SS2025

Blatt 5 - Abgabe bis 16.05.2025 12:00

Die mit *markierten Aufgaben sind zusätzlich und werden korrigiert Die mit **markierten Aufgaben sind zusätzlich und werden nicht korrigiert.

42. Für die folgenden Funktionen bestimmen Sie die Taylor-Polynome $T_3(x)$ an der Stelle 0:

(i)
$$\tan x$$
 und (ii) $\tanh x$.

Hinweis. Verwenden Sie die Definition des Taylor-Polynoms $T_n(x)$ an der Stelle 0:

$$T_n(x) = f(0) + \frac{f'(0)}{1!}x + \frac{f''(0)}{2!}x^2 + \dots + \frac{f^{(n)}(0)}{n!}x^n.$$
(11)

43. Für die folgenden Funktionen bestimmen Sie alle Taylor-Polynome $T_n(x)$ an der Stelle 0:

(i)
$$\ln(1+x)$$
 (ii) $\ln\frac{1+x}{1-x}$

44. Für die folgenden Funktionen bestimmen Sie ihre Taylor-Polynome an der Stelle 0 wie angegeben:

(i)
$$\ln\left(x+\sqrt{x^2+1}\right)$$
, $T_3(x)$ (ii) $e^x \sin x$, $T_6(x)$ (iii) $\arcsin x$, $T_3(x)$.

45. (a) Sei f eine unendlich oft differenzierbare Funktion auf einem Intervall (-c, c), c > 0, die durch eine absolut konvergente Potenzreihe angegeben ist:

$$f\left(x\right) = \sum_{k=0}^{\infty} a_k x^k,$$

mit Koeffizienten $a_k \in \mathbb{R}$. Beweisen Sie: das Taylor-Polynome $T_n(x)$ von f an der Stelle 0 stimmt mit der n-ten Partialsumme der Reihe überein, d.h. für jedes $n \in \mathbb{N}$ gilt

$$T_n(x) = S_n(x) := \sum_{k=0}^n a_k x^k.$$
 (12)

Hinweis. Zeigen Sie, dass für alle $x \in (-\varepsilon, \varepsilon)$ mit $\varepsilon \in (0, c)$ gilt $|f(x) - S_n(x)| \le \text{const } |x|^{n+1}$. Dann benutzen Sie die Eindeutigkeit des Taylor-Polynoms.

(b) Mit Hilfe von (a) bestimmen Sie die Taylor-Polynome $T_{2m}(x)$ der Funktion

$$f(x) = \frac{1}{1+x^2}.$$

46. * Beweisen Sie, dass die Funktion $f(x) = \arctan x$ das folgende Taylor-Polynom $T_{2n+1}(x)$ der Ordnung 2n + 1 an der Stelle 0 hat:

$$T_{2n+1}(x) = x - \frac{x^3}{3} + \frac{x^5}{5} - \dots + (-1)^n \frac{x^{2n+1}}{2n+1} = \sum_{k=0}^n \frac{(-1)^k}{2k+1} x^{2k+1}.$$

Hinweis. Benutzen Sie die Taylor-Polynome der Funktion $(\arctan x)' = \frac{1}{1+x^2}$ aus der Aufgabe 45(b).

- 47. * (a) Bestimmen Sie das Taylor-Polynom $T_7(x)$ der Funktion $f(x) = \cos x$ and der Stelle 0.
 - (b) Berechnen Sie ungefähr $\cos \frac{1}{5}$ mit Hilfe von $T_7(x)$ und schätzen Sie den Approximationsfehler ab.

Hinweis. Dafür verwenden Sie die Taylorformel mit Lagrange-Restglied. Man darf die arithmetischen Operationen mit Hilfe von einen Taschenrechner durchführen.

- 48. ** (Taylorformel für Polynome)
 - (a) Beweisen Sie: die folgende Identität gilt für jedes Polynom f von Grad $\leq n$ und für alle $a, x \in \mathbb{R}$:

$$f(x) = f(a) + \frac{f'(a)}{1!}(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \dots + \frac{f^{(n)}(a)}{n!}(x-a)^n.$$
 (13)

Hinweis. Verwenden Sie Induktion nach n und Induktionsvoraussetzung für f'.

- (b) Mit Hilfe von (a) beweisen Sie den binomischen Lehrsatz.
- 49. ** Seien $P_n(x)$ und $Q_n(x)$ die Taylor-Polynome der Ordnung n der Funktionen f bzw g an der Stelle 0.
 - (a) Beweisen Sie: das Taylor-Polynom der Ordnung n der Funktion f(x) + g(x) stimmt mit $P_n(x) + Q_n(x)$ überein.
 - (b) Definieren wir ein Polynom $S_n(x)$ wie folgt: $S_n(x)$ besteht aus allen Monomen $c_k x^k$ des Grades $k \leq n$ aus dem Produkt-Polynom $P_n(x) Q_n(x)$. Beweisen Sie: das Taylor-Polynom der Ordnung n der Funktion f(x) g(x) stimmt mit $S_n(x)$ überein.

Bemerkung. Die Beziehung zwischen S_n und P_nQ_n lässt sich wie folgt beschreiben:

$$P_n(x)Q_n(x) = S_n(x) + o(x^n) \quad \text{für } x \to 0.$$
 (14)

 $50.\,$ ** Mit Hilfe von Aufgabe 49 bestimmen Sie die Taylor-Polynome der Ordnung 5 der folgenden Funktionen an der Stelle 0:

(i)
$$\ln^2(1+x)$$
 (ii) $\left(\frac{x}{1-x} - \ln(1+x)\right) \sin x$.

- 51. ** Seien f und g n-fach differenzierbare Funktionen, und nehmen wir an, dass die Komposition F(x) = f(g(x)) auf einem Intervall wohldefiniert ist.
 - (a) Beweisen Sie, dass die Funktion F auch n-fach differenzierbar ist.
 - (b) Nehmen wir an, dass f und g in der Nahe von 0 definiert sind und dass g(0) = 0, so dass die Komposition F(x) = f(g(x)) auch in der Nahe von 0 definiert ist. Seien P_n und Q_n die Taylor-Polynome der Ordnung n der Funktionen f bzw g an der Stelle 0. Definieren wir ein Polynom $S_n(x)$ wie folgt: $S_n(x)$ besteht aus allen Monomen $c_k x^k$ des Grades $k \leq n$ von dem Polynom $P_n(Q_n(x))$. Beweisen Sie: das Taylor-Polynom $T_{n,F}$ der Ordnung n der Funktion F stimmt mit $S_n(x)$ überein.

Bemerkung. Die Beziehung zwischen $S_n(x)$ und $P_n(Q_n(x))$ lässt sich wie folgt beschreiben:

$$P_n(Q_n(x)) = S_n(x) + o(x^n) \text{ für } x \to 0.$$
 (15)

52. ** Mit Hilfe von Aufgabe 51 bestimmen Sie die Taylor-Polynome $3^{\it er}$ Ordnung der folgenden Funktionen an der Stelle 0:

(i)
$$\exp(\sin x)$$
 (ii) $\sqrt{2 - \cos x}$ (iii) $\sin(\arctan x)$

53. ** Betrachten wir die Funktion

$$g(x) = \tan x + \sin x$$
.

Diese Funktion ist auf dem Intervall $(-\pi/2, \pi/2)$ streng monoton steigend und hat somit die inverse Funktion $f = g^{-1}$. Bestimmen Sie das Taylor-Polynom 3^{er} Ordnung der Funktion f an der Stelle 0.

Hinweis. Seien P_n und Q_n die Taylor-Polynome der Ordnung n der Funktionen f bzw g an der Stelle 0. Da f(g(x)) = x, so folgt es aus der Aufgabe 51 dass

$$P_n(Q_n(x)) = x + o(x^n) \quad \text{für } x \to 0.$$
 (16)

Bestimmen Sie zunächst Q_3 und dann benutzen (16) um P_3 zu bestimmen.