln )  (3.9)

Function  () =  is called the exponential function with the base . Let us mention the

following properties of this function:

1. 1 =  because exp (ln ) = .

2. + =  because

 = exp ( ln ) exp ( ln ) = exp ((+ ) ln ) = +

3. For any  ∈ N, the present definition of  matches the previous inductive definition
of  because by the above two properties +1 = .

4. For all   ∈ R,
()


=  (3.10)

(see Exercise 51).

Note that ln  = 1 so that by (3.9)  = exp () that matches the previous definition

of .

Proof of Theorem 3.9. Assume for simplicity that  is strictly increasing. Clearly,

 is a bijection from  onto  . Hence, the inverse function exists. To prove the monotonic-

ity fix 1  2 from  and let  = −1 () so that  =  (). We claim that 1  2.

Indeed, 1 = 2 implies 1 = 2 and 1  2 implies 1  2. Since the both outcomes

contradict 1  2, the only remaining possibility is 1  2.
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Let us prove that −1 is continuous, that is, for any  ∈  and any sequence {} ⊂ 

such that  → , we have −1 () → −1 () =  Assume from the contrary that the

sequence  = −1 () does not converge to . Then by Theorem 2.1 there is   0 such
that outside  () there are infinitely many terms of the sequence {}. It follows that
one of the intervals (−∞ − ], [+ +∞) contains infinitely many terms of {}, let
it be (−∞ − ] Renaming the sequence, we can assume  ≤ −  for all  ∈ N. Since
 ≤ −    and both   belong to the interval , it follows that also −  ∈ . By

the monotonicity of  , we obtain that

 =  () ≤  (− ) 

whence

 = lim
→∞

 ≤  (− )   () = 

This contradiction shows that −1 ()→ −1 (), which proves the continuity of −1.
Note that it the continuity of  is not assumed in the statement of Theorem 3.9. If 

is still continuous then, by Theorem 3.7,  is an interval. Hence, in this case the domain

of the inverse function is also an interval.

Example. The function  =  (where  ∈ N) is strictly increasing on [0+∞) and its
image is [0+∞) Hence, the inverse function exists and is continuous on [0+∞) and is
denoted by  = 

√
.

Note that, for any   0, 
√
 = 1. Indeed,  = 

√
 is the unique positive number

that satisfy the equation  = . On the other hand,  = 1 also satisfies this equation

by (3.10) since
¡
1

¢
= 

1

 = 

3.5 Trigonometric functions and the number 

Let us define the trigonometric functions sin and cos by the identities:

sin =
 − −

2
and cos =

 + −

2
 (3.11)

where  is the imaginary unit. Here  can be any complex number but we will use sin

and cos mostly with a real . Note that in this case the definitions still require the

exponential function of a complex argument .

It follows from the definition of sin and cos that

 = cos+  sin

(the Euler formula).

Using the exponential series, we obtain the expansions of sin and cos into the series

as follows:

sin = − 3

3!
+

5

5!
−  =

∞X
=0

(−1) 2+1

(2 + 1)!
(3.12)

and

cos = 1− 2

2!
+

4

4!
−  =

∞X
=0

(−1) 2

(2)!
(3.13)
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(see Exercise 53). In particular, it follows that sin and cos are real if  ∈ R. Also, the
expansions (3.12) and (3.13) imply that sin is an odd function that is,

sin (−) = − sin

whereas cos is an even function, that is

cos (−) = cos

It follows from (3.11) that the functions sin and cos are continuous on R (see

Exercise 53). The graphs of sin and cos are as follows:

-6 -5 -4 -3 -2 -1 1 2 3 4 5 6

-2

-1

1

2

x

sin x

-6 -5 -4 -3 -2 -1 1 2 3 4 5 6

-2

-1

1

2

x

cos x

As one can see from the graphs, sin and cos are periodic functions, which is not obvious

from either (3.11) or (3.12), (3.13). We’ll prove the periodicity in the rest of this section.

Let us

Lemma 3.10 () There exists a number  ∈ (0 2) such that cos  = 0 whereas cos  0

for all 0 ≤    In particular,  is the smallest positive root of the equation cos = 0.

() sin  0 for any  ∈ (0 2).
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x

sin x

Proof. () Note that cos 0 = 1  0. Let us show that cos 2  0. We have

cos 2 = 1− 2
2

2!
+
24

4!
− 2

6

6!
−  = 0 − 1 + 2 − 3 + 

where  =
22

(2)!
. The sequence {} is strictly decreasing for  ≥ 1 because

+1


=

22

(2+ 1) (2+ 2)
≤ 1

Let  =
P

=0 (−1)  be the partial sum of this series. We claim that the sequence

{2}∞=0 of even partial sums is decreasing. For example, have
2 = 0 − 1 + 2 = 0 − (1 − 2) ≤ 0 = 0

Similarly, we obtain in the general case

2(+1) = 2 − 2+1 + 2+2 ≤ 2

Hence, for any  ≥ 0,
cos 2 = lim

→∞
 = lim

→∞
2 ≤ 2

In particular, we have

cos 2 ≤ 2 = 1− 2
2

2!
+
24

4!
= −1

3
 0
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that is cos 2  0. Applying Theorem 3.6 to the interval [0 2], we conclude that cos = 0

for some  ∈ (0 2) 
Consider the set

 = { ∈ [0 2] : cos = 0} 
which is non-empty by the above argument, and set

 = inf  ∈ [0 2]

Let us show that  ∈ . Indeed, there is a sequence {}∞=1 ⊂  such that  →  as

→∞, whence it follows by the continuity of cos

cos  = lim
→∞

cos = 0

whence  ∈ . Note that   0 because cos 0  0 and   2 because cos 2  0.

Finally, let us show that if 0     then cos  0. Since  is a lower bound for ,

the condition    implies  ∈  whence cos 6= 0. If cos  0 then, applying Theorem

3.6 to the interval [0 ], we obtain that is a point 0     such that cos  = 0 and,

hence,  ∈ , which is impossible because   . We conclude that cos  0, which

finishes the proof.

() We have

sin = − 3

3!
+

5

5!
−  = 0 − 1 + 2 − 

where  =
2+1

(2+1)!
. For any  ≥ 0, we have

+1


=

2

(2+ 2) (2+ 3)


4

(2+ 2) (2+ 3)
 1

that is, the sequence {}∞=0 is decreasing.
Consider the partial sum  =

P

=0 (−1)  and prove that the sequence of odd
partial sum {2+1}∞=0 is increasing. For example,

3 = 0 − 1 + 2 − 3 ≥ 0 − 1 = 1

and similarly

2+1 = 2−1 + 2 − 2+1 ≥ 2−1

Hence

sin = lim
→∞

2+1 ≥ 2+1 for any  ≥ 0
In particular, we have for any  ∈ (0 2)

sin ≥ 1 = − 3

6
 0

because   3

6
is equivalent to 2  6, and the latter is true by   2.

Definition. Define the number  by  = 2 where  is the smallest positive root of cos

that exists by Lemma 3.10.
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It follows from the above proof that 0    4. Similarly to the proof of Lemma 3.10,

one can show that   3
2
and, hence,   3 (see Exercise 53). A numerical computation

shows that

 = 3 14159265358979

This many decimal digits of  were known as early as in 15 century. Presently  is

computed to over 6 billion decimal digits.

Theorem 3.11 () We have the identities

exp
³
2

´
=  exp () = −1 exp (2) = 1

() The function exp () is 2 periodic, that is,

exp ( + 2) = exp () for all  ∈ C (3.14)

() Functions sin and cos are 2 periodic, that is

sin (+ 2) = sin and cos (+ 2) = cos for all  ∈ R

Proof. () Let us apply the identity

cos2 + sin2  = 1 (3.15)

(see Exercise 53). Using as above the notation  = 2, we have cos  = 0 whence by

(3.15) |sin | = 1. Since 0    2 and, by Lemma 3.10(), sin   0 , we obtain sin  = 1.

Therefore, by the Euler formula,

exp
³
2

´
= exp () = cos +  sin  = 

whence

exp () = exp () exp () =  ·  = −1
exp (2) = exp () exp () = (−1)2 = 1 (3.16)

() Using (3.16), we obtain

exp ( + 2) = exp () exp (2) = exp () 

() Using (3.12) and (3.14), we have

sin (+ 2) =
1

2
(exp (+ 2)− exp (−− 2))

=
1

2
(exp ()− exp (−)) = sin

and a similar argument works for cos.
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4 Differential calculus

4.1 Definition of the derivative

Definition. Let  () be a function defined on an interval . The derivative ( )

of function  at a point  ∈  is defined by

 0 () = lim
→

 ()−  ()

 − 


provided the limit exists.

Here the variable  varies in  \ {} because this is the domain of the function  7→
()−()

− . The expression
()−()

− is called the difference quotient of function  and its

value shows how functions  varies between the points  and . The derivative  0 () is
the rate of change of function  at the point .

Setting  =  − , we obtain an equivalent definition:

 0 () = lim
→0

 (+ )−  ()




Example. Let  () = . Then  () −  () = 0 whence  0 () = 0. We can write
this down as follows:

()
0
= 0

Let  () = . Then
 ()−  ()

 − 
=

 − 

 − 
= 1

whence  0 () = 1 for all  ∈ R. Hence,

()
0
= 1

Let  () = 2. Then

 0 () = lim
→0

(+ )
2 − 2


= lim

→0
2+ 2


= 2

Hence, ¡
2
¢0
= 2

More generally, one can prove that, for any  ∈ N,

()
0
= −1

(see Exercise 56).

Let  () = exp (). By Exercise 43,

 0 () = lim
→

exp ()− exp ()
 − 

= exp () 

whence

(exp ())
0
= exp ().
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Let  () = sin. Then

 0 () = lim
→0

sin (+ )− sin


= lim
→0

sin cos+ cos sin− sin


= lim
→0

sin
cos− 1


+ lim

→0
cos

sin




By Exercise 54, we have

lim
→0

cos− 1


= 0 and lim
→0

sin


= 1

whence

(sin)
0
= cos

Similarly one proves that

(cos)
0
= − sin

(see Exercise 56).

Physical meaning of the derivative. Let  () be the position function of an object

that moves on a straight line. That is, at time  the object is located at the point  () ∈ R.
Then

 (+ )−  ()


=
displacement of the object

time interval

is the average velocity of the object in the time interval [ + ]. Taking the limit when

→ 0, we obtain the instantaneous velocity of the object at time . Hence, the derivative

 0 () is the instantaneous velocity of the object at time . For example, if the object is a
car then  0 () is displayed at the speedometer at any time .

Geometric meaning of the derivative. Consider the graph of the function  =  ()

and consider the a straight line through the points (  ()) to (+   (+ ))  which

is called a secant line of the graph. The equation of a straight line that goes through a

point (0 0) has the form

 =  ( −0) + 0

(we use the capital  and  to distinguish with the graph of function ) where  is

the slope ( ) of the line. Setting 0 = , 0 =  (),  =  + , and

 =  (+ ), we obtain the equation for :

 (+ ) = +  ()

whence

 =
 (+ )−  ()




Taking → 0, we obtain →  0 (). The limiting position of a secant line when → 0

is called the tangent line of the graph at the point . The equation of the tangent line is

 =  0 () ( − ) +  ()  (4.1)
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Example. Let  () = 3. Then the equation (4.1) becomes

 = 22 ( − ) + 3

For example, at  = 1 we obtain the following tangent line:

 = 3 ( − 1) + 1 = 3 − 2

Here are the graphs of the function  () and its tangent line at  = 1:

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

-2

0

2

4

6

8

x

y

The tangent line can be considered as a good approximation of the graph of the

function near the point . Setting  = + , obtain the following relation

 (+ ) ≈  () +  0 () (4.2)

What is the exact meaning of this relation? To state it let us introduce the following

terminology.

Definition. Let  () and  () be two functions defined on a interval  ⊂ R and  ∈ .

We write

 () =  ( ()) as →  (4.3)

if

lim
→

 ()

 ()
= 0

One reads out (4.3) as follows :  is little  of .

For example,

2 =  () as → 0

while

 = 
¡
2
¢
as → +∞

Lemma 4.1 If  0 () exists then

 (+ ) =  () +  0 ()+  () as → 0 (4.4)
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The relation (4.4) can be considered as a rigorous version of (4.2).

Proof. We need to prove that

 (+ )−  ()−  0 () =  () as → 0

Indeed, we have

lim
→0

 (+ )−  ()−  0 ()


= lim
→0

 (+ )−  ()


−  0 () = 0

whence (4.4) follows.

Example. Let  () = sin. Then by (4.4)

sin (+ ) = sin+  cos+  () 

For example, if  = 0 then we obtain sin = +  (). One can prove this formula also

by using the expansion of sin into the series in powers of .

Differential. The increment  of the variable  is also called the differential of  and

is denoted by  (here  is NOT the product of  and ;  is just another notation for

, which contains the reference to the variable ). Using this notation, rewrite (4.4) as

follows

 (+ )−  () =  0 () +  () as → 0 (4.5)

The left hand side  (+ )−  () is called the increment of the function  . The term

 0 ()  on the right hand side is called the differential of the function  and is denoted

by  () so that

 () =  0 ()  (4.6)

Note that the differential  is a linear function of  (considering  to be fixed). Since

by (4.5)

 (+ )−  () =  () +  () 

we can say that the differential is the main linear part of the increment of function.

Example. Using the derivatives evaluated above, we obtain from (4.6)

 = −1

 exp () = exp () 

 sin = cos 

 cos = − sin 

Definition. We say that a function  defined on an interval  is differentiable at a point

 ∈  if the derivative  0 () exists. Function  is differentiable on  if  is differentiable

at any point  ∈ .

Theorem 4.2 If a function  is differentiable at  then  is continuous at .
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Proof. We have

lim
→

( ()−  ()) = lim
→

 ()−  ()

 − 
( − ) =  0 () lim

→
( − ) = 0

whence

lim
→

 () = 

Hence,  is continuous at .

Example. Consider the function

 () =

½
1   0

0  ≤ 0
Since  =  on (0+∞) and on (−∞ 0), we obtain that  is differentiable at  6= 0
and  0 () = 0. Let us show that  is not differentiable at  = 0. Indeed, at this point
the function  is not even continuous since

lim
→0
0

 () = 1 6= 0 =  (0) 

By Theorem 4.2, function  is not differentiable at 0.

4.2 Rules of differentiation

Theorem 4.3 Let  and  be two functions on an interval  ⊂ R, which are differentiable
at some point  ∈ . Then functions  + , , 


are also differentiable at  (in the case

of  assuming  6= 0) and
()

( + )
0
() =  0 () + 0 (). (4.7)

() The product rule ()

()
0
() =  0 ()  () +  () 0 ()  (4.8)

() The quotient rule ()µ




¶0
() =

 0 ()  ()−  () 0 ()
2 ()

 (4.9)

It follows from (4.8) that, for any constant 

()
0
=  0

Proof. () Using the definition of the derivative and Theorem 3.2, we obtain

( + )
0
() = lim

→

 () +  ()−  ()−  ()

 − 

= lim
→

 ()−  ()

 − 
+ lim

→

 ()−  ()

 − 

=  0 () + 0 () 
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() Arguing as above and using the continuity of  , which holds by Theorem 4.2, we

obtain

()
0
() = lim

→

 ()  ()−  ()  ()

 − 

= lim
→

 ()  ()−  ()  ()

 − 
+ lim

→

 ()  ()−  ()  ()

 − 

= lim
→

 () lim
→

 ()−  ()

 − 
+  () lim

→

 ()−  ()

 − 

=  () 0 () +  ()  0 () 

which was to be proved.

() Similarly to (), we haveµ
1



¶0
() = lim

→

1

 − 

µ
1

 ()
− 1

 ()

¶
= lim

→

1

 − 

µ
 ()−  ()

 ()  ()

¶
= lim

→

 ()−  ()

 − 
lim
→

1

 ()  ()

=
−0 ()
2 ()



Hence, we have µ
1



¶0
() = − 0 ()

2 ()
 (4.10)

which is a particular case of (4.9) for  = 1.

For arbitrary  , we obtain using (4.8) and (4.10):µ




¶0
=

µ

1



¶0
=  0

µ
1



¶
+ 

µ
1



¶0
=

 0


− 0

2
=

 0 − 0

2


Theorem 4.4 (The chain rule - ) Let  be a function on an interval , and 

be a function on an interval  such that the composition ◦ is defined, that is  () ⊂ .

If  is differentiable at a point  ∈  and  is differentiable at  =  () ∈ , then  ◦ 
is differentiable at  and

( ◦ )0 () = 0 ()  0 (). (4.11)

One can also write

( ◦ )0 () = 0 ( ())  0 () 

Example. Consider a general exponential function  () =  where   0 and  ∈ R.
By definition, we have

 () = exp ( ln ) 
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which can be written as the composition of the following two functions:

exp () and  =  ln 

Hence, by the chain rule,

 0 () = (exp ())0 ( ln )0 = exp () ln  =  ln 

that is,

()
0
=  ln 

Example. The function  () = exp (cos 2) can written as the composition of three

functions:

exp () ,  = cos   = 2

Applying the chain rule twice, we obtain

 0 () = (exp ())0 (cos )0 (2)0 = −2 exp () sin  = −2 exp (cos (2)) sin 2

Before the proof of Theorem 4.4, let us prove the following stronger version of Lemma

4.1.

Lemma 4.5 Let  be a function on an interval  which is differentiable at a point  ∈ .

Then there exists a function  on  such that

 ()−  () =  () ( − ) (4.12)

for all  ∈  and

lim
→

 () =  () =  0 ()  (4.13)

Remark. This statement covers Lemma 4.1 because by (4.12)

 ()−  () =  0 () ( − ) + ( ()−  0 ()) ( − )

=  0 () ( − ) +  ( − ) 

where in the last line we have used that  ()−  0 ()→ 0 as  → .

Proof. Define function  so that (4.12) is satisfied:

 () =
 ()−  ()

 − 


for  6=  and set

 () =  0 () 

Clearly, (4.12) holds for all  ∈  (if  =  then the both sides of (4.12) vanish), and

lim
→

 () = lim
→

 ()−  ()

 − 
=  0 () 
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Proof of Theorem 4.4. By Lemma 4.5, we have the identities

 ()−  () =  () ( − ) for all  ∈ 

and

 ( )−  () =  ( ) ( − ) for all  ∈ 

where

lim
→

 () =  () =  0 ()

and

lim
→

 ( ) =  () = 0 () 

Then, setting  =  () and noticing that  =  (), we obtain

 ◦  ()−  ◦  () =  ( ())−  ( ()) =  ( ()) ( ()−  ())

=  ( ()) () ( − ) 

whence

( ◦ )0 () = lim
→

 ◦  ()−  ◦  ()
 − 

= lim
→

 ( ()) ()

= lim
→

 ( ()) lim
→

 ()

= 0 ()  0 () 

which was to be proved.

Theorem 4.6 (The derivative of the inverse function) Let  be a continuous strictly

monotone function on an interval  so that the inverse function −1 () exists on the
interval  =  (). If  is differentiable at  ∈  and  0 () 6= 0 then −1 is differentiable
at  =  () and

(−1)0 () =
1

 0 ()
 (4.14)

Remark. The tangent line to the graph of function  at point  has the equation

 −  =  ( − )

where  =  0 () is the slope. When considering the inverse function, we switch the role
of the function and the argument, so that the equation can be written in the form

 −  =
1


( − )

provided  6= 0. Hence, the slope of the tangent line in this case is 1

, which explains the

formula (4.14).

Since  =  () is equivalent to  = −1 (), we can rewrite (4.14) as¡
−1

¢0
() =

1

 0 (−1 ())
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and ¡
−1

¢0
( ()) =

1

 0 ()


Example. Consider function  () = exp () on  = R. We already know that the inverse
function to exp () is ln  defined for  ∈ (0+∞). By (4.14), we obtain

(ln )
0
=

1

(exp ())
0 =

1

exp ()

provided  = exp (), which implies

(ln )
0
= 1




Example. Consider a power function  () =  where   0 and  ∈ R. By definition
of ,

 () = exp ( ln)

so that  is the composition of the function exp () and  =  ln. Using the chain rule

and the derivative of ln, we obtain

()
0
= (exp ())

0
( ln)

0
= exp ()




= 




= −1

Finally,

()
0
= −1

In particular, ¡√

¢0
=
¡
12

¢0
=
1

2
−

1
2 =

1

2
√



Proof of Theorem 4.6. Note that  =  () is an interval by Theorem 3.7, and

the inverse function −1 exists, is continuous, and strictly monotone by Theorem 3.9. By
Lemma 4.5, we have the identity

 ()−  () =  () ( − ) (4.15)

where function  satisfies the relations

lim
→

 () =  () =  0 ()  (4.16)

Denoting  =  () and  =  (), we obtain from (4.15)

 −  = 
¡
−1 ( )

¢ ¡
−1 ( )− −1 ()

¢
Setting  ( ) =  (−1 ( )), using (4.16) and the continuity of −1 at , we obtain by
Theorem 3.3

lim
→

 ( ) = lim
→


¡
−1 ( )

¢
= lim

→
 () =  0 ()

and

 () = 
¡
−1 ()

¢
=  () =  0 () 
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Since  0 () 6= 0, there is a neighborhood  () such that  ( ) does not vanish in  ().

Hence, for any  ∈  () ∩  , we obtain

−1 ( )− −1 () =
1

 ( )
( − ) 

By the definition of the derivative, we obtain

¡
−1

¢0
() = lim

→

−1 ( )− −1 ()
 − 

= lim
→

1

 ( )
=

1

 0 ()


which was to be proved.

4.3 Major theorems of differential calculus

Theorem 4.7 (The Fermat theorem) Let  be a function defined on an open interval .

Assume that max  exists and let  () = max  for some  ∈ . If  is differentiable

at  then  0 () = 0. The same claim holds if  () = min  .

The geometric meaning of this theorem is as follows. If  takes its maximal (or

minimal) value at a point  inside an open interval then the tangent line at  must be

horizontal. The slope of a horizontal line is 0 (see the graph below) which means that

 0 () = 0

x

y

Proof. By Lemma 4.5, we have

 ()−  () =  () ( − ) 

where

lim
→

 () =  () =  0 () 

Assume from the contrary that  0 () 6= 0, say,  0 ()  0. Then function  () is positive
in some neighborhood  (). Note that  ∩ () is an open interval containing . Taking
 ∈  ∩  () such that   , we obtain

 ()−  () =  () ( − )  0 (4.17)
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and, hence,  ()   (), which contradicts the fact that  () = max  .

Similarly, if  0 ()  0 then there is a neighborhood  () where  ()  0. Choosing
 ∈  ∩  () such that   , we obtain again (4.17).

The case  () = min  is treated in the same way.

Theorem 4.8 (The Rolle Theorem) Let  be a continuous function on [ ] differentiable

on ( ). If  () =  () then there is a point  ∈ ( ) such that  0 () = 0.

Proof. By Theorem 3.8 (the maximal value theorem), function  takes its maximal

value at some point 1 ∈ [ ] and its minimal value at some point 2 ∈ [ ]. If one of
these points is contained in the open interval ( ) then the value of  0 at this point is 0
by Theorem 4.7. Assume that both 1 and 2 are the endpoints of this interval. Since 

takes the same value at  and  and this value is both maximal and minimal, the function

 must be constant on [ ]. Then  0 () = 0 for any  ∈ ( ).

Theorem 4.9 (Mean-Value Theorem of Lagrange) Let  be a continuous function on an

interval [ ] differentiable on ( ). Then there is a point  ∈ ( ) such that

 ()−  () =  0 () (− ) 

Proof. Consider the function

 () =  ()−  ()−  ()

− 
(− )

so that  () =  () =  (). This function is obviously continuous on [ ] and differ-

entiable on ( ). By Theorem 4.8, there is  ∈ ( ) such that 0 () = 0. Then we

have

0 =  0 −  ()−  ()

− 


whence it follows that

 0 () =
 ()−  ()

− 


which was to be proved.

Remark. Let

 =  (− ) +  ()

be the equation of the secant line of the graph of function  (), which goes through the

points (  ()) and (  ()). Here

 =
 ()−  ()

− 

is the slope of this line. Then Theorem 4.9 says that the slope of a secant line is equal to

the slope of the tangent line at some intermediate point  ∈ ( ). See the diagram below
where  = 2.
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Theorem 4.10 (The constant test) Let  be a differentiable function on an interval .

If  0 () = 0 for all  ∈  then  = const on .

Note that if  = const on  then  0 () = 0 for all  ∈ . Hence, we have the following

equivalence:  0 ≡ 0 on  ⇔  = const on .

Proof. It suffices to prove that  () =  () for all distinct   ∈ . Applying

Theorem 4.9, we obtain that there exists  ∈ ( ) such that

 ()−  () =  0 () (− ) 

Since  0 () = 0, we conclude that  () =  ().

Example. Consider the following problem: find all functions  such that  0 () =  on R.
First note that if  () =  then  0 () = −1. Hence, in order to have  0 () = , we

need to take  = 2 and  = 1
2
. Therefore, the function  () = 2

2
satisfies the condition

 0 () = . However, the question arises whether there are other functions satisfying it?

If  is another function such that  0 = 2

2
then

³
 − 2

2

´0
= 0 on R. This implies by

Theorem 4.10 that  − 2

2
=  for some constant  and, hence,  = 2

2
+ . This is the

most general function that satisfies the condition  0 = .

Theorem 4.11 (The monotonicity test) Let  be a continuous function on an interval 

differentiable on 0 where 0 is the open interval with the same endpoints as . If 
0 () ≥ 0

for all  ∈ 0 then  is a monotone increasing function on . Furthermore, if  0 ()  0
for all  ∈ 0 then  is strictly increasing on .

Similarly, if  0 () ≤ 0 for all  ∈ 0 then  is a monotone decreasing function on ,

and if  0 ()  0 for all  ∈ 0 then  is strictly decreasing on .

Proof. Consider two points    on . Applying Theorem 4.9, we obtain that there

is  ∈ ( ) ⊂ 0 such that

 ()−  () =  0 () (− ) 

Hence, if  0 ≥ 0 then it follows that  () ≥  (), that is,  is monotone increasing. The

other claims are proved in the same way.
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Example. Consider function sin on  = [0 2]. By the definition of 2, we know

that cos  0 for  ∈ 0 = (0 2). Since (sin)
0
= cos, we conclude that sin is

strictly increasing on [0 2]

Theorem 4.11 can be used to prove inequalities as follows.

Corollary. (The comparison test)

() Let  and  be two continuous functions on an interval [ )   , that are

differentiable in ( ). Assume that

1.  () ≤  ()

2.  0 () ≤ 0 () for all  ∈ ( ).

Then  () ≤  () for all  ∈ ( ). Moreover, if  0 ()  0 () in ( ) then
 ()   () in ( ).

() Let  and  be two continuous functions on an interval ( ]   , that are

differentiable in ( ). Assume that

1.  () ≤  ()

2.  0 () ≥ 0 () for all  ∈ ( ).
Then  () ≤  () for all  ∈ ( ). Moreover, if  0 ()  0 () in ( ) then
 ()   () in ( ).

Proof. () Set  =  −  and notice that  () ≥ 0 and 0 ≥ 0 in ( ). By Theorem
4.11,  is monotone increasing [ ), whence it follows that, for any  ∈ ( ),

 () ≥  () ≥ 0

Hence,  () ≤  () for all  ∈ ( ). If the case of the strict inequality  0 ()  0 (),
we obtain that  is strictly increasing, whence  ()  0 and  ()   ().

() In this case the function  is monotone decreasing and  () ≥ 0, whence

 () ≥  () ≥ 0

for any  ∈ ( ), which implies  () ≤  (). In the case of strict inequality  0 () 
0 (),  is strictly decreasing, whence  ()  0 and  ()   ().

Example. Let us prove that, for all   0,

ln ≤ − 1 (4.18)

See the graphs of these two functions in the next diagram:
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If  = 1 then the both sides of (4.18) are equal to 0. If   1 then

(ln)
0
=
1


 1 = (− 1)0 

Applying the comparison test () in the interval [1+∞), we conclude that ln  − 1
for all   1.

If 0    1 then

(ln)
0
=
1


 1 = (− 1)0 

Applying the comparison test () in the interval (0 1], we obtain ln   − 1 in (0 1).
Hence, (4.18) holds for all   0 and, moreover, the equality in (4.18) is attained only at

 = 1.

Another consequence of Theorem 4.11 is the following result.

Theorem 4.12 (The inverse function theorem) Let  be a differentiable function on an

interval  such that  0 ()  0 for all  ∈  (or  0 ()  0 for all  ∈ ). Then the inverse

function −1 () exists on the interval  =  (), is differentiable in  and, for any  ∈ ,¡
−1

¢0
() =

1

 0 ()
 (4.19)

where  = −1 () (or  is determined by the condition  =  ()).

Proof. By Theorem 4.11,  0 is strictly monotone on . Then, by Theorem 3.9, the

inverse function −1 exists on  . By Theorem 4.6, −1 is differentiable and its derivative
satisfies (4.19).

Example. Let  () = sin on  = (−2 2). Since  0 () = cos and cos  0

on this interval, we conclude that the inverse function exists on  = (−1 1) and is
differentiable. The inverse function of sin is denoted by arcsin . It follows from (4.14)

that

(arcsin )
0
=

1

(sin)
0 =

1

cos
=

1p
1− 2



In fact, the domain of arcsin  is [−1 1] but this function is not differentiable at  = 1−1
(See Exercise 59 for more details).
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Here is the graph of arcsin:
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4.4 Higher order derivatives

For a function  defined on an interval , the derivative  () of the order  ∈ N (or the
-th derivative) is defined inductively by the following two conditions:

 (1) =  0 and  () =
¡
 (−1)

¢0
for any   1

assuming that the above derivatives exist on . In particular, we have the second derivative

 (2) =  00 = ( 0)0 

the third derivative

 (3) =  000 = ( 00)0

the forth derivative

 (4) =   = ( 000)0 

etc.

If  () exists on  then we say that function  is  times differentiable on . Clearly,

this also means that  () exists on  for all  ≤ . We say that  is differentiable∞ many

times if  () exists for all  ∈ N.
Example.

1. Let  = exp (). Then  0 = exp () and we obtain by induction that

(exp ())
()
= exp ()

for any  ∈ N. In particular, function exp () is differentiable ∞ many times.

2. Let  = sin. Then

 0 = cos  00 = − sin  000 = − cos   = sin
Hence,  () repeats periodically as follows:

(sin)
()
=

⎧⎪⎪⎨⎪⎪⎩
sin  = 4

cos  = 4 + 1

− sin  = 4 + 2

− cos  = 4 + 3
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3. Let  = , where  ∈ R and   0. Then

 0 = −1  00 =  (− 1)−2

etc. By induction, we obtain

()
()
=  (− 1)  (− + 1)−

4. Let  =  where  ∈ N and  ∈ R. Similarly to the previous example, we have¡

¢()

=  ( − 1)  ( − + 1)−

In particular, for  = , we obtain¡

¢()

= ! = const 

It follows that
¡

¢(+1) ≡ 0 and, moreover, ¡¢() ≡ 0 for all   .

4.4.1 Taylor’s formula

Consider a polynomial function

 () = 0 + 1+ + 
 =

X
=0


 (4.20)

where  is a non-negative integer and all  ∈ R. If  6= 0 then the number  is called
the degree of the polynomial  and is denoted by deg  . If  = 0 then removing the

vanishing term 
 and possibly other terms with  = 0, we still can represent  in the

form (4.20) with a smaller value  such that  6= 0. Hence, the degree of the polynomial
(4.20) is in general ≤ .

We have seen above that
¡

¢()

= 0 whenever   . Hence, if   deg  then we

have  () ≡ 0. It turns out that if deg  ≤  then  can be recovered by the following

values:

 ()   0 ()   00 ()    () ()

at some point  ∈ R.

Lemma 4.13 For any polynomial  of degree at most , we have, for all   ∈ R,

 () =  () +
 0 ()
1!

(− ) +
 00 ()
2!

(− )
2
+ +

 () ()

!
(− )


 (4.21)

Proof. Inductive basis for  = 0. If deg  = 0 then  = const, and for this case the

identity (4.21) becomes  () =  (), which is obviously true.

Inductive step from  − 1 to . If deg  ≤  then deg  0 ≤  − 1. Hence, by the
inductive hypothesis, we obtain the identity

 0 () =  0 () +
 00 ()
1!

(− ) +
 000 ()
2!

(− )
2
+ +

 () ()

(− 1)! (− )
−1

 (4.22)
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Denote by  the right hand side of (4.21). Clearly, we have

0 () =  0 () +
 00 ()
1!

(− ) +
 000 ()
2!

(− )
2
+ +

 () ()

(− 1)! (− )
−1



which together with (4.22) yields the identity  0 () = 0 (). Hence, ( − )
0 ≡ 0, whence,

by the constant test (Theorem 4.10),  −  = const. Since by (4.21)  () =  (), we

conclude that this const is 0, whence  () =  (), which was to be proved.

Denoting −  = , we can rewrite (4.21) as follows:

 (+ ) =  () +
 0 ()
1!

+
 00 ()
2!

2 + +
 () ()

!


In particular, if  () = , we obtain the binomial formula:

(+ )

=  +

−1
1!

+
 (− 1) −22

2!
+ +

!

!
 =

X
=0

µ




¶
−

Theorem 4.14 (Taylor’s formula) Let  () be a function on an open interval  such

that  is differentiable  times on . Then, for any  ∈ 

 () =  () +
 0 ()
1!

(− ) + +
 () ()

!
(− )


+  ((− )


) as →  (4.23)

Conversely, if for some real 0 1  

 () = 0 + 1 (− ) + +  (− )

+  ((− )


) as →  (4.24)

then

 =
 () ()

!


The meaning of the formula (4.23) is that when  is close to  then  () can be

approximated by the polynomial

 () =  () +
 0 ()
1!

(− ) + +
 () ()

!
(− )


=  () +

X
=1

 () ()

!
(− )




which is called a Taylor polynomial of  . In the case when  is a polynomial of the degree

at most , we have by Lemma 4.13 an exact identity  () =  () 

Proof. Using the notation  (), we need to show that

 () =  () +  ((− )

) as → . (4.25)

Let us prove this by induction in .

Inductive basis. If  = 1 then (4.25) becomes

 () =  () +  0 () (− ) +  (− ) 

which is true by Lemma 4.1.
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Inductive step from − 1 to . Note that

 0 () =

X
=1

 () ()

!
 (− )

−1
=

X
=1

 () ()

( − 1)! (− )
−1

=  0 () +
−1X
=1

( 0)() ()
!

(− )



where have changed  =  − 1. We see from this identity that  0 () is the Taylor
polynomial of the order −1 for the function  0 . Therefore, by the inductive hypothesis,

 0 () =  0 () + 
¡
(− )

−1¢
as → 

Set  =  −  so that the above relation becomes

lim
→

0 ()

(− )
−1 = 0 (4.26)

Applying Theorem 4.9 to function  and noticing that  () = 0 we obtain, that. for any

 6= , there is  ∈ ( ) such that

 () = 0 () (− ) 

Note that  depends on  so that we can consider  as a function  (). Also, the condition

 () ∈ ( ) implies that
| − | ≤ |− | 

Using the above relations, we obtain¯̄̄̄
 ()

(− )


¯̄̄̄
=

¯̄̄̄
0 ()

(− )
−1

¯̄̄̄
≤
¯̄̄̄

0 ()

( − )
−1

¯̄̄̄


Since

lim
→

 () = 

and, by (4.26),

lim
→

¯̄̄̄
0 ()

( − )
−1

¯̄̄̄
= lim

→

¯̄̄̄
0 ()

( − )
−1

¯̄̄̄
= 0

we conclude that also

lim
→

¯̄̄̄
 ()

(− )


¯̄̄̄
= 0

whence (4.25) follows.

For the second claim, observe that (4.23) and (4.24) imply

0+ 1 (− )+ +  (− )

=  ()+

 0 ()
1!

(− )+ +
 ()

!
(− )


+ ((− )


)

(4.27)

as → . Taking limits of the both sides as → , we obtain

0 =  () 
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Subtracting 0 from the both sides of (4.27) and dividing by − , we obtain

1+2 (− )++ (− )
−1

=
 0 ()
1!

+
 00 ()
2!

(− )++
 ()

!
(− )

−1
+
¡
(− )

−1¢
as → . Taking again the limit as → , we obtain

1 =
 0 ()
1!



Subtracting 1, dividing by − , and taking limit as → , we obtain

2 =
 00 ()
2!



etc.

Example. Let  () = exp (). Since  () () = exp () for any , we obtain from (4.23)

exp () = exp ()

Ã
1 +

(− )

1!
+
(− )

2

2!
+ +

(− )


!
+  ((− )


)

!


or, dividing by exp (),

exp (− ) = 1 +
(− )

1!
+
(− )

2

2!
+ +

(− )


!
+  ((− )


) 

We see that the Taylor polynomial here coincides with the partial sum of the exponential

series so that the above formula can be obtained directly from the definition of exp.

Example. Let  () = , where   0 and  ∈ R. Then setting  =  − , we obtain

from (4.23)

(+ )

=  +



1!
−1+

 (− 1)
2!

−22 + +
 (− 1)  (− + 1)

!
− +  ()

as → 0. Extending the notation for the binomial coefficient
¡




¢
to any  ∈ R byµ





¶
=

 (− 1)  (− + 1)

!


we obtain an analogue of the binomial formula for the case when the exponent  is an

arbitrary real number:

(+ )

=  +

µ


1

¶
−1+

µ


2

¶
−22 + +

µ




¶
− +  ()  (4.28)

as → 0. For example, if  = 1
2
then we obtain for  = 1

√
+  =

√
+

1

2

√

+  () (4.29)

and for  = 2 √
+  =

√
+

1

2

√

− 1
8

2

(
√
)
3
+ 

¡
2
¢
 (4.30)
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There formulas can be used for approximate evaluation of
√
+  if

√
 is known and 

is small compared to . For example, (4.29) gives

√
26 =

√
25 + 1 ≈ 5 + 1

2

1

5
= 5 1

while by (4.30) √
26 ≈ 5 + 1

2

1

5
− 1
8

1

125
= 5 099

For comparison, note that

√
26 = 5 099019 51359278 

Theorem 4.14 (Taylor’s formula) can be stated as follows: if  () is a function on an

open interval  such that  is differentiable  times on , then, for any  ∈ ,

 () =  () +  ((− )

) as →  (4.31)

where  () is the Taylor polynomial of the function  of order  at point , defined by

 () = 0 + 1 (− ) + +  (− )


(4.32)

and

 =
 () ()

!
(4.33)

(using the conventions  (0) =  and 0! = 1). Furthermore,  () is the only polynomial

of degree at most  that satisfies (4.31).

Example. Let us find the Taylor polynomials  () for  () = arcsin at  = 0. We

already know that this function is differentiable in (−1 1) and

(arcsin)
0
=

1√
1− 2



To find higher order derivatives of arcsin, we need to differentiate the function  () =

(1− 2)
−12

(obviously, this function is differentiable ∞ many times). However, since

we need the derivatives only at 0, it is easier to find them using (4.28) with  = 1 and

 = −2:

 () =
¡
1− 2

¢−12
= 1 +

1

2
2 +

1

2

3

2

4

2!
+
1

2

3

2

5

2

6

3!
+ +

1

2

3

2

2− 1
2

2

!
+ 

¡
2
¢


Using the second part of Theorem 4.14, we conclude by (4.33)

(2) (0) =
1

2

3

2

2 − 1
2

(2)!

!
=
(2 − 1)!! (2)!

2!


where (2 − 1)!! = 1 · 3 ·  · (2 − 1), and

(2+1) (0) = 0
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Therefore,

 (2+1) (0) = (2) (0) =
(2 − 1)!! (2)!

2!

 (2) (0) = (2−1) (0) = 0

By (4.33), the Taylor coefficients for arcsin are given by 2 = 0 and

2+1 =
 (2+1) (0)

(2 + 1)!
=

(2 − 1)!!
(2 + 1) 2!



and the Taylor polynomial for arcsin is

2+1 () = +
1

3 · 2 · 1!
3 +

1 · 3
5 · 22 · 2!

5 + +
(2− 1)!!
(2+ 1) 2!

2+1

For example, for  = 2 we obtain

5 () = +
1

2 · 3
3 +

1 · 3
4 · 2 · 5

5 = +
1

6
3 +

3

40
5

The graphs of the function arcsin (thick) and its Taylor polynomial 5 () are plotted

on the next diagram:

-3 -2 -1 1 2 3

-2

-1

1

2

x

y

We see that 5 () provides a good approximation for arcsin away from  ≈ 1. In

general, higher order Taylor polynomial provide better approximation for the function.

The Taylor polynomials are widely used in numerical computations for evaluating

various functions. However, the formula (4.31) does not give an error estimate for this

computation. For that, one needs a more explicit estimate of the difference  ()− (),
which will be done below. We need first the following result.

Theorem 4.15 (Mean-Value Theorem of Cauchy) Let   be continuous functions on

an interval [ ],   , differentiable on ( ). Then there is a point  ∈ ( ) such that

0 () ( ()−  ()) =  0 () ( ()−  ())  (4.34)
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Note that Theorem 4.9 (Lagrange’s Mean-Value Theorem) is a particular case of The-

orem 4.15 for  () =  since in this case (4.34) becomes

 ()−  () =  0 () (− ) 

Proof. Consider function

 () =  () ( ()−  ())−  () ( ()−  ()) 

Obviously,

 ()−  () = ( ()−  ()) ( ()−  ())− ( ()−  ()) ( ()−  ()) = 0

so that  () =  (). By Theorem 4.8 (Rolle’s Theorem) there is  ∈ ( ) such that
0 () = 0. Since

0 () =  0 () ( ()−  ())− 0 () ( ()−  ()) 

the claim follows.

Now we can prove the main theorem in this section.

Theorem 4.16 (Taylor’s formula with the remainder term in the Lagrange form) Let

 () be a function on an open interval  such that  is differentiable  + 1 times on 

(where  ≥ 0) Then for all distinct   ∈  there exists  ∈ ( ) such that

 () =  () +
 0 ()
1!

(− ) + +
 () ()

!
(− )


+

+1 ()

(+ 1)!
(− )

+1
 (4.35)

If  = 0 then (4.35) becomes

 () =  () +  0 () (− ) 

which coincides with Theorem 4.9 (Lagrange’s Mean Value Theorem).

The difference  ()−  () is called the remainder term. One can rewrite (4.35) as

follows

 ()−  () =
+1 ()

(+ 1)!
(− )

+1
 (4.36)

and this identity is called the Lagrange form of the remainder term. Theorem 4.14 gives

another expression for the remainder term:

 ()−  () =  ((− )

) as →  (4.37)

which is called the Peano form of the remainder term.

If  (+1) is bounded in a neighborhood of  then (4.36) implies (4.37) because¯̄̄̄
+1 ()

(+ 1)!
(− )

+1

¯̄̄̄
≤  |− |+1 =  ((− )


) 

However, in general Theorem 4.14 does not imply Theorem 4.16 because in Theorem 4.16

function  must be + 1 times differentiable while in Theorem 4.14 — only  times.
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Proof. Consider an auxiliary function

 () =  ()−
µ
 () +

 0 ()
1!

(− ) +
 00 ()
2!

(− )
2
+ +

 () ()

!
(− )



¶
where the expression in the brackets is the Taylor polynomial of  at the point  (instead

of the usual ). We consider now  to be fixed while  varies in [ ]. To find  0 (),
evaluate first the derivative of each term separately using the product rule:µ

 () ()

!
(− )



¶0
= −

() ()

!
 (− )

−1
+

 (+1) ()

!
(− )



= −  () ()

( − 1)! (− )
−1

+
 (+1) ()

!
(− )




Therefore,

 0 () = − 0 ()+ 0 ()
0!
−

00 ()
1!

(− )+
 00 ()
1!

(− )−
000 ()
2!

(− )
2−−

(+1) ()

!
(− )



We see that all the terms cancel out except for the last one, that is

 0 () = −
(+1) ()

!
(− )


 (4.38)

Now apply Theorem 4.15 with functions  () and

 () = (− )
+1

on the interval [ ]. We obtain that there is  ∈ ( ) such that

0 () ( ()−  ()) =  0 () ( ()− ()) 

Observing that

 () = 0,  () = (− )
+1



 () = 0  () =  ()−  ()

0 () = − (+ 1) (− )


and, by (4.38),

 0 () = −
(+1) ()

!
(− )




we obtain

(+ 1) (− )

( ()−  ()) =

 (+1) ()

!
(− )


(− )

+1


Dividing by (− )

(which does not vanish by  ∈ ( )), we obtain (4.35).

Example. Consider function  () = sin and its Taylor polynomials at 0

3 () = 4 () = − 3

3!
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(this follows either from definition (4.32)-(4.33) of  () or from the power series (3.12)

for sin — indeed,  () is just the -th partial sum of this series). By Theorem 4.16, we

have

sin− 4 () =
 ()

5!
5

for some  ∈ (0 ). Since  () = cos  and |cos | ≤ 1, we obtain the following estimate

|sin− 4 ()| ≤ 5

120


which provides the upper bound for the error when approximating sin by 4 (). For

example, setting  = 01, we obtain

sin 01 ≈ 4 (01) = 01 +
0001

6
= 00998333

and the error of this approximation does not exceed

015

120
= 8333 × 10−8  10−7

Hence, in the approximate identity

sin 01 ≈ 00998333

holds with correct 6 decimal places after the point.

4.4.2 Convex functions

Definition. Let  be function defined on an interval  ⊂ R. Function  is called convex

if, for all   ∈  and  ∈ (0 1)

 ((1− ) + ) ≤ (1− )  () +  ()  (4.39)

Function  is called strictly convex if a strict inequality takes place in (4.39).

Function  is called concave if, for all   ∈  and  ∈ (0 1),

 ((1− ) + ) ≥ (1− )  () +  ()  (4.40)

Function  is called strictly concave if a strict inequality takes place in (4.40).

This definition has the following geometric meaning. Let

 =  (− ) +  ()

be the equation of the secant line through points (  ()) and (  ()) where

 =
 ()−  ()

− 

is the slope of the line. Let us restrict the variable  to the interval ( ) and set

 =
− 

− 
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so that  ∈ (0 1) and
 = (− ) +  = (1− ) + 

With this new parameter, the equation of the secant line is

 = ( ()−  ()) +  () = (1− )  () +  () 

Hence, the inequality (4.39) means  () ≤  for all  ∈ ( ), that is, the graph of the
function  () on the interval ( ) lies below the secant line (note that these two line do

intersect at the endpoints  and ).

In the same way, function is concave if its graph between any two points lies above

the secant line through these points. Typical graphs of convex and concave functions are

shown on the next diagram (convex is thick):

x

y

Theorem 4.17 (The convexity/concavity test) Let  be a twice differentiable function

on a open interval  ⊂ R.

() If  00 ≥ 0 on  then  is convex on .

() If  00 ≤ 0 in  then  is concave on .

Proof. () Fix some points   ∈ ,    and  ∈ (0 1). Denoting  = (1− ) + ,

let us rewrite the definition (4.39) of the convexity as follows

(1− + )  () ≤ (1− )  () +  ()

(1− ) ( ()−  ()) ≤  ( ()−  ())

or, using the identity  = −
− ,

− 

− 
( ()−  ()) ≤ − 

− 
( ()−  ())

and finally
 ()−  ()

− 
≤  ()−  ()

− 
 (4.41)
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Conversely, if (4.41) holds for all      in  then arguing backwards we obtain (4.39).

Hence, it suffices to prove (4.41) for all such triples   .

By Theorem 4.9 (Mean Value Theorem of Lagrange), we have

 ()−  ()

− 
=  0 () and

 ()−  ()

− 
=  0 ()

where  ∈ ( ) and  ∈ ( ). In particular, we have   . Since ( 0)0 =  00 ≥ 0, the
function  0 is monotone increasing by the monotonicity test (Theorem 4.11). Therefore,

 0 () ≤  0 (), whence (4.41) follows.
() This part is proved similarly.

Example. Consider the function  () = ln,   0. Since

(ln)
00
=

µ
1



¶0
= − 1

2
 0,

we obtain by Theorem 4.17 that ln is concave. The graph of this function is as follows:

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

-4

-3

-2

-1

0

1

x

y

Using the definition of the concavity, we have the following inequality

ln ((1− ) + ) ≥ (1− ) ln +  ln  (4.42)

for all    0 and  ∈ (0 1). Denote  = 1
1− and  = 1


so that    1 and

1


+
1


= 1 (4.43)

Then (4.42) implies

ln

µ



+





¶
≥ 1


ln +

1


ln  = ln

¡
11

¢
 (4.44)

Setting  = 1,  = 1 and applying exp to (4.44), we obtain the Young inequality




+




≥ 

which is true for all non-negative   and    1 such that (4.43) holds.

A particular case of the Young inequality with  =  = 2 is the following familiar

inequality:
2 + 2

2
≥ 
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4.4.3 Local extrema

Definition. Let  be a function defined on an open interval  and  ∈ . One says that

 has at  a local maximum if there is a neighborhood  () of  such that  () is the

maximal value of  in  () ∩ , that is

 () = max
()∩

 () 

Similarly one defined a local minimum of  .

One says that  has a local extremum at  if  has at  either a local maximum or a

local minimum.

Theorem 4.18 () (Necessary condition for a local extremum) Let  be a differentiable

function on an open interval. If  has a local extremum at a point  ∈  then  0 () = 0
() (Sufficient condition for a local extremum) Let  be twice differentiable on an open

interval  and let 0 () = 0 for some  ∈ . If  00 ()  0 then  has a local minimum at

. If  00 ()  0 then  has a local maximum at .

Proof. () If  has at  a local maximum then  takes at  the maximum value in

 () ∩ . Hence, by Theorem 4.7,  0 () = 0 The same applies to the case of a local

minimum.

() By the Taylor formula with the remainder term in the Peano form (Theorem 4.14),

we have

 () =  () +  0 () (− ) +
 00 ()
2

(− )
2
+ ()  (4.45)

where  () = 
¡
(− )

2
¢
as → , that is,

lim
→

 ()

(− )
2
= 0

If  00 ()  0 then there is a neighborhood  () of  such that¯̄̄̄
 ()

(− )
2

¯̄̄̄


 00 ()
4

for all  ∈  () \ {} 

which implies that

 () ≥ −
00 ()
4

(− )
2
for all  ∈  () 

Using also  0 () = 0 we obtain from (4.45) that, for any  ∈  (),

 () ≥  () +
 00 ()
4

(− )
2 ≥  () 

which means that  has at  a local minimum. The case  00 ()  0 is treated similarly.

Example. Consider the function  () = 3 −  Then  0 () = 32 − 1, which has the
roots  = ± 1√

3
. Hence, if  has local extrema then they should be at these two points.
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Since  00 () = 6, we see that  00 ()  0 at  = 1√
3
and  00 ()  0 at  = − 1√

3
. Hence,

 has a local minimum at 1√
3
and a local maximum at − 1√

3
. The graph of this function

is as follows:
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y

4.4.4 l’Hospital’s rule

Recall that

lim
→

 ()

 ()
=
lim→  ()

lim→  ()

provided both limits in the right hand side exist and their ratio is defined. However,

frequently one has to evaluate limits when the ratio on the right hand side is undefined,

for example, being of the form 0
0
or ∞∞ . Such expressions are called indeterminate forms.

Such limits can be frequently found using the following theorem.

Theorem 4.19 (l’Hospital’s rule) Let  and  be two functions defined and differentiable

on an open interval  ⊂ R, and  ∈ R be an endpoint of . Assume that
() either

lim
→

 () = lim
→

 () = 0 (4.46)

() or

lim
→

 () = ±∞ (4.47)

If

lim
→

 0 ()
0 ()

=  ∈ R

(assuming 0 () 6= 0 on ) then also

lim
→

 ()

 ()
=  (4.48)

(assuming that  () 6= 0 on ).

Put simply, the rule is as follows: in order to resolve the indeterminate forms 0
0
or ∞∞ ,

replace functions  and  by their derivatives!
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Note that in the case () typically also the condition

lim
→

 () = ±∞ (4.49)

is satisfied so that one does have an indeterminate form ∞
∞ , but (4.49) is not used in the

proof and, hence, is not needed for the validity of the statement.

Example. (1) Find lim→0 sin . This is the indeterminate form
0
0
since both  and sin

go to 0 as  → 0. Applying Theorem 4.19 in both interval (0+∞) and (−∞ 0), we

obtain

lim
→0

sin


= lim

→0
(sin)

0

()
0 = lim

→0
cos

1
= 1 (4.50)

Strictly speaking, the first equality in (4.50) can be justified only after the last equality is

obtained. Hence, the rigorous argument runs as follows: since lim→0 sin is the indeter-

minate form 0
0
and since lim→0

(sin)0

()0 exists and is equal to 1, we have by Theorem 4.19

lim→0 sin = 1. The same reasoning applies to all other cases of application of l’Hospital’s

rule, and will be assumed implicitly.

(2) Note that in order to apply l’Hospital’s rule, one must have an indeterminate form.

Consider lim→1 2


which is obviously equal to 1. This is not an indeterminate form and

l’Hospital’s rule is not applicable. Indeed, we see that

lim
→1

(2)
0

()
0 = lim

→1
2

1
= 2 6= 1 = lim

→1
2




(3) lim→+∞
exp()

2
is the indeterminate form ∞

∞ because both exp () and 2 tend to

+∞ as → +∞. Write

lim
→+∞

exp ()

2
= lim

→+∞
(exp ())

0

(2)
0 = lim

→+∞
exp ()

2
 (4.51)

The limit in the right hand side is again an indeterminate form ∞
∞ . Differentiating ones

again, we write

lim
→+∞

exp ()

2
= lim

→+∞
(exp ())

0

(2)
0 = lim

→+∞
exp ()

2
= +∞ (4.52)

Hence, by two applications of l’Hospital’s rule, we conclude that

lim
→+∞

exp ()

2
= +∞

Applying the same argument, one can prove by induction that

lim
→+∞

exp ()


= +∞ (4.53)

for all  ∈ N.
(4) Find lim→0  ln assuming   0. Since  → 0 and ln → −∞, we have the

indeterminate form 0 ·∞. To resolve it, represent the limit as follows:

lim
→0

ln

1
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so that it has now the form ∞
∞ . By l’Hospital’s rule, we obtain

lim
→0

ln

1
= lim

→0
(ln)

0

(1)
0 = − lim

→0
1

12
= − lim

→0
 = 0

(5) Find lim→0  where   0. This is another kind of an indeterminate form: 00.

To resolve it, let us take the logarithm of the given function:

lim
→0

ln = lim
→0

 ln = 0

by the previous example. Using Theorem 3.3 (the limit of a composite function), we

obtain

lim
→0

 = lim
→0

exp (ln) = lim
→0

exp () = 1

The graph of the function  () =  is as follows.

-0.50 -0.25 0.00 0.25 0.50 0.75 1.00 1.25 1.50
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1.0

1.5

x

y

(6) Find lim→+1 ln
2− . This is the indeterminate form

0
0
, and we obtain by l’Hospital’s

rule

lim
→+1

ln

2 − 
= lim

→+1
(ln)

0

(2 − )
0 = lim

→+1
1

2− 1 = 1

Proof of Theorem 4.19. () For simplicity, let us assume that  ∈ R (the case
 = ±∞ is treated similarly). By the definition of the limit, for any   0, there is a

neighborhood  () of  such that¯̄̄̄
 0 ()
0 ()

− 

¯̄̄̄
  for all  ∈  () ∩  (4.54)

Let us show that
()

()
is also closed to  when  ∈  ()∩ . Fix  ∈  ()∩  and choose

some  ∈  ()∩,  6= . Applying the Cauchy mean value theorem in the interval [ ],

we obtain that, for some  ∈ ( ),

 0 () ( ()−  ()) = 0 () ( ()−  ()) 
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By hypothesis, 0 () 6= 0. Also,  () 6=  () by Rolle’s theorem (Theorem 4.8) because

otherwise the derivative 0 would vanish at some point. Hence, we can divide by 0 ()
and  ()−  () and obtain

 0 ()
0 ()

=
 ()−  ()

 ()−  ()
=

()

()
− ()

()

1− ()

()



whence
 ()

 ()
=

 0 ()
0 ()

µ
1−  ()

 ()

¶
+

 ()

 ()

and
 ()

 ()
−  =

µ
 0 ()
0 ()

− 

¶
−  0 ()

0 ()
 ()

 ()
+

 ()

 ()
 (4.55)

Since  ∈  () ∩ , we have by (4.54)¯̄̄̄
 0 ()
0 ()

− 

¯̄̄̄
  (4.56)

To make the other terms in the right hand side of (4.55) small enough, we need to choose

 so that
()

()
and

()

()
are small enough. Since  () 6= 0, we have by (4.46)

lim
→

 ()

 ()
= lim

→

 ()

 ()
= 0

Hence, there is a neighborhood  () of  such that¯̄̄̄
 ()

 ()

¯̄̄̄
  and

¯̄̄̄
 ()

 ()

¯̄̄̄
  for all  ∈  () ∩  (4.57)

Hence, choosing some  from  () ∩  () ∩ , we obtain by (4.55), (4.56), and (4.57),¯̄̄̄
 ()

 ()
− 

¯̄̄̄
≤ + (+ ) +  = (+ 2) + 2 (4.58)

Since the right hand side can made smaller than any positive number, we conclude that
()

()
→  as → .

() The proof is similar to () but the condition (4.57) is proved differently. First, we

chose  () to ensure (4.54). Fix some  ∈  () ∩  and notice that, by (4.47),

lim
→

 ()

 ()
= lim

→

 ()

 ()
= 0

Hence, there is a neighborhood  () of  such that¯̄̄̄
 ()

 ()

¯̄̄̄
  and

¯̄̄̄
 ()

 ()

¯̄̄̄
  for all  ∈  () ∩  (4.59)

Then, for any  ∈  () ∩  () ∩ , we obtain (4.58), which finishes the proof.
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Waste

Equivalence relation

Let  be an arbitrary set and ∼ be a relation on , that is, for any two elements   ∈ ,

 ∼  is either true or not (“ is related to ”).

Definition. A relation ∼ is called an equivalence relation if it satisfies the following three
conditions:

1.  ∼  for any  ∈ 

2.  ∼  implies  ∼ 

3.  ∼  and  ∼  imply  ∼ 

For example, the identity relation  ∼  if  =  satisfies these axioms. On the other

hand, if  = R and  ∼  if  ≤  then the second axiom breaks. Consider another

example:  = R and  ∼  if |− | ≤ 1. Then axioms 1 and 2 are satisfied while 3 does
not (for example, 1 ∼ 2 and 2 ∼ 3 while 1 6∼ 3).

Proposition 4.20 If ∼ is an equivalence relation on  then  there is a unique family

F of subsets of  such that

• each two distinct sets  ∈ F are disjoint

• the union of all the sets from F is 

•  ∼  if and only if  and  belong to the same set from F.

Shortly, this means that  is split into a disjoint union of subsets such that  ∼ 

if and only if  and  belong to the same of these subsets. These subsets are called the

equivalence classes of the relation ∼ 

Proof. For any  ∈  consider a set  of all elements  ∈  such that  ∼ .

Clearly,  ∈  and, hence, the union of all sets  is . Let us show that, for any two

elements   ∈ , either  =  or  ∩  = ∅. Indeed, if  ∩ is non-empty, say,

contains , then we have  ∼  and  ∼  which implies  ∼  Then for any  ∈ ,

the relations  ∼  and  ∼  imply  ∼  and, hence,  ∈ . This argument implies

 = . Finally, selecting in the family {}∈ disjoint sets, we obtain the family F
with the required properties.

As we see from the proof, the equivalence class containing an element  is , that is,

it consists exactly of all elements  ∈  such that  ∼ .

N = ℵ0 (aleph — the first letter of the Hebrew alphabet).

-th means

Consider function  () = ,   0. Since

()
00
=  (− 1) −2,
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the function  is convex if  (− 1) ≥ 0, that is, if either  ≤ 0 or  ≥ 1, and concave if
 (− 1) ≤ 0, that is, if 0 ≤  ≤ 1. Hence, for all    0 and  ∈ (0 1)

((1− ) + )
 ≤ (1− ) +  if  ≤ 0 or  ≥ 1 (4.60)

((1− ) + )
 ≥ (1− ) +  if 0 ≤  ≤ 1 (4.61)

The number

 =

µ
 + 

2

¶1
is called the mean of the order  of   (here we assume  6= 0). For example, if  = 1
then

1 =
+ 

2

which is the arithmetic mean of  , and if  = 2 then

2 =

µ
2 + 2

2

¶12
is the quadratic mean of  . It follows from (4.60) and (4.61) that if  ≥ 1 then

1 =
+ 

2
≤
µ
 + 

2

¶1
=

and if  ≤ 1 (including   0) then

1 ≥

More generally, the following inequality holds: if   are non-zero reals such that  ≤ 

then

 ≤

Indeed, denoting  =  and  =  and  = 


, this inequality amounts toµ

 + 

2

¶1
≤
µ
 +  

2

¶1
 (4.62)

If   0 then this is equivalent to

 + 

2
≤
µ
 +  

2

¶1


which is true because  ≥ 1. If   0 then (4.62) is equivalent to

 + 

2
≥
µ
 +  

2

¶1


which is true because  ≤ 1 (Indeed, if   0 then  = 


 0. If   0 then  ≤  implies

|| ≤ || and  = ||  || ≤ 1).
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Setting  =  = 2 in (4.44), we obtain

ln

µ
+ 

2

¶
≥ ln+ ln 

2
= ln

√


whence it follows that
+ 

2
≥ √ (4.63)

Of course, this inequality follows also from the identity

+ 

2
−√ = 1

2

¡√
−√¢2 

The expression
√
 is called the geometric mean of   or the mean of the order 0, and

is denoted by

0 =
√


It follows from (4.63) that 0 ≤ 1, which implies that 0 ≤  for any  ≥ 0 and
0 ≥ for any  ≤ 0. Hence, the inequality  ≤ holds for arbitrary real   such

that  ≤ .

Taylor’s formula via l’Hospital’s rule

Let us give one more proof of the Taylor formula

 () =  () +  ((− )

) as → 

(Theorem 4.14), where  is  times differentiable on an interval ,  ∈ , and  () is

the Taylor polynomial of  at  of the order . The proof is by induction in , and the

inductive basis for  = 1 is the same as in the main proof.

Inductive step. The derivative  0 () is  − 1 times differentiable, and the (− 1)-st
Taylor polynomial of  0 () is  0 () where  () is the -th Taylor polynomial of  (see
the main proof). By the inductive hypothesis,

 0 ()−  0 () = 
¡
(− )

−1¢
as → 

that is,

lim
→

 0 ()−  0 ()

(− )
−1 = 0

Then, by l’Hospital’s rule,

lim
→

 ()−  ()

(− )
 = lim

→

 0 ()−  0 ()

 (− )
−1 = 0

whence the claim follows.
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