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Lecture 1 18.10.06 Prof. A. Grigorian, Analysis II, WS 2006-7

1 Integral calculus

In Analysis I we have learned the operation of differentiation. Let us recall that if f is a
function defined on an open interval I ⊂ R then the derivative f 0 (x) at any point x ∈ I
is defined by

f 0 (x) = lim
h→0

f (x+ h)− f (x)

h
.

The differential of f is the expression

df = f 0 (x) dx

where dx is the increment of the argument x. We have also learned how to evaluate the
derivative of a function and to use it for investigation of the function.
Now we start discussing the inverse problem: given a function f , how to find a func-

tion F such that F 0 = f in I. This question as well as more general questions leading to
differential equations, occur in vast variety of problems both inside and outside Mathe-
matics. We mainly focus on the mathematical aspects of the problem but at some point
will give also examples of applications.

1.1 Indefinite integral

Definition. If F 0 = f on I then the function F is called an antiderivative of f or a
primitive function of f (Stammfunction) on the interval I.

As we know, not every function has the derivative. Similarly, not every function has
a primitive. Later in this course, we’ll prove the following statement.

Theorem. Any continuous function on an interval I ⊂ R has a primitive on this inter-
val.
What about uniqueness? Can it happen than a function has two different primitives?

Yes, this can happen. For example, if F (x) = C - a constant function, then F 0 = 0.
Hence, any constant function is a primitive of f ≡ 0. However, it is easy to describe the
degree of non-uniqueness of a primitive function.

Theorem 1.1 If F is a primitive of f on an interval I ⊂ R then all other primitives of
f have the form F (x) + C, where C is any constant.

Proof. If F 0 = f then also (F +C)0 = F 0 = f . Hence, F +C is also a primitive of f .
Conversely, if F and G are two primitives of f then F 0 = G0 = f whence (G−F )0 = 0 on
I. By the Constant Test (Theorem 4.10 from Analysis I), the function G−F is constant
on I. Denoting this constant by C, we obtain G (x) = F (x) +C for all x ∈ I, which was
to be proved.

Definition. The family of all primitive function of f (x) is denoted byZ
f (x) dx.
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This expression is called also the indefinite integral of f . By Theorem 1.1,
R
f (x) dx is a

function up to an additive constant.

The reason for this notation and terminology will become clearer later in the course.
Here we only make the following simple observations. By definition, we haveµZ

f (x) dx

¶0
= f (x) ,

which in terms of differential amounts to

d

Z
f (x) dx = f (x) dx. (1.1)

On the other hand, by Theorem 1.1, we have the identityZ
F 0 (x) dx = F (x) + C, (1.2)

which can also be written in the formZ
dF (x) = F (x) + C. (1.3)

Comparing (1.1) and (1.3) we see that the operations d and
R
are almost inverse each to

other.
The process of finding the primitive is called (indefinite) integration. A significant

part of the integral calculus consists of the methods of integration. The simplest way of
integrating is to reverse the identities obtained by differentiation. For example, sinceµ

xn+1

n+ 1

¶0
= xn, n 6= −1,

(1.2) yields the following identity on (−∞,+∞)Z
xndx =

xn+1

n+ 1
+ C.

In particular, we have Z
dx = x+ C,Z

xdx =
x2

2
+ C,Z √

xdx =
x3/2

3/2
+ .C,Z

dx

x2
= −1

x
+ C.

Since (lnx)0 = 1
x
on (0,+∞), we obtainZ

dx

x
= lnx+ C on (0,+∞)
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and, more generally, Z
dx

x
= ln |x|+ C on (0,+∞) and (−∞, 0) .

Indeed, ln |x| is an even function and, hence, its derivative is odd (see Exercise 1). Since
the function 1

x
is also odd, the identity (ln |x|)0 = 1

x
extends from (0,+∞) to (−∞, 0).

Reversing differentiation of the exponential function, we obtain the following identities:Z
exp (x) dx = exp (x) + C,

Z
axdx =

ax

ln a
+ C if a > 0, a 6= 1,

Using the derivatives of trigonometric and hyperbolic functions (see Exercises 57 and
59 from Analysis I and Exercise 4 from Analysis II), we obtain the following identities:Z

sinxdx = − cosx+ C

Z
cosxdx = sinx+ C ,

Z
dx

cos2 x
= tanx+ C ,

on any interval where cosx does not vanish,Z
dx

sin2 x
= − cot x+ C ,

on any interval where sinx does not vanish,Z
sinhx = coshx+ C

Z
coshxdx = sinhx+ C

Z
1

cosh2 x
= tanhx+ C

Z
1

sinh2 x
= cothx+ C .

Using the derivatives of the inverse trigonometric and hyperbolic functions (see Exercises
57 and 59 from Analysis I and Exercises 2-4 from Analysis II) we obtainZ

dx√
1− x2

= arcsinx+ C on (−1, 1) ,
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Z
dx

1 + x2
= arctanx+ CZ

dx√
x2 + 1

= sinh−1 x+ C = ln
¡
x+
√
x2 + 1

¢
+ C ,Z

dx√
x2 − 1 = cosh

−1 x+ C = ln
³
x+
√
x2 − 1

´
+ C on (1,+∞) .

The latter identity extends to a more general oneZ
dx√
x2 − 1 = ln

¯̄
x+
√
x2 − 1¯̄+ C on (1,+∞) and (−∞,−1) ,

which follows from the fact that the function ln
¯̄
x+
√
x2 − 1¯̄ is odd whereas 1√

x2−1 is

even. The function ln
¯̄
x+
√
x2 − 1¯̄, which is called the long logarithm, has the following

graph:

543210-1-2-3-4-5
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Finally, we have Z
dx

1− x2
= tanh−1 x+ C =

1

2
ln
1 + x

1− x
+ C on (−1, 1) ,

and this identity extends to any of the intervals (−∞,−1) , (−1, 1) , (1,+∞) as follows:Z
dx

1− x2
=
1

2
ln

¯̄̄̄
1 + x

1− x

¯̄̄̄
+ C .

Here is the graph of the tall logarithm ln
¯̄
1+x
1−x
¯̄
:

543210-1-2-3-4-5
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The above boxed formulas form a simplest table of integration. In general, integration
may be a difficult operation. Moreover, it is not always possible to express the integral
of an elementary function in terms of elementary functions. There are extended tables of
integrations containing thousands of indefinite integrals. Nowadays there are also software
that are capable of evaluating indefinite integrals.
Our next purpose is to learn the basic methods of integrations. They use the table of

integration and some rules of reduction of the given integral to a table integral.

1.2 Linearity of indefinite integral

Theorem 1.2 If f and g are two functions on an interval I such that the integrals
R
fdx

and
R
gdx exist on I then, for all a, b ∈ R,Z

(af + bg) dx = a

Z
fdx+ b

Z
gdx. (1.4)

Proof. Let F be a primitive of f and G be a primitive of g so that F 0 = f and G0 = g.
Then, by the linearity of differentiation (Theorem 4.3 from Analysis I), we have

(aF + bG)0 = aF 0 + bG0 = af + bg

whence Z
(af + bg) dx = aF + bG+ const = a

Z
fdx+ b

Z
gdx,

where in the last identity the constant is absorbed by one of the integrals.

Example. 1. Evaluate
R ³

x+ 1√
x

´2
dx. We haveµ

x+
1√
x

¶2
= x2 + 2x

1√
x
+
1

x
= x2 + 2

√
x+

1

x
,

whence Z µ
x+

1√
x

¶2
dx =

Z
x2dx+ 2

Z
x1/2dx+

Z
1

x
dx

=
x3

3
+
4x3/2

3
+ ln |x|+ C.

2. Evaluate
R

dx
sin2 x cos2 x

. Observing that

1

sin2 x cos2 x
=
sin2 x+ cos2 x

sin2 x cos2 x
=

1

cos2 x
+

1

sin2 x
,

and using Theorem 1.2 and the table integrals, we obtainZ
dx

sin2 x cos2 x
=

Z
dx

cos2 x
+

Z
dx

sin2 x
= tanx− cotx+ C.
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Lecture 2 20.10.06 Prof. A. Grigorian, Analysis II, WS 2006-7

1.3 Integration by parts

If u (x) and v (x) are two functions then it makes sense to consider the expression
R
udv,

provided the derivative v0 exists. Indeed, we have dv = v0 (x) dx so thatZ
udv ≡

Z
u (x) v0 (x) dx.

We say that a function u is continuously differentiable on an interval I if its derivative u0

exists on this interval and is a continuous function. Recall that if u is differentiable then
u is continuous (Theorem 4.2 from Analysis I).

Theorem 1.3 (Integration-by-parts formula) If u, v are two continuously differentiable
functions on an interval I then Z

udv = uv −
Z

vdu. (1.5)

Proof. The hypothesis of the continuous differentiability of u and v is needed to
ensure that the both integrals in (1.5) exist. To prove (1.5), it suffices to verify that the
derivatives of the both sides of (1.5) are the same. We haveµZ

udv

¶0
=

µZ
uv0dx

¶0
= uv0

and µ
uv −

Z
vdu

¶0
= (uv)0 − vu0.

Using the product rule (Theorem 4.3(b) from Analysis I), we obtain

(uv)0 − vu0 = (uv0 + u0v)− vu0 = uv0,

whence (1.5) follows.

Example. 1. Evaluate
R
lnxdx. Taking u = lnx and v = x, we obtainZ

lnxdx = x lnx−
Z

xd lnx = x lnx−
Z

x
1

x
dx = x lnx− x+ C.

2. Evaluate
R
x2exdx. Note that exdx = dex. Hence, taking u = x2 and v = ex, we

obtain Z
x2exdx =

Z
x2dex = x2ex −

Z
exdx2 = x2ex − 2

Z
xexdx.

To evaluate
R
xexdx, apply Theorem 1.3 again, this time with u = x and v = ex:Z

xexdx =

Z
xdex = xex −

Z
exdx = xex − ex + C.
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Hence, Z
x2exdx = x2ex − 2xex + 2ex + C.

3. Evaluate
R √

1 + x2dx. Taking u =
√
1 + x2 and v = x, we obtainZ √

1 + x2dx = x
√
1 + x2 −

Z
x2dx√
1 + x2

= x
√
1 + x2 −

Z
(1 + x2) dx√
1 + x2

+

Z
dx√
1 + x2

= x
√
1 + x2 −

Z √
1 + x2dx+ ln

³
x+
√
x2 + 1

´
+ C.

As we see, the same integral appears both in the left hand side and in the right hand side.
Moving the latter to the left and dividing by 2, we obtainZ √

1 + x2dx =
1

2
x
√
x2 + 1 +

1

2
ln
³
x+
√
x2 + 1

´
+ C.

1.4 Change of variable in the integral

Theorem 1.4 Let u be a continuously differentiable function on an interval I and u (I) ⊂
J where J is another interval. If f is a function on J, which has a primitive F on J thenZ

f (u (x)) du = F (u (x)) + C. (1.6)

Note that the composite functions f (u (x)) and F (u (x)) are defined on I. The identity
(1.6) can be viewed as follows. The fact that F is a primitive of f can be written asZ

f (u) du = F (u) + C,

where u here is an independent variable (the argument of f and F ). The identity (1.6)
says that the independent variable u can be replaced here by a function u = u (x). The
formula (1.6) is referred to as a change of variable (or substitution) in the integral.
Proof. Note that Z

f (u (x)) du =

Z
f (u (x)) u0 (x) dx.

Hence, all we need to prove is that

(F (u (x)))0 = f (u (x)) u0 (x) .

Using the chain rule (Theorem 4.4 from Analysis I) and F 0 = f , we obtain

F (u (x))0 = F 0 (u (x))u0 (x) = f (u (x))u0 (x) ,

which was to be proved.
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Example. 1. Evaluate
R
(ax+ b)n dx where a 6= 0. Note that

dx =
1

a
d (ax+ b) .

Setting u = ax+ b, we obtainZ
(ax+ b)n dx =

1

a

Z
(ax+ b)n d (ax+ b) =

1

a

Z
undu.

Considering u as an independent variable, we obtainZ
undu =

½
un+1

n+1
, n 6= −1

ln |u| , n = −1.
Hence, Z

(ax+ b)n dx =

(
(ax+b)n+1

a(n+1)
, n 6= 1,

1
a
ln |ax+ b| , n = −1.

2. Evaluate
R

dx
x2−1 . Although this is a table integral, we give here an independent

derivation using the linearity of integral and change of variable. We have

1

x2 − 1 =
1

(x− 1) (x+ 1) =
1

2

µ
1

x− 1 −
1

x+ 1

¶
whence Z

dx

x2 − 1 =
1

2

Z
dx

x− 1 −
1

2

Z
dx

x+ 1

=
1

2

Z
d (x− 1)
x− 1 − 1

2

Z
d (x+ 1)

x+ 1

=
1

2
ln |x− 1|− 1

2
ln |x+ 1|+ C

=
1

2
ln

¯̄̄̄
x− 1
x+ 1

¯̄̄̄
+ C.

3. Evaluate Z
xdx

1 + x2
.

Observe that

xdx = d

µ
x2

2

¶
=
1

2
d
¡
1 + x2

¢
.

Hence, the given integral can be written in the form

1

2

Z
d (1 + x2)

1 + x2
.

Setting u = 1 + x2, we obtain Z
xdx

1 + x2
=
1

2

Z
du

u
.
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In the right hand side, we can consider the integral as if u is an independent variable. By
the table integral, we have Z

du

u
= ln |u|+ C,

whence Z
xdx

1 + x2
=
1

2
ln |u (x)|+ C =

1

2
ln
¡
1 + x2

¢
+ C.

4. Evaluate Z
dx

sinx
.

We have, using u = cosx,Z
dx

sinx
=

Z
sinxdx

sin2 x
= −

Z
d cosx

sin2 x
=

Z
d cosx

cos2 x− 1 =
Z

du

u2 − 1
=

1

2
ln

¯̄̄̄
u− 1
u+ 1

¯̄̄̄
+ C =

1

2
ln
1− cosx
1 + cosx

+ C.

In fact, the following trigonometric identity takes place:

1− cosx
1 + cosx

= tan2
x

2

so that Z
dx

sinx
= ln

¯̄̄
tan

x

2

¯̄̄
+ C.

5. Evaluate Z
arcsinxdx.

Using the methods described above, we obtainZ
arcsinxdx = x arcsinx−

Z
xd arcsinx (integration by parts)

= x arcsinx−
Z

x√
1− x2

dx

= x arcsinx+
1

2

Z
d (1− x2)√
1− x2

(change u = 1− x2)

= x arcsinx+
1

2

Z
u−1/2du (table integral)

= x arcsinx+ u1/2 + C

= x arcsinx+
√
1− x2 + C.

1.5 Integration of rational functions

A rational function is a function of the form

f (x) =
P (x)

Q (x)

11



where P and Q are polynomials of x. Integral of any such function can be found using
the following statement, which we state without proof.

Theorem. (a) Any polynomial Q (x) with real coefficients can be uniquely represented in
the form

Q (x) = A (x− r1)
k1 ... (x− rl)

kl
¡
x2 + p1x+ q1

¢m1 ...
¡
x2 + pnx+ qn

¢mn , (1.7)

where the numbers A, rk, pk, qk are real, kj,mj are natural, n,l are non-negative integers,
and the polynomials x2 + pkx + qk have no real roots; also, the numbers rk are distinct
and the couples (pk, qk) are distinct.

(b) Any rational function P (x)
Q(x)

can be uniquely represented in the form

P (x)

Q (x)
= P0 (x) +

lX
j=1

kjX
k=1

akj

(x− rj)
k
+

nX
j=1

mjX
m=1

bmjx+ cmj

(x2 + pjx+ qj)
m , (1.8)

where Q (x) is as in (1.7), P0 (x) is a polynomial, and akj, bmj, cmj are real.
The numbers rk are obviously the roots of Q (x) , that is, Q (rk) = 0. If complex-valued

roots were allowed then, due to the Fundamental Theorem of Algebra, one could always
represent Q (x) as a product of the linear terms only:

Q (x) = A (x− r1)
k1 ... (x− rl)

kl . (1.9)

Note that the complex roots of a real polynomial come in conjugate couples: if r =
α+ iβ ∈ C is a root of Q then r = α− iβ is also a root because Q (r) = Q (r). Moreover,
the roots r and r have the same multiplicity. Obviously, we have

(x− r) (x− r) = (x− α− iβ) (x− α+ iβ)

= (x− α)2 + β2

= x2 + px+ q,

where p = −2α and q = α2+β2; note that x2+px+ q has no real roots. Hence, replacing
in (1.9) the terms with conjugate roots by the corresponding quadratic polynomials, we
obtain (1.7).
Formula (1.8) means that each rational function can be represented as a sum of a

polynomial and some number of elementary rational functions of the form

a

(x− r)k
,

bx+ c

(x2 + px+ q)k
,

For practical applications, one does not really need the proof of this Theorem, since the
splitting (1.8) can be found in each case using some algebraic manipulations rather than
a general theory.
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Lecture 3 25.10.06 Prof. A. Grigorian, Analysis II, WS 2006-7

Recall that a rational function is a ratio of two polynomials. As was explained in
the previous lecture, each rational function can be split into a sum of a polynomial and
elementary rational functions of the form

a

(x− r)k
,

bx+ c

(x2 + px+ q)k
,

It is easy to integrate a polynomial because it is a sum of the terms axk. Let us explain how
to integrate the elementary rational function. A function of the type a

(x−r)k is integrated
as follows: Z

a

(x− r)k
dx = a

Z
d (x− r)

(x− r)k
= (change u = x− r)

= a

Z
u−kdu = a

½
u1−k
1−k , k 6= 1,
ln |u| , k = 1,

= a

(
(x−r)1−k
1−k , k 6= 1,

ln |x− r| , k = 1.

Integrating the elementary rational function of the type bx+c

(x2+px+q)k
is somewhat more

involved. Representing x2 + px+ q in the form

x2 + px+ q = (x+ p/2)2 +
¡
q − p2/4

¢
= u2 + s2,

where u = x+ p/2 and s =
p
q − p2/4, we obtainZ

bx+ c

(x2 + px+ q)k
dx =

Z
b0u+ c0

(u2 + s2)k
du

= b0
Z

udu

(u2 + s2)k
+ c0

Z
du

(u2 + s2)k
.

Hence, we have to handle the following two integrals:Z
udu

(u2 + s2)k
and

Z
du

(u2 + s2)k
.

The first of them is taken easily as follows:Z
udu

(u2 + s2)k
=

1

2

Z
d (u2 + s2)

(u2 + s2)k
= (change v = u2 + s2)

=
1

2

Z
dv

vk
=
1

2

½
v1−k
1−k , k 6= 1,
ln |v| , k = 1,

=
1

2

(
(u2+s2)

1−k

1−k , k 6= 1,
ln (u2 + s2) , k = 1.

The second integral will be evaluated inductively in k. Set

Fk (u) =

Z
du

(u2 + s2)k

13



and notice that

F1 (u) =

Z
du

u2 + s2
=

Z
du

s2
¡
(u/s)2 + 1

¢ = 1

s

Z
d (u/s)

(u/s)2 + 1
=
1

s
arctan

u

s
+ C.

Integrating by parts in Fk, we obtain

Fk (u) =
u

(u2 + s2)k
−
Z

ud
1

(u2 + s2)k

=
u

(u2 + s2)k
+ 2k

Z
u2du

(u2 + s2)k+1

=
u

(u2 + s2)k
+ 2k

Z
u2 + s2

(u2 + s2)k+1
du− 2ks2

Z
du

(u2 + s2)k+1

=
u

(u2 + s2)k
+ 2kFk − 2ks2Fk+1.

It follows that

Fk+1 =
1

2ks2

Ã
u

(u2 + s2)k
+ (2k − 1)Fk

!
,

which allows to evaluate Fk by induction in k, starting with F1.

Example. 1. Evaluate Z
dx

x3 − x
.

The denominator is factorized as follows:

x3 − x = x (x− 1) (x+ 1) .

Hence, function 1
x3−x splits into the sum of elementary rational functions as follows

1

x3 − x
=

a1
x
+

a2
x− 1 +

a3
x+ 1

, (1.10)

where the constants a1, a2, a3 are to be determined. To find a1, multiply the equation by
x:

1

x2 − 1 = a1 + x

µ
a2

x− 1 +
a3

x+ 1

¶
and notice that this identity is true for all x 6= 0, 1,−1 but by continuity it extends to
x = 0. Setting x = 0, we obtain

a1 = −1.
Similarly, multiplying (1.10) by x− 1 and setting x = 1 in the resulting identity

1

x (x+ 1)
= a2 + (x− 1)

µ
a1
x
+

a3
x+ 1

¶
we obtain

a2 =
1

2
.

14



Finally, multiplying (1.10) by x+ 1 and setting x = −1 in the resulting identity
1

x (x− 1) = a3 + (x+ 1)

µ
a1
x
+

a2
x− 1

¶
,

we obtain

a3 =
1

2
.

Therefore,
1

x3 − x
= −1

x
+
1

2

1

x− 1 +
1

2

1

x+ 1

whence Z
dx

x3 − x
= − ln |x|+ 1

2
ln |x− 1|+ 1

2
ln |x+ 1|+ C

=
1

2
ln

¯̄̄̄
x2 − 1
x2

¯̄̄̄
+ C.

2. Evaluate Z
dx

(x2 + 1) (x− 1)2 .

Let us split the function f (x) = 1
(x2+1)(x−1)2 into a sum of elementary rational functions

in the form
1

(x2 + 1) (x− 1)2 =
a1

(x− 1)2 +
a2

x− 1 +
bx+ c

x2 + 1
, (1.11)

where the coefficients ai, b, c are to be found. Multiplying the both sides by (x− 1)2, we
obtain

1

x2 + 1
= a1 + a2 (x− 1) + (x− 1)2R (x) ,

where R (x) = bx+c
x2+1

. Substituting x = 1, we obtain

a1 =
1

2
.

Subtracting in (1.11) the term 1
2

1
(x−1)2 , we obtainµ

1

(x2 + 1)
− 1
2

¶
1

(x− 1)2 =
a2

x− 1 +R (x)

−1
2

x2 − 1
(x2 + 1) (x− 1)2 =

a2
x− 1 +R (x)

−1
2

x+ 1

(x2 + 1) (x− 1) =
a2

x− 1 +R (x) . (1.12)

Multiplying by x− 1, we obtain the identity

−1
2

x+ 1

x2 + 1
= a2 + (x− 1)R (x) ,

15



and setting here x = 1, we obtain

a2 = −1
2
.

It follows from (1.12) that

−1
2

x+ 1

(x2 + 1) (x− 1) +
1

2

1

x− 1 = R (x)

whence

R (x) =
1

2

x2 + 1− (x+ 1)
(x2 + 1) (x− 1) =

1

2

x (x− 1)
(x2 + 1) (x− 1) =

1

2

x

x2 + 1

so that R (x) indeed has the form bx+c
x2+1

. Hence, we have

f (x) =
1

2

1

(x− 1)2 −
1

2

1

x− 1 +
1

2

x

x2 + 1
.

Now let us integrate each term separately:Z
dx

(x− 1)2 =

Z
d (x− 1)
(x− 1)2 = (change u = x− 1)

=

Z
u−2du =

u−1

−1 + C

=
1

1− x
+ C,

Z
1

x− 1dx =
Z

d (x− 1)
x− 1 = ln |x− 1|+ C,Z

xdx

x2 + 1
=
1

2

Z
d (x2 + 1)

x2 + 1
=
1

2
ln
¡
x2 + 1

¢
+ C.

Combining all the lines together, we obtainZ
f (x) dx =

1

2

1

1− x
− 1
2
ln |x− 1|+ 1

4
ln
¡
x2 + 1

¢
+ C.

3. Evaluate Z
dx

(x2 + x+ 1)2
.

The polynomial x2 + x + 1 has no real root. Therefore, function 1
(x2+x+1)2

is already an

elementary rational function. Using

x2 + x+ 1 =

µ
x+

1

2

¶2
+
3

4

and making change u = x+ 1
2
we obtainZ

dx

(x2 + x+ 1)2
=

Z
du¡

u2 + 3
4

¢2 .
16



Recall that Z
du

u2 + 3
4

=
2√
3
arctan

2u√
3
+ C.

On the other hand, integrating the above integral by parts, we obtainZ
du

u2 + 3
4

=
u

u2 + 3
4

−
Z

ud
1

u2 + 3
4

=
u

u2 + 3
4

+

Z
u

2u¡
u2 + 3

4

¢2du
=

u

u2 + 3
4

+ 2

Z
u2 + 3

4
− 3

4¡
u2 + 3

4

¢2 du
=

u

u2 + 3
4

+ 2

Z
1

u2 + 3
4

du− 3
2

Z
1¡

u2 + 3
4

¢2du.
It follows that

3

2

Z
1¡

u2 + 3
4

¢2du = u

u2 + 3
4

+

Z
1

u2 + 3
4

du =
u

u2 + 3
4

+
2√
3
arctan

2u√
3
+ C,

whence Z
1¡

u2 + 3
4

¢2du = 2u

3u2 + 9
4

+
4

3
√
3
arctan

2u√
3
+ C,

and Z
dx

(x2 + x+ 1)2
=

2x+ 1

3 (x2 + x+ 1)
+

4

3
√
3
arctan

2x+ 1√
3

+ C.

In conclusion, let us mention a method for obtaining the coefficients akj of the expan-

sion of P (x)
Q(x)

in (1.8). Fix one of the roots, say r, of Q (x), and let k be its multiplicity.

Then rewrite (1.8) in the form

P (x)

Q (x)
=

a1
x− r

+
a2

(x− r)2
+ ...+

ak

(x− r)k
+R (x) , (1.13)

where R (x) is the remainder term containing other roots of Q (x) as well as the quadratic
terms. Note that R (x) has a finite value at x = r. Multiplying (1.13) by (x− r)k, we
obtain

P (x)

Q (x)
(x− r)k = ak + ak−1 (x− r) + ...+ a1 (x− r)k−1 + (x− r)kR (x)

= ak + ak−1 (x− r) + ...+ a1 (x− r)k−1 + o (x− r)k−1 as x→ r.

Hence, by Theorem 4.14 of Analysis I, we conclude that the coefficients ak, ..., a1 are the
Taylor coefficients of the function f (x) = P (x)

Q(x)
(x− r)k at x = r, whence it follows that

ak−l =
f (l) (r)

l!
, l = 0, 1, ..., k − 1.

17



Lecture 4 03.11.06 Prof. A. Grigorian, Analysis II, WS 2006-7

1.6 Separable differential equations

An ordinary differential equation (ODE) is an equation containing an unknown function,
say y = y (x) and its derivatives. A general ODE has the form

F
¡
x, y, y0, ..., y(n)

¢
= 0

where F is a given function of n + 2 arguments, x is an independent variable, y = y (x)
is an unknown function to be found. The order of an ODE is the maximal order of the
derivative of y that is contained in this equation, which in this case is n.
Consider the following ODE of the 1st order:

y0 = f (x, y) ,

where f is a given function of two arguments and y = y (x) is unknown. As we already
know, the simplest differential equation

y0 = f (x)

is solved by integration:

y =

Z
f (x) dx.

Consider another example of the 1st order ODE:

y0 = ay,

where a is a constant. One solution is easy to guess: y = eax. Clearly, a function y = Ceax

is also a solution, for any constant C. It turns out that this formula gives all solutions.

Claim. Any solution to the equation y0 = ay in any open interval is given by the formula
y (x) = Ceax where C is a constant.
Proof. Let y (x) be a solution on an interval I. Assume first that that y (x) does not

vanish in a certain open interval I0 ⊂ I. Then we can divide by y and obtain in I0 the
equation

y0

y
= a.

Observing that y0
y
= (ln |y|)0, we rewrite the equation in the form

(ln |y|)0 = a,

which implies

ln |y| =
Z

adx = ax+ C,

|y| = eCeax.

Therefore, y (x) = eCeax or y (x) = −eCeax. In fact, y (x) must have the same sign on
the entire interval I0 because otherwise, by the intermediate value theorem (Theorem 4.3

18



from Analysis I), function y would have take also the value 0. Renaming eC or −eC by
C, we obtain that, for all x ∈ I0,

y (x) = Ceax. (1.14)

Consider now an arbitrary solution y (x) in I. If y (x) ≡ 0 on I then we can write
y (x) = Ceax with C = 0. Let us show that the following two cases exhaust all possibilities:
either y is identical zero on I or y does not vanish on I. Then the Claim will be proved
since in the both cases we have proved (1.14). Assume from the contrary that y (x0) 6= 0
for some x0 ∈ I but y (x) = 0 for some x ∈ I. Without loss of generality, assume that
x > x0 and set

x1 = inf {x > x0 : y (x) = 0} .
By the continuity of y, we have also y (x1) = 0. On the other hand, in the interval
I0 = (x0, x1) function y does not vanish, which implies by the first part of the proof that
y = Ceax in this interval, with C 6= 0. Again by continuity, the same formula extends to
x = x1 whence we conclude that y (x1) 6= 0. This contradiction finishes the proof.
In applications, a differential equation frequently comes with additional requirement

that y (x0) = y0 for some given x0 and y0, which is called the initial condition. For
example, in the family of solutions y (x) = Ceax (where C is any real number), for all
x0,y0 ∈ R there is exactly one solution such that y (x0) = y0. Indeed, substituting these
values, we obtain y0 = Ceax0 which holds for C = y0e

−ax0 . Hence, we obtain the unique
function y (x) = y0e

a(x−x0), which satisfies the equation y0 = ay and the initial condition
y (x0) = y0. This solution is called a particular solution as opposed to the general solution
y = Ceax.
Consider the graphs of all solutions y (x) to the equation y0 = ay. It follows from the

above argument that, for any point (x0, y0) on the plane, there exists a unique graph of
the solution that goes through this point. The graphs of the solutions of an ODE are
called the integral curves of this equation. Below are shown some integral curves of the
equation y = ay with a = 0.3:

3210-1-2-3

3

2

1

0

-1

-2

-3

x

y

x

y

Similar argument can be used to solve more general equations having the form

y0 = f (x) g (y) .
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Any equation of this form is called a separable ODE, because the variables x and y are
separated on the right hand side. A separable ODE can be solved as follows. If g (y)
vanishes at some point y0 then y = y0 is a constant solution. In the domain where
g (y) 6= 0, we can write

y0

g (y)
= f (x)

or, multiplying by dx,
dy

g (y)
= f (x) dx.

Integrating the both sides and using the change of variable in the left hand side (namely,
considering y in integration as an independent variable), we obtainZ

dy

g (y)
=

Z
f (x) dx.

After evaluating these integrals, we obtain an explicit relation between y and x. Resolving
it with respect to y, we obtain y (x). This method is called the method of separation of
variables.

Example. 1. Solve y0 = −x
y
. Separating the variables, we obtain the equation

yy0 = −x

whence Z
ydy = −

Z
xdx.

After integration, we obtain
y2 = −x2 + C,

which can also be written in the form x2 + y2 = C. The integral curves of this equation
are semi-circles y = ±√C − x2.
2. Consider the following physical problem. A heated body is cooling down in a media

of constant temperature T (say, in air or in water). Let us find out the temperature u (t)
of the body at time t using the Fourier law of heat conductance: the rate of decrease of
u (t) is proportional to the difference u (t)− T , that is,

u0 (t) = −k (u (t)− T ) ,

where k > 0 is the coefficient of thermoconductance of the body. The above equation is a
separable ODE. Its obvious solution is u (t) ≡ T , but we are interested only in solutions
with u (t) > T . Assuming that, we can divide by u− T and obtain

u0

u− T
= −k

whence Z
du

u− T
= −k

Z
dt,

ln (u− T ) = −kt+ C,
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u = T + Ce−kt.

It is clear from this formula that u (t)→ T as t→ +∞.
The constant C can be found from the initial condition u (0) = u0, which gives u0 =

T + C, whence C = u0 − T and, hence,

u (t) = T + (u0 − T ) e−kt.

In fact, the coefficient k can also be found if we have one more measurement of the
temperature u (t) at some time t > 0.
3. Consider the following mechanical problem. A body falls down along a straight

line in a viscous media such as a gas or a liquid. Denoting by z (t) its coordinate at time
t on the vertical axis directed downwards, let us find the function z (t) under reasonable
physical assumptions. The are two forces acting on the body: the gravity mg directed
downwards (where m is the mass of the body and g is the acceleration of the gravity) and
the friction force kv2 directed upwards, where v = v (t) is the velocity of the body and k
is the viscosity coefficient. Denoting by a (t) the acceleration of the body at time t, we
obtain by the second Newton’s law

ma = mg − kv2.

For simplification, take g = 1 and m = k (which can always be achieved by appropriately
changing the units of length and time) and rewrite the equation in the form

v0 = 1− v2, (1.15)

where we also have used that a = v0. This is a separable ODE, which can be solved
by separation of variables. Note that by the physical meaning function v (t) must be
non-negative.
First, notice that (1.15) has a constant solution v ≡ 1. If v (t) does not take value 1

then we separate variables as follows:

v0

1− v2
= 1,Z

dv

1− v2
=

Z
dt,

1

2
ln

¯̄̄̄
1 + v

1− v

¯̄̄̄
= t+ C,

1 + v

1− v
= ±e2t+2C .

Renaming e2C or e−2C by C, we obtain

1 + v

1− v
= Ce2t,

v =
Ce2t − 1
Ce2t + 1

. (1.16)

Note that C is (1.16) is any real number except for 0. For example, we can see from (1.16)
that v (t)→ 1 as t→ +∞.
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The integral curves v (t) of the equation in question look as follows:

32.521.510.50-0.5-1-1.5-2

3

2.5

2

1.5

1

0.5

0

t

v

t

v

As we see, those integral curves that are below v = 1, have the domain of the form
(t0,+∞) where v (t0) = 0 (this occurs when C > 0). This corresponds to the physical
situation that the body starts falling at time t0 with the initial velocity 0 and accelerates
to the terminal velocity 1 (when t→ +∞). The curves that are above v = 1 (which occur
for C < 0) correspond to the case when the initial velocity of the body is higher than 1
and it slows down (decelerates) so that its terminal velocity is again 1.
Next, notice that z0 (t) = v (t) whence

z (t) =

Z
v (t) dt.

If v (t) ≡ 1 then z (t) = t+ C1. If v (t) is given by (1.16) then

z (t) =

Z
Ce2t − 1
Ce2t + 1

dt =

Z −Ce2t − 1 + 2Ce2t
Ce2t + 1

dt

= −
Z

dt+

Z
2Ce2t

Ce2t + 1
dt

= −t+
Z

d (Ce2t + 1)

Ce2t + 1

= −t+ ln ¯̄Ce2t + 1¯̄+ C1. (1.17)

The actual values of the constants C, C1 can be found using the initial data v (t0) and
z (t0) at the initial time t0. For example, let us impose the initial conditions

z (0) = v (0) = 0. (1.18)

Then setting t = 0 in (1.16), we obtain

0 =
C − 1
C + 1

,

whence C = 1. Setting t = 0 in (1.17), we obtain 0 = ln 2 + C1, whence C1 = − ln 2.
Hence, the solution satisfying the initial conditions (1.18) is

z (t) = −t+ ln e
2t + 1

2
= ln

et + e−t

2
= ln cosh t.
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Lecture 5 8.11.06 Prof. A. Grigorian, Analysis II, WS 2006-7

2 Riemann integral

2.1 Definition of the Riemann integral

Let f (x) be a function defined on a closed interval [a, b] where a < b are real numbers.
Our purpose is to define the notion of the definite integralZ b

a

f (x) dx

which is a number that can be interpreted as the area under the graph of function f . The
procedure for that is due to Riemann and, hence, this notion is called also the Riemann
integral.
A partition (Unterteilung) of the interval [a, b] is any finite strictly increasing sequence

{xk}nk=0 such that x0 = a and xn = b, that is

a = x0 < x1 < x2... < xn−1 < xn = b.

Normally we denote a partition by p, that is, p is just a sequence {xk}nk=0 as above. For
any partition p = {xk}nk=0 define the mesh of partition (Feinheit) by

m (p) = max {∆xk}nk=1
where

∆xk = xk − xk−1.

A tagged partition is a partition {xk}nk=0 together with another sequence {ξk}nk=1 such
that ξk ∈ [xk−1, xk] . The points ξk are called tags (Stützstellen). In other words, on each
of the intervals [xk−1, xk] we mark one point ξk. We denote a tagged partition by (p, ξ)
where p is a partition and ξ is the sequence {ξk}nk=1 of tags.
With any tagged partition (p, ξ) we associate the Riemann sum of f defined by

S (f, p, ξ) =
nX

k=1

f (ξk)∆xk.

Geometrically, S (f, p, ξ) is equal to the sum of the areas of rectangles with the base
[xk−1, xk] and the height f (ξk), which approximates the area under the graph of f (x) as
on the picture below.

 

f(x) 

a xk-1 xk ξk b x 

y 
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Now we consider the limit of the integral sums when the mesh of the partition tends
to 0. Namely, we write that

lim
m(p)→0

S (f, p, ξ) = A

where A ∈ R, if, for any ε > 0, there exists δ > 0 such that for all tagged partitions (p, ξ)
with m (p) < δ we have

|S (f, p, ξ)−A| < ε.

Definition. A function f on [a, b] is called Riemann integrable if the limit

lim
m(p)→0

S (f, p, ξ)

exists. The value of the limit is called the Riemann (definite) integral of f and is denoted
by Z b

a

f (x) dx.

In other words, Z b

a

f (x) dx = lim
m(p)→0

nX
k=1

f (ξk)∆xk. (2.1)

The notation
R b
a
f (x) dx was invented by Leibniz and was chosen to be reminiscent ofPn

k=1 f (ξk)∆xk.
The following questions arise in relation to this definition:

1. What functions are integrable and if a function is integrable then how to find the
Riemann integral?

2. What the Riemann integral is useful for?

3. What is the relation to the indefinite integral
R
f (x) dx?

These questions will be answered in due course. So far we give two examples.

Example. 1. Let f (x) ≡ c be a constant function. Then f is Riemann integrable
because for any tagged partition (p, ξ)

S (f, p, ξ) =
nX

k=1

f (ξk)∆xk = c
nX

k=1

∆xk = c (b− a)

and, hence, the limit in (2.1) exists and is equal to c (b− a). Hence, we can writeZ b

a

cdx = c (b− a) .

2. Let f be the function

f (x) =

½
1, x ∈ Q
0, x /∈ Q
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Then f is not Riemann integrable on any interval. Indeed, whatever is the partition
p = {xk}nk=0, we can choose tags ξk to be rational so that f (ξk) = 0 and, hence

S (f, p, ξ) = 0.

On the other hand, we can choose the tags to be irrational so that f (ξk) = 1 and, hence,

S (f, p, ξ) = b− a.

Hence, the limit limm(p)→0 S (f, p, ξ) does not exists.

2.2 Criteria of integrability

Define the notion of Darboux sums of f as follows: for any partition {xk}nk=0, the upper
Darboux sum is defined by

S∗ (f, p) =
nX

k=1

sup
[xk−1,xk]

f (x)∆xk

and the lower Darboux sum by

S∗ (f, p) =
nX

k=1

inf
[xk−1,xk]

f (x)∆xk.

Note that the Darboux sums do not depend on the choice of tags. Geometrically, S∗ (f, p)
is the sum of the areas of the rectangles that cover the area under the graph of f :

 

f(x) 

a xk-1 xk b x 

y 

and S∗ (f, p) is the sum of the areas of the rectangles that are contained under the graph
of f :

 

f(x) 

a xk-1 xk b x 

y 
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Since for any ξk ∈ [xk−1, xk],
inf

[xk−1,xk]
f (x) ≤ f (ξk) ≤ sup

[xk−1,xk]
f (x) ,

we obtain from the comparison of the Riemann and Darboux sums that, for any choice
of tags ξ,

S∗ (f, p) ≤ S (f, p, ξ) ≤ S∗ (f, p) . (2.2)

Definition. A function f is called Darboux integrable if,

lim
m(p)→0

(S∗ (f, p)− S∗ (f, p)) = 0.

In other words, for any ε > 0 there exists δ > 0 such that, for any partition p with
m (p) < δ,

S∗ (f, p)− S∗ (f, p) < ε.

Theorem 2.1 (Darboux criterion of integrability) Function f is Riemann integrable if
and only it is Darboux integrable.

Proof. Assume that f is Riemann integrable and let

A =

Z b

a

f (x) dx.

Then, for any ε > 0 there exists δ > 0 such that for any tagged partition (p, ξ) with
m (p) < δ

|S (f, p, ξ)−A| < ε.

Note that this is true for any choice of the tags ξ. The tags ξk ∈ [xk−1, xk] can be chosen so
that f (ξk) is arbitrarily close to sup[xk−1,xk] f (x). Then S (f, p, ξ) can be made arbitrarily
close to S∗ (f, p), which implies that also

|S∗ (f, p)−A| < ε.

Similarly, we obtain
|S∗ (f, p)−A| < ε,

whence
|S∗ (f, p)− S∗ (f, p)| < 2ε.

Renaming 2ε to ε, we obtain that f is Darboux integrable.
To prove the opposite implication, we need some properties of Darboux sums. We say

that a partition p0 is an extension (or refinement) of partition p if, as a set of points, p
is contained in p0, that is, p ⊂ p0. One can also say that p0 is obtained from p by adding
more points to the partition p.

Claim 1. If p0 is an extension of p then

S∗ (f, p0) ≤ S∗ (f, p)
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and
S∗ (f, p0) ≥ S∗ (f, p0) .

In other words, when refining the partition, the upper Darboux sum decreases and the
lower Darboux sum increases.
Let p = {xk}nk=0 and p0 = {x0k}n

0
k=0. Since p ⊂ p0, any interval [xk−1, xk] of partition p

coincides with some interval [x0l, x
0
m] so that

xk−1 = x0l < x0l+1 < ... < x0m = xk.

Therefore,

sup
[xk−1,xk]

f (x) (xk − xk−1) =
mX

i=l+1

sup
[xk−1,xk]

f (x)
¡
x0i − x0i−1

¢
≥

mX
i=l+1

sup
[x0i−1,x0i]

f (x)
¡
x0i − x0i−1

¢
.

Adding up such inequalities for all k, we obtain S∗ (f, p) ≥ S∗ (f, p0). For the lower sums
the proof is similar.

Claim 2. For any two partitions p0 and p00,

S∗ (f, p0) ≤ S∗ (f, p00) . (2.3)

In other word, any lower Darboux sum is at most any upper Darboux sum.
Let p be the partition that is obtained by merging p0 and p00, that is, as a set of points,

p = p0 ∪ p00. Then p is an extension of both p0 and p00, and we obtain by (2.2) and Claim
1,

S∗ (f, p0) ≤ S∗ (f, p) ≤ S∗ (f, p) ≤ S∗ (f, p00) ,

whence the claim follows.
It follows from Claim 2 that

sup
p

S∗ (f, p) ≤ inf
p
S∗ (f, p) . (2.4)

Claim 3. If f (x) is Darboux integrable then

sup
p

S∗ (f, p) = inf
p
S∗ (f, p) .

Indeed, set
A = sup

p
S∗ (f, p) and B = inf

p
S∗ (f, p) (2.5)

so that by (2.4) A ≤ B. On the other hand, by definition of the Darboux integrability,
for any ε > 0 there exists δ > 0 such that, for any partition p with m (p) < δ,

S∗ (f, p)− S∗ (f, p) < ε.

In particular, this implies that B − A < ε. Since this is true for any ε > 0, we obtain
A = B.
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Now we can prove that if f is Darboux integrable then f is Riemann integrable. In
fact, let us prove that

lim
m(p)→0

S (f, p, ξ) = A,

where A is defined by (2.5). Indeed, for any ε > 0 there exists δ such that, for any
partition p with m (p) < δ,

S∗ (f, p)− S∗ (f, p) < ε.

By definition of A and B and by A = B, we have

S∗ (f, p) ≤ A ≤ S∗ (f, p) .

By (2.2) we have
S∗ (f, p) ≤ S (f, p, ξ) ≤ S∗ (f, p) .

Therefore, both numbers A and S (f, p, ξ) belong to the same interval [S∗ (f, p) , S∗ (f, p)],
which implies that

|S (f, p, ξ)−A| ≤ S∗ (f, p)− S∗ (f, p) < ε

and which finishes the proof.
Hence, being Riemann integrable or Darboux integrable is the same. In the future,

we’ll simply say that a function is integrable if it is Riemann or Darboux integrable.

Corollary. Function f is integrable if and only if both limits

lim
m(p)→0

S∗ (f, p) , lim
m(p)→0

S∗ (f, p) (2.6)

exist (as real numbers) and are equal. Moreover, if f is integrable then

lim
m(p)→0

S∗ (f, p) = lim
m(p)→0

S∗ (f, p) =
Z b

a

f (x) dx = sup
p

S∗ (f, p) = inf
p
S∗ (f, p) . (2.7)

Proof. If the limits (2.6) exist and are equal then the limit of their difference is 0,
which means that f is Darboux integrable. If f is integrable then we have

lim
m(p)→0

(S∗ (f, p)− S∗ (f, p)) = 0

and
lim

m(p)→0
S (f, p, ξ) exists.

Since
S∗ (f, p) ≤ S (f, p, ξ) ≤ S∗ (f, p) ,

S∗ (f, p) and S∗ (f, p) must have the same limits as S (f, p, ξ) . Since the latter is
R b
a
f (x) dx,

we obtain the left identities in (2.7). The right identities were verified in the proof of The-
orem 2.1.

Corollary. (Necessary condition for integrability) If a function f is Riemann integrable
on [a, b] then f is bounded from above and below on this interval.
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Proof. Indeed, if sup[a,b] f = +∞ then for any partition p, there is an interval
[xk−1, xk] such that sup[xk−1,xk] f = +∞, which implies that

S∗ (f, p) = +∞.

On the other hand, S∗ (f, p) < +∞, which makes the inequality

S∗ (f, p)− S∗ (f, p) < ε

impossible. Therefore, sup[a,b] f < +∞. In the same way, inf [a,b] f > −∞, which proves
the claim.

Theorem 2.2 (Sufficient conditions for integrability)
(a) Any continuous function f (x) on [a, b] is integrable on this interval.
(b) Any monotone function f (x) on [a, b] is integrable on this interval.

For the proof of part (a), we need a notion of uniform continuity (Gleichmäβig
Stetigkeit).

Definition. A function f (x) on an interval I is called uniformly continuous if, for any
ε > 0, there exists δ > 0 such that

x, y ∈ I and |x− y| < δ =⇒ |f (x)− f (y)| < ε.

Recall that f is continuous on I if f is continuous at any point x ∈ I, that is, for any
x ∈ I for any ε > 0 there exists δ > 0 such that

y ∈ I and |x− y| < δ =⇒ |f (x)− f (y)| < ε.

In the definition of the continuity at x, the parameter δ may depend on x, while in the
uniform continuity δ must be the same for all x, which explains the term “uniform”.

Example. The function f (x) = 1
x
is continuous in (0, 1) but is not uniformly continuous.

Indeed, whatever is δ, choose 0 < x < δ and y = x/2 so that |x− y| < δ whereas the
difference

|f (x)− f (y)| =
¯̄̄̄
1

x
− 1

y

¯̄̄̄
=
1

x

can be made larger than ε just by taking x small enough.

Lemma 2.3 If f (x) is a continuous function on a bounded closed interval I then f is
uniformly continuous on I.

Proof. Fix some ε > 0. For any point x ∈ I there exists δ (x) > 0 such that

|y − x| < δ (x) =⇒ |f (y)− f (x)| < ε/2.

Denote by Jx the open interval
¡
x− 1

2
δ (x) , x+ 1

2
δ (x)

¢
. Obviously, the family of all

intervals {Jx}x∈I covers I. By the compactness principle (Theorem 1.10 from Analysis
I), any family of open intervals covering of a closed bounded interval I contains a finite
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subfamily that also covers I. Hence, select finitely many intervals Jx1, ..., Jxn that cover
I. Set

δ =
1

2
min
1≤k≤n

{δ (xk)}
and prove that

y0, y00 ∈ I and |y0 − y00| < δ =⇒ |f (y0)− f (y00)| < ε, (2.8)

which will prove the uniform continuity of f . Indeed, the point y0 belongs to some of the
intervals Jxk so that

|y0 − xk| < 1

2
δ (xk) .

Since

|y00 − y0| < δ ≤ 1
2
δ (xk) ,

we obtain also
|y00 − xk| < δ (xk) .

Hence, by the choice of δ (xk), we have

|f (y0)− f (x)| < ε/2

and
|f (y00)− f (x)| < ε/2

whence (2.8) follows.
Proof of Theorem 2.2(a). By Lemma 2.3, function f is uniformly continuous on

[a, b] that is, for any ε > 0 there exists δ > 0 such that

|x− y| < δ =⇒ |f (x)− f (y)| < ε.

Consider now any partition p = {xk}nk=0 of [a, b] with m (p) < δ. Then, for any two points
x, y ∈ [xk−1, xk] we have |x− y| < δ and, hence

|f (x)− f (y)| < ε.

In particular, this implies that

sup
[xk−1,xk]

f − inf
[xk−1,xk]

f ≤ ε

whence

S∗ (f, p)− S∗ (f, p) =
nX

k=1

Ã
sup

[xk−1,xk]
f − inf

[xk−1,xk]
f

!
(xk − xk−1)

≤ ε
nX

k=1

(xk − xk−1)

= ε (b− a) .

Renaming ε (b− a) by ε, we obtain that the function f is Darboux integrable, which
implies by Theorem 2.1 that f is Riemann integrable.
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Proof of Theorem 2.2(b). Assume for simplicity that f is monotone increasing.
Obviously, we have for any partition p = {xk}nk=0

sup
[xk−1,xk]

f = f (xk)

and
inf

[xk−1,xk]
f = f (xk−1)

so that

S∗ (f, p)− S∗ (f, p) =
nX

k=1

Ã
sup

[xk−1,xk]
f − inf

[xk−1,xk]
f

!
(xk − xk−1)

=
nX

k=1

(f (xk)− f (xk−1)) (xk − xk−1)

≤ m (p)
nX

k=1

(f (xk)− f (xk−1))

= m (p) (f (b)− f (a)) .

Hence, if m (p) < δ then

S∗ (f, p)− S∗ (f, p) ≤ δ (f (b)− f (a)) .

If δ is small enough then the right hand side here is < ε, which means that f is Darboux
integrable.

2.3 Further properties of the Riemann integral

The next theorem establishes the relation between indefinite and definite integrals.

Theorem 2.4 (The fundamental theorem of calculus − Fundamentalsatz der Differential-
und Integralrechnung). Let f (x) be a continuous function on a bounded closed interval
[a, b] and let F (x) be its primitive on this interval. ThenZ b

a

f (x) dx = F (b)− F (a) . (2.9)

This formula is also called the Newton-Leibniz formula, and it is a cornerstone of
Analysis. It can also be written in the formZ b

a

F 0 (x) dx = F (b)− F (a) .

To describe yet another form of (2.9), let us introduce the following notation:

[F ]ba = F (b)− F (a) .

Then, using the fact that F =
R
f (x) dx we can writeZ b

a

f (x) dx =

·Z
f (x) dx

¸b
a

.
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This formula explains why the notation for the definite and indefinite integrals are so
similar, despite the fact that the notions are entirely different.
Proof. By Theorem 2.2, the function f is integrable. Recall that, by definition,Z b

a

f (x) dx = lim
m(p)→0

S (f, p, ξ) .

Fix a partition p = {xk}nk=0 of the interval [a, b] and choose tags ξ = {ξk}nk=1 as follows.
By the mean value theorem (Theorem 4.9 from Analysis I), there exists ξk ∈ [xk−1, xk] so
that

F (xk)− F (xk−1) = F 0 (ξk) (xk − xk−1) .

Taking ξk as tags, we can evaluate the Riemann sum for the tagged partition (p, ξ) as
follows:

S (f, p, ξ) =
nX

k=1

f (ξk) (xk − xk−1)

=
nX

k=1

F 0 (ξk) (xk − xk−1)

=
nX

k=1

(F (xk)− F (xk−1))

= F (b)− F (a) .

Therefore, the only possible value for limm(p)→0 S (f, p, ξ) is F (b)−F (a) whence the claim
follows.
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Example. 1. Let f (x) = 1− x2. ThenZ 1

−1

¡
1− x2

¢
dx =

·Z ¡
1− x2

¢
dx

¸1
−1
=

·
x− x3

3

¸1
−1
=
4

3

Geometrically the above computation means that the area bounded by the parabola
y = 1− x2 and the x-axis is 4/3.

10.50-0.5-1

1

0.75

0.5

0.25

0

x

y

x

y

In particular, it is 2/3 of the area of the bounding box [−1, 1]× [0, 1] . The rule that the
area under the parabola is 2/3 of its bounding box was first discovered by Archimedes,
who, in the modern terms, was able to evaluate the definite integral directly by definition
as the limit of the Riemann sums, without knowing the Newton-Leibniz formula.
2. Let f (x) = 1

x
. Then, for a > 1,Z a

1

dx

x
=

·Z
dx

x

¸a
1

= [lnx]a1 = ln a.

This formula can be used as an independent definition of the natural logarithm, which
then leads to definition of exp (x) .
3. Let f (x) = 1

1+x2
. Then, for a > 0,Z a

0

dx

1 + x2
=

·Z
dx

1 + x2

¸a
0

= [arctanx]a0 = arctan a.

This formula can be used for an independent definition of arctanx, which then leads to
definition of tanx.
Note that we did not write the usual constant C in integration because it always

cancels out when taking the difference F (b)− F (a).

Theorem 2.5 (Linearity of integral) If functions f and g are integrable on [a, b] then
also λf + µg is integrable where λ, µ are constants, andZ b

a

(λf + µg) dx = λ

Z b

a

fdx+ µ

Z b

a

gdx. (2.10)
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Proof. Let (p, ξ) be a tagged partition of [a, b]. Then

S (λf + µg, p, ξ) =
nX

k=0

(λf + µg) (ξk)∆xk

= λ
nX

k=0

f (ξk)∆xk + µ
nX

k=0

g (ξk)∆xk,

and when m (p)→ 0, the above expression tends to

λ

Z b

a

f (x) dx+ µ

Z b

a

g (x) dx.

By definition, this means that λf + µg is Riemann integrable and (2.10) holds.

Theorem 2.6 (Monotonicity of integral)

(a) If f is integrable on [a, b] and f ≥ 0 thenZ b

a

fdx ≥ 0.

(b) If f and g are integrable on [a, b] and f ≥ g thenZ b

a

fdx ≥
Z b

a

gdx.

Proof. (a) Indeed, all Riemann sums of f are non-negative, which implies that their
limit is also non-negative, which finishes the proof.
(b) Since by Theorem 2.5Z b

a

fdx−
Z b

a

gdx =

Z b

a

(f − g) dx

and f − g ≥ 0, the claim follows from part (a).

Corollary. If f is integrable on [a, b] then

(b− a) inf
[a,b]

f ≤
Z b

a

fdx ≤ (b− a) sup
[a,b]

f.

Proof. Let c = sup[a,b] f . Then f ≤ c on [a, b] whence by Theorems 2.6 and 2.5Z b

a

fdx ≤
Z b

a

cdx = c

Z b

a

dx = c

·Z
dx

¸b
a

= c (b− a) .

The lower bound is proved similarly.

Theorem 2.7 If f is integrable on [a, b] then |f | is also integrable and¯̄̄̄Z b

a

fdx

¯̄̄̄
≤
Z b

a

|f | dx. (2.11)
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Proof. We claim that, for any interval I ⊂ [a, b],
sup
I
|f |− inf

I
|f | ≤ sup

I
f − inf

I
f. (2.12)

Denoting the right hand side of (2.12) by M , we have, for all x, y ∈ I,

|f (x)|− |f (y)| ≤ |f (x)− f (y)| ≤M

Taking sup in x ∈ I, we obtain

sup
x∈I

|f (x)|− |f (y)| ≤M,

and taking sup in y ∈ I, we obtain

sup
I
|f |− inf

I
|f | ≤M,

which proves (2.12).
It follows from (2.12) that, for any partition p = {xk}nk=0 of [a, b],

S∗ (|f | , p)− S∗ (|f | , p) =
nX

k=0

Ã
sup

[xk−1,xk]
|f |− inf

[xk−1,xk]
|f |
!
∆xk

≤
nX

k=0

Ã
sup

[xk−1,xk]
f − inf

[xk−1,xk]
f

!
∆xk

= S∗ (f, p)− S∗ (f, p) .

Since
S∗ (f, p)− S∗ (f, p)→ 0 as m (p)→ 0,

we obtain the same property for |f |, which means that |f | is Darboux integrable.
To prove (2.11), observe that f ≤ |f | and −f ≤ |f |, which implies by Theorem 2.6Z b

a

fdx ≤
Z b

a

|f | dx

and

−
Z b

a

fdx ≤
Z b

a

|f | dx

whence (2.11) follows. Alternatively, for any tagged partition (p, ξ) of [a, b],

|S (f, p, ξ)| =
¯̄̄̄
¯

nX
k=0

f (ξk)∆xk

¯̄̄̄
¯ ≤

nX
k=0

|f (ξk)∆xk| = S (|f | , p, ξ) .

Passing to the limit as m (p)→ 0, we obtain (2.11).

Theorem 2.8 (Additivity of integral) Let f be an integrable function on [a, b]. Then, for
any c ∈ (a, b), f is integrable on [a, c] and [c, b], andZ b

a

fdx =

Z c

a

fdx+

Z b

c

fdx. (2.13)
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Proof. Let p0 and p00 be partitions of [a, c] and [c, b], respectively. Obviously, the set
p = p0 ∪ p00 is a partition of [a, b],

m (p) = max (m (p0) ,m (p00))

and
S∗ (f, p) = S∗ (f, p0) + S (f, p00) , (2.14)

and the similar identity holds for S∗. Since f is integrable on [a, b], we have

lim
m(p)→0

(S∗ (f, p)− S∗ (f, p)) = 0. (2.15)

Since
S∗ (f, p)− S∗ (f, p) = (S∗ (f, p0)− S∗ (f, p0)) + (S∗ (f, p00)− S∗ (f, p00))

this implies that

lim
m(p0)→0

(S∗ (f, p0)− S∗ (f, p0)) = 0 = lim
m(p00)→0

(S∗ (f, p00)− S∗ (f, p00)) .

Hence, f is integrable on [a, c] and [c, b] . Passing to the limit in identity (2.14) and using
(2.7) (see Corollary to Theorem 2.1), we obtain (2.13).

Corollary. If f is integrable on [A,B] then f is integrable on any interval [a, b] ⊂ [A,B] .

Proof. Indeed, by Theorem 2.8 f is integrable in [A, b]. Since a ∈ [A, b], applying
this theorem again, we obtain that f is integrable on [a, b].
So far the notion of integral Z b

a

fdx

was defined only for the case when a < b. Numbers a and b are called, respectively, lower
and upper limits of the integral. Now we define the integral for an arbitrary combination
of the lower and upper limit as follows: if a = b then setZ a

a

f (x) dx = 0, (2.16)

if a > b then set Z b

a

f (x) dx = −
Z a

b

f (x) dx, (2.17)

assuming that f is integrable on [b, a]. The operation of swapping a and b is referred to
as change of the order of integration. Hence, changing the order of integration changes
the sign of the integral.
Observe that the Newton-Leibniz formula and the linearity of integration remain true

for arbitrary upper and lower limits, whereas the monotonicity property requires a specific
order (see Exercise 17).

Corollary. If f is integrable on [A,B] then, for any three points a, b, c ∈ [A,B], we haveZ b

a

fdx =

Z c

a

fdx+

Z b

c

fdx (2.18)
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Proof. By the previous Corollary, all three integrals (2.18) are defined.
If c = a or c = b then (2.18) holds trivially by (2.16). If a = b then (2.18) is equivalent

to

0 =

Z c

a

fdx+

Z a

c

fdx,

which is true by (2.17). If a, b, c are distinct then there are 6 cases of their mutual location,
which can be split into two groups:

1. c < a < b, a < c < b, a < b < c (in this group a < b),

2. c < b < a, b < c < a, b < a < c (in this group b < a).

The case a < c < b was proved in Theorem 2.8.
If c < a < b then rewrite (2.18) in the formZ b

a

fdx = −
Z a

c

fdx+

Z b

c

fdx. (2.19)

Since a ∈ (c, b), we have by Theorem 2.8Z b

c

fdx =

Z a

c

fdx+

Z b

a

fdx,

whence (2.19) follows.
If a < b < c then rewrite (2.18) in the formZ b

a

fdx =

Z c

a

fdx−
Z c

b

fdx. (2.20)

Since b ∈ (a, c) we have by Theorem 2.8Z c

a

fdx =

Z b

a

fdx+

Z c

b

fdx,

whence (2.20) follows.
The cases of the second group are considered similarly or obtained from the cases of

the first group by changing the order of integration.

37



Lecture 8 17.11.06 Prof. A. Grigorian, Analysis II, WS 2006-7

Before we proceed, let us briefly list (without precise conditions) the main properties
of the Riemann integral that we have proved so far.

• The Newton-Leibniz formula:Z b

a

F 0 (x) dx = F (b)− F (a) .

• Linearity: Z b

a

(λf + µg) dx = λ

Z b

a

fdx+ µ

Z b

a

gdx.

• Monotonicity: if f ≥ g and a < b thenZ b

a

fdx ≥
Z b

a

gdx.

As a consequence, we have proved that

(b− a) inf
[a,b]

f ≤
Z b

a

fdx ≤ (b− a) sup
[a,b]

f .

The latter implies the following estimate of the absolute value of the integral¯̄̄̄Z b

a

fdx

¯̄̄̄
≤ |b− a| sup

[a,b]

|f | , (2.21)

which is true also when a ≥ b. Inequality (2.21) is frequently called LM-inequality
(or ML-inequality). Here L stands for “Length” that is, |b− a|, and M stands for
“Maximum”, which refers to sup |f |.

• Additivity: Z b

a

fdx =

Z c

a

fdx+

Z b

c

fdx.

Using these properties, we are now in position to prove that any continuous function
admits a primitive as was promised in section “Indefinite integral”.

Theorem 2.9 (Existence of a primitive for a continuous function) If f is a continuous
function on an interval I ⊂ R then, for any c ∈ I, the function

F (x) =

Z x

c

f (t) dt

is a primitive of f . In particular, f has a primitive on I.
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Let us emphasize that I is here an arbitrary interval.
Proof. Since f is continuous, the integral

R x
c
f (t) dt is defined by Theorem 2.2. We

need to prove that F 0 (x) = f (x) for any x ∈ I, that is,

F (y)− F (x)

y − x
− f (x)→ 0 as y → x (2.22)

(assuming that y ∈ I). We have, using additivity of integral,

F (y)− F (x) =

Z y

c

f (t) dt−
Z x

c

f (t) dt

=

Z y

c

f (t) dt+

Z c

x

f (t) dt

=

Z y

x

f (t) dt.

Using the fact that
R y
x
dt = y − x, we obtain

F (y)− F (x)

y − x
− f (x) =

1

y − x

Z y

x

f (t) dt− f (x)
1

y − x

Z y

x

dt

=
1

y − x

Z y

x

f (t) dt− 1

y − x

Z y

x

f (x) dt

=
1

y − x

Z y

x

(f (t)− f (x)) dt,

where in the last computation we have used the linearity of the integral. Observe that
the variable of integration is t and, hence, f (x) can be regarded as a constant, which can
be moved inside the integral.
Next, using LM -inequality, we obtain¯̄̄̄

F (y)− F (x)

y − x
− f (x)

¯̄̄̄
=

1

y − x

¯̄̄̄Z y

x

(f (t)− f (x)) dt

¯̄̄̄
≤ 1

y − x
(y − x) sup

t∈[x,y]
|f (t)− f (x)|

= sup
t∈[x,y]

|f (t)− f (x)| .

Finally, by the continuity of f at x,

sup
t∈[x,y]

|f (t)− f (x)|→ 0 as y → x,

whence (2.22) follows.
With Theorem 2.9 at hand, we can restate Theorem 2.4 (the fundamental theorem

of calculus) as follows: for any continuous function f on an interval [a, b], a primitive
function F exists on [a, b] andZ b

a

f (x) dx = F (b)− F (a) .
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If one ignores the question of existence of a primitive then one can end up with wrong
results. For example, consider the following computation:Z 1

−1

dx

x
=

·Z
dx

x

¸1
−1
= [ln |x|]1−1 = 0.

What is wrong here? Firstly, the function 1
x
is unbounded on [−1, 1] (in fact, it is not

defined at 0 but this can be helped by extending it to 0 somehow) and, hence, it is not
integrable on [−1, 1] . Secondly, the primitive ln |x| is defined away from 0 and, hence, not
in the full interval [−1, 1] as required by the Newton-Leibniz formula. Hence, the latter
is not applicable here.

2.4 Techniques of definite integration

This techniques include the Newton-Leibniz formula as well as integration by parts and
change of variable for the definite integral.

Theorem 2.10 (Integration by parts for the definite integral) If u, v are two continuously
differentiable functions on a bounded closed interval [a, b] thenZ b

a

udv = [uv]ba −
Z b

a

vdu. (2.23)

Proof. By Theorem 1.3, we haveZ
udv = uv −

Z
vdu (2.24)

Note that both integrals here exist by Theorem 2.9. For example, the integralZ
udv =

Z
uv0dx

exists because uv0 is continuous (the existence of these integrals was used in Theorem 1.3
without proof).
It follows from (2.24) that·Z

udv

¸b
a

= [uv]ba −
·Z

vdu

¸b
a

.

By the Newton-Leibniz formula, we haveZ b

a

udv =

·Z
udv

¸b
a

,

and a similar identity for the second integral in question. Combining these identities, we
obtain (2.23).
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Example. Let us evaluate the integral
R π
0
ex cosxdx. Noticing that exdx = dex and

applying (2.23) with u = cosx and v = ex, we obtainZ π

0

ex cosxdx = [ex cosx]π0 −
Z π

0

exd cosx

= −eπ − 1 +
Z π

0

ex sinxdx

= − (eπ + 1) +
Z π

0

sinxdex

= − (eπ + 1) + [ex sinx]π0 −
Z π

0

ex cosxdx.

Moving the integral to the left hand side and dividing by 2, we obtainZ π

0

ex cosxdx = −e
π + 1

2
.

Alternatively, one can first evaluate the indefinite integral
R
ex cosx and then use the

Newton-Leibniz formula.

Theorem 2.11 (Change of variable for the definite integral) Let u be a continuously
differentiable function on an interval I = [a, b] and f be a continuous function on the
interval u (I). Then Z b

a

f (u (x)) du =

Z u(b)

u(a)

f (y) dy. (2.25)

Recall that the left hand side of (2.25) is a shorthand forZ b

a

f (u (x))u0 (x) dx.

Formula (2.25) can be memorized as follows. When making a change y = u (x) in the
integral, one has to replace also the limits a and b of integration in variable x by the limits
u (a) and u (b) of integration in variable y. Note that u (a) and u (b) do not have to be
the endpoints of the interval u (I).

 

f(y) 

a 

u(a) 

b 

y 

x 

u(b)

u(x)

I=[a,b] 

u(I) 
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Frequently, one uses letter u instead of y writingZ b

a

f (u (x)) du =

Z u(b)

u(a)

f (u) du.

Such notation should be used cautiously since in the integral on the right hand u is an
independent variable while the notation u (a) (and u (b)) hints that u is still considered
as a function of x.
Proof. Note that the image u (I) is a closed bounded interval (Theorem 3.8 from

Analysis I). Since f is continuous on u (I), by Theorem 2.9 it has a primitive on this
interval, say F . By Theorem 1.4, we haveZ

f (u (x))u0 (x) dx = F (u (x)) + C,

in particular, F (u (x)) is a primitive of f (u (x))u0 (x) on [a, b]. In fact, this identity is
just a simple application of the chain rule because

(F ◦ u)0 (x) = F 0 (u (x))u0 (x) = f (u (x))u0 (x) .

Hence, by the Newton-Leibniz formula,Z b

a

f (u (x))u0 (x) dx = F (u (b))− F (u (a)) . (2.26)

On the other hand, applying again the Newton-Leibniz formula, we obtain, for any A,B ∈
u (I), Z B

A

f (y) dy = F (B)− F (A) ,

which implies for A = u (a) and B = u (b), thatZ u(b)

u(a)

f (y) dy = F (u (b))− F (u (a)) . (2.27)

Comparing (2.26) and (2.27), we obtain (2.25).

Example. 1. Find
R 2
1

dx
ex−1 . To use the change of variable, one needs to represent

dx
ex−1 in

the form f (u) du where u = u (x). If the choice of u (x) is not obvious then one can try to
use as u (x) some expression that occurs under the integral. In this case, it is reasonable
to take u = ex − 1. Then du = exdx whence

dx = e−xdu =
du

u+ 1
.

Therefore,
dx

ex − 1 =
du

u (u+ 1)

so that we can take f (u) = 1
u(u+1)

. By (2.25), we haveZ 2

1

dx

ex − 1 =

Z u(2)

u(1)

du

u (u+ 1)
=

Z u(2)

u(1)

µ
1

u
− 1

u+ 1

¶
du

=

·
ln

¯̄̄̄
u

u+ 1

¯̄̄̄¸u(2)
u(1)

= ln
(e2 − 1) e
e2(e− 1) = ln

e+ 1

e
= ln

¡
1 + e−1

¢
.
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2.5 Improper integrals

2.5.1 Definition and basic properties of improper integral

So far the notion of the Riemann integral was defined for functions defined on a closed
bounded interval [a, b]. Assume now that f is defined on a semi-open interval [a, b). Then
the integral of f can be still defined as follows.

Definition. If f is defined on an interval [a, b) where a < b ≤ +∞ and if f is Riemann
integrable on any interval [a, c] with a < c < b then setZ b

a

f (x) dx = lim
c→b,c<b

Z c

a

f (x) dx,

provided the limit exists, finite or infinite. If the limit is finite then one says that the
integral

R b
a
f (x) dx converges at b. If the limit exists and is +∞ (or −∞) then one says

that the integral diverges at b to +∞ (resp. −∞). If the limit does not exist then one
says that the integral diverges at b.

The integral
R b
a
f (x) dx defined in this way, is called an improper (Riemann) integral

(the proper Riemann integral is the Riemann integral defined as the limit of the Riemann
sums). Similarly, if f is defined on (a, b] then one defines the improper integral byZ b

a

f (x) dx = lim
c→a,c>a

Z b

c

f (x) dx.

Example. Consider function f (x) = xp on [1,+∞). Consider first the case p 6= −1. We
have, for any c > 1,Z c

1

xpdx =

·Z
xpdx

¸c
1

=

·
xp+1

p+ 1

¸c
1

=
cp+1

p+ 1
− 1

p+ 1
.

If p > −1 then the above expression goes to +∞ as c→ +∞. Hence,Z +∞

1

xpdx = +∞ if p > −1.

If p < −1 then cp+1 → 0 as c→ +∞, and we obtainZ +∞

1

xpdx = − 1

p+ 1
if p < −1,

so that in this case the integral converges.
In the case p = −1, we haveZ c

1

dx

x
= [lnx]c1 = ln c→ +∞ as c→ +∞

so that Z +∞

1

x−1dx = +∞.

Hence, the integral
R +∞
1

xpdx converges if and only if p < −1.
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Definition. We say that a function f is locally integrable on an interval I if f is defined
on I and is Riemann integrable on any bounded closed subinterval of I.

For example, if f is continuous or monotone then f is locally integrable (Theorem
2.2).

Recall that in order to define an improper integral
R b
a
f (x) dx of a function f defined

on a semi-open interval [a, b), the function f must be locally integrable on [a, b). Then
we set Z b

a

f (x) dx = lim
c→b

Z c

a

f (x) dx,

provided the limit exists. The Riemann integral
R c
a
f (x) dx exists due to the local integra-

bility of f and because [a, c] ⊂ [a, b). In this case, we say that the limit of integration b is
improper. Similarly, if f is locally integrable on (a, b] then one can consider an improper

integral
R b
a
f (x) dx with improper limit a.

Most properties of a proper Riemann integral can be extended to improper integral
by passing to the limit. For example, let us show the extension of the Newton-Leibniz
formula.

Theorem 2.40 (The Newton-Leibniz formula for improper integrals) Let f (x) be a con-
tinuous function on [a, b) where −∞ < a < b ≤ +∞ and let F be its primitive on this

interval. Then the improper integral
R b
a
f (x) dx exists if and only if limx→b F (x) exists,

and the following identity holds:Z b

a

f (x) dx = lim
x→b

F (x)− F (a) ,

Proof. By the definition of improper integral and the Newton-Leibniz formula for the
proper integral,Z b

a

f (x) dx = lim
c→b

Z c

a

f (x) dx = lim
c→b
(F (c)− F (b)) = lim

c→b
F (c)− F (a) .

We see from this argument that the integral
R b
a
f (x) dx exists if and only if limc→b F (c)

exists.
Let us extend the notation [F ]ba as follows: if F is defined in [a, b) then set

[F ]ba = lim
x→b

F (x)− F (a) ,

and similarly in the case when F is defined in (a, b]. Then the Newton-Leibniz formula
can be written in the same way as before:Z b

a

f (x) dx = [F ]ba =

·Z
fdx

¸b
a

.

Similarly one obtains extension of integration by parts and of change of variable to im-
proper integrals. The linearity, monotonicity, additivity are also proved by passing to the
limit.
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In the same way one treats the case when the limit a is improper, that is, when f is
locally integrable on (a, b].

Example. 1. Evaluate
R 1
0

dx√
x
. By the Newton-Leibniz formula, we obtainZ 1

0

dx√
x
=

·Z
x−1/2dx

¸1
0

=
£
2x1/2

¤1
0
= 2.

2. Use integration by parts to evaluate
R +∞
1

x−2 lnxdx. We haveZ +∞

1

x−2 lnxdx = −
Z +∞

1

lnxd
1

x
= −

·
1

x
lnx

¸+∞
1

+

Z +∞

1

1

x
d lnx

=

Z +∞

1

1

x2
dx =

·Z
x−2dx

¸+∞
1

= − £x−1¤+∞
1

= 1.

2. Use change of variable to evaluate
R +∞
e

1
x ln3 x

dx. We haveZ +∞

e

1

x ln3 x
dx =

Z +∞

e

d lnx

ln3 x
(change y = u(x) = lnx)

=

Z u(+∞)

u(e)

dy

y3
=

·Z
y−3dy

¸+∞
1

= −
·
y−2

2

¸+∞
1

=
1

2
.

Let us consider now improper integral with both improper limits.

Definition. If f is locally integrable on an open interval (a, b) where −∞ ≤ a < b ≤ +∞
then define the improper integral

R b
a
f (x) dx with improper limits a and b byZ b

a

f (x) dx =

Z c

a

f (x) dx+

Z b

c

f (x) dx, (2.28)

where c ∈ (a, b), provided the both integrals in the right hand side exist as improper
integrals with one improper limit, and their sum is defined.

Claim. The value of
R b
a
f (x) dx in (2.28) does not depend on the choice of c.

Proof. Indeed, if c0 is another point in (a, b), then by the additivity integral with one
improper limit,Z c0

a

fdx+

Z b

c0
fdx =

ÃZ c

a

fdx+

Z c0

c

fdx

!
+

µZ c

c0
fdx+

Z b

c

fdx

¶

=

Z c

a

fdx+

Z b

c

fdx+

ÃZ c0

c

fdx+

Z c

c0
fdx

!

=

Z c

a

fdx+

Z b

c

fdx.

All the properties of improper integrals, mentioned above remain true with appropriate
changes also in the case of two improper limits. For example, to state the Newton-Leibniz
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formula, let us extend the notation [F ]ba to the case when F is defined on an open interval
(a, b) as follows:

[F ]ba = lim
x→b

F (x)− lim
x→a

F (x) ,

provided the both limits exist, finite or infinite, and the difference of the limits is defined.

Theorem 2.400 (The Newton-Leibniz formula for improper integrals with two improper
limits) Let f (x) be a continuous function on (a, b) where −∞ ≤ a < b ≤ +∞ and let F

be its primitive on this interval. Then the improper integral
R b
a
f (x) dx exists if and only

if the expression [F ]ba is defined, and the following identity holds:Z b

a

f (x) dx = [F ]ba .

Proof. Indeed, using the definition (2.28) and Theorem 2.40, we haveZ b

a

f (x) dx = −
Z a

c

f (x) dx+

Z b

c

f (x) dx

= −
³
lim
x→a

F (x)− F (c)
´
+
³
lim
x→b

F (x)− F (c)
´

= [F ]ba .

Example. 1. Consider
R +∞
−∞ xdx. By the Newton-Leibniz formula we obtainZ +∞

−∞
xdx =

·
x2

2

¸+∞
−∞

= +∞− (+∞) ,

which is undefined.
2. Consider

R +1
−1

dx√
1−x2 . The function

1√
1−x2 is defined and continuous in (−1, 1) (but

not at ±1) so that this integral has two improper limits. Using the Newton-Leibniz
formula, we obtainZ +1

−1

dx√
1− x2

=

·Z
dx√
1− x2

¸1
−1
= [arcsinx]1−1 =

π

2
−
³
−π
2

´
= π.

Here are the graphs of functions 1√
1−x2 and arcsinx (thick).

10.50-0.5-1

6

4

2

0

x

y

x

y
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3. Consider
R π/2
−π/2 tanx. We haveZ π/2

−π/2
tanxdx =

Z π/2

−π/2

sinx

cosx
dx = −

Z π/2

−π/2

d cosx

cosx
= − [ln |cosx|]π/2−π/2 = − (−∞− (−∞)) ,

since cosπ/2 = 0 and ln y → −∞ as y → 0. Since the difference −∞ − (−∞) is not
defined, the value of the integral

R π/2
−π/2 tanx is not defined either. Here are the graphs of

functions tanx and − ln |cosx| (thick):

1.510.50-0.5-1-1.5

10

5

0

-5

-10

x

y

x

y

2.5.2 Convergence of improper integrals

We start with the following simple observation.

Lemma 2.12 If f is a non-negative locally integrable function on an open interval (a, b)

then the improper integral
R b
a
f (x) dx exists, finite or infinite.

Proof. Fix some c ∈ (a, b) and consider function

F (x) =

Z x

c

f (t) dt.

We claim that the function F (x) is monotone increasing. Indeed, if y > x then

F (y)− F (x) =

Z y

c

fdt−
Z x

c

fdt =

Z y

x

fdt ≥ 0.

Hence, both limits A = limx→a F (x) and B = limx→b F (x) exist, finite or infinite (Theo-
rem 2.6 from Analysis I). By definition, we haveZ b

a

f (x) dx =

Z c

a

f (x) dx+

Z b

c

f (x) dx = −
Z a

c

f (x) dx+

Z b

c

f (x) dx

= − lim
x→a

F (x) + lim
x→b

F (x) = B −A.
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We have only to make sure that the difference B −A is defined, that is, A and B cannot
be simultaneously +∞ or −∞. Note that F (x) ≤ F (x) = 0 if x ≤ c and F (x) ≥ 0 if
x ≥ c. Therefore, A ≤ 0 and B ≥ 0, which finishes the proof.
Hence, if f ≥ 0 then the integral R b

a
f (x) dx converges if and only ifZ b

a

f (x) dx < +∞.

Recall for comparison that if
P∞

k=1 ak is a series of non-negative numbers then it always
has a value, finite or infinite, and it converges if and only if

∞X
k=1

ak < +∞.

The following theorem provides a relation between convergence of series and integrals.

Theorem 2.13 (The integral test for convergence of series) Let f (x) be a non-negative
monotone decreasing function on [1,+∞). ThenZ +∞

1

f (x) dx <∞ ⇐⇒
∞X
k=1

f (k) <∞.

Proof. Since f ≥ 0 and f is locally integrable, both R +∞
1

f (x) dx and
P∞

k=1 f (k) are
defined as extended reals. We need to prove that one of them is finite if and only of the
other is finite. Since f (x) is decreasing, on any interval [n− 1, n] we have

f (k) = inf
[k−1,k]

f ≤
Z k

k−1
f (x) dx ≤ sup

[k−1,k]
f = f (k − 1) ,

whence Z n

1

f (x) dx =
nX

k=2

Z k

k−1
f (x) dx ≤

nX
k=2

f (k − 1) = f (1) + ...+ f (n− 1)

and Z n

1

f (x) dx =
nX

k=2

Z k

k−1
f (x) dx ≥

nX
k=2

f (k) = f (2) + ...+ f (n) .

Passing to the limit as n→∞, we obtain

∞X
k=1

f (k)− f (1) ≤
Z ∞

1

f (x) dx ≤
∞X
k=1

f (k) . (2.29)

Hence,
R∞
1

f (x) dx is finite if and only if
P∞

k=1 f (k) is finite.
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Example. Let us prove that the series
P∞

n=1
1
np
converges if and only if p > 1 (cf.

Exercise 41 from Analysis I). If p ≤ 0 then 1
np
does not do to 0 as n → ∞ so that the

series diverges. Let p > 0. Then the function f (x) = 1
xp
is continuous and monotone

decreasing on [1,+∞). Therefore, by Theorem 2.13, the series
P∞

n=1
1
np
converges if and

only if Z +∞

1

dx

xp
<∞.

If p 6= 1 then Z +∞

1

dx

xp
=

·Z
x−pdx

¸+∞
1

=

·
x1−p

1− p

¸+∞
1

,

which is finite and is equal to 1
p−1 if 1− p < 0, that is, p > 1. If p = 1 thenZ +∞

1

dx

x
= [lnx]+∞1 = +∞.

Definition. We say that an improper integral
R b
a
f (x) dx converges absolutely ifZ b

a

|f (x)| dx < +∞.

Of course, here f (x) is assumed to be a locally integrable function. Then, by Theorem

2.7, |f (x)| is also integrable. Since |f | ≥ 0, the integral R b
a
|f (x)| dx exists by Lemma

2.12.

Theorem 2.14 If an improper integral
R b
a
f (x) dx converges absolutely then it converges

and ¯̄̄̄Z b

a

f (x) dx

¯̄̄̄
≤
Z b

a

|f (x)| dx.

Proof. Assume for simplicity that the given integral has one improper limit b. Let
F (x) =

R x
b
f (t) dt and G (x) =

R x
b
|f (t)| dt. We need to prove that if function G (x) has

limit as x → b then so does F (x). Suffices to prove that limn→∞ F (xn) exists for any
sequence xn → b. For that, let us show that the sequence {F (xn)} is Cauchy. Indeed,
assuming for simplicity that xn > xm and using Theorem 2.7, we obtain

|F (xn)− F (xm)| =
¯̄̄̄Z xn

a

f (t) dt−
Z xm

a

f (t) dt

¯̄̄̄
=

¯̄̄̄Z xn

xm

f (t) dt

¯̄̄̄
≤

Z xn

xm

|f (t)| dt = G (xn)−G (xm) .

Since by hypothesis G (xn) − G (xm) → 0, it follows that also |F (xn)− F (xm)| → 0,
which finishes the proof.
For the next Statement, we need the following notation:
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Definition. For functions f (x) and g (x) > 0 defined on (a, b), we write that

f (x) ∼ g (x) as x→ b if lim
x→b

f (x)

g (x)
= 1

(f (x) is equivalent to g (x) as x→ b).

If f is also positive then f ∼ g implies g ∼ f . Also, if f ∼ g and g ∼ h then f ∼ h
because

f

h
=

f

g

g

h
.

Also, if f1 ∼ g1 and f2 ∼ g2 then f1f2 ∼ g1g2 and
f1
f2
∼ g1

g2
.

For example, sinx ∼ x as x→ 0 because sinx
x
→ 1 as x→ 0. Or

x2 + x ∼ x2 as x→ +∞
because x2+x

x2
= 1 + 1

x
→ 1 as x→ +∞. On the other hand,

x2 + x ∼ x as x→ 0

because x2+x
x
= x+ 1→ 1 as x→ 0.

Recall for comparison also notation o:

f (x) = o (g (x)) as x→ b if lim
x→b

f (x)

g (x)
= 0.

Then we have
f ∼ g is equivalent to f (x) = g (x) + o (g (x))

because f
g
= 1 + o(g)

g
→ 1.

Definition. We write

f (x) = O (g (x)) as x→ b if lim sup
x→b

|f (x)|
g (x)

< +∞

(f (x) is big O of g (x) as x→ b). Equivalently,

f (x) = O (g (x)) if |f (x)| ≤ Cg (x) for large enough x.

Clearly, if f ∼ g then f = O (g) .

Theorem 2.15 (Comparison test) Let f (x) and g (x) > 0 be two locally integrable func-
tions on [a, b).
(a) If f (x) = O (g (x)) as x→ b thenZ b

a

g (x) dx < +∞ =⇒
Z b

a

f (x) dx converges absolutely.

(b) If f (x) > 0 and f (x) ∼ g (x) as x → b then the both integrals
R b
a
f (x) dx andR b

a
g (x) dx converges or not simultaneously.
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Proof. (a) The fact that f (x) = O (g (x)) as x → b means that there is C > 0 and
c ∈ (a, b) so that |f (x)| ≤ Cg (x) for all c ≤ x < b. By the additivity of integral, we haveZ b

a

|f (x)| dx =
Z c

a

|f (x)| dx+
Z b

c

|f (x)| dx.

By the local integrability of f , the integral
R c
a
|f (x)| dx exists as proper. For the second

integral, we have Z b

c

|f (x)| dx ≤ C

Z b

c

g (x) dx < +∞.

Therefore,
R b
a
|f (x)| dx <∞ and, hence,

R b
a
f (x) dx converges absolutely.

(b) If f (x) ∼ g (x) then f (x) = O (g (x)) so that by part (a)Z b

a

g (x) dx < +∞ =⇒
Z b

a

f (x) dx < +∞.

For the opposite inequality note that f ∼ g implies g ∼ f so that we can interchange f
and g in this implication and obtain the converse implication.

Example. 1. Investigate the convergence of
R +∞
1

√
xdx√
1+x4

. We have

f (x) =

√
x√

1 + x4
=

√
x

x2
√
x−4 + 1

∼
√
x

x2
= x−3/2 as x→ +∞.

Therefore, f (x) ∼ x−3/2 as x→ +∞ and sinceZ +∞

1

x−3/2dx < +∞,

we conclude by 2.15 that Z +∞

1

√
xdx√
1 + x4

< +∞.

2. Investigate the convergence of
R +∞
1

sinx
x2

dx. Indeed, we have

sinx

x2
= O

¡
x−2
¢
as x→ +∞,

and since
R∞
1

x−2dx < +∞, the integral R∞
1

sinx
x2

dx converges absolutely.
3. Investigate the convergence of

R a
0

dx√
cosx−cos a where 0 < a < π/2. The improper

limit is a. We have by the Taylor formula

cosx− cos a = − sin a (x− a) + o (x− a) ∼ (sin a) (a− x) as x→ a,

whence
1√

cosx− cos a ∼
1√

sin a
√
a− x

.

Since Z a

0

dx√
a− x

=

Z a

0

dy√
y
= [2
√
y]a0 = 2

√
a <∞,

we conclude that the given integral converges.
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2.5.3 Gamma function

Definition. Define function Γ (x) for any x > 0 by

Γ (x) =

Z +∞

0

tx−1e−tdt. (2.30)

The function Γ (x) is called the gamma function.

Here we consider some properties of Γ (x) related to properties of improper integrals.

Claim 1. The integral in (2.30) converges for any x > 0.
Proof. Note that the both limits 0 and +∞ are improper (to be precise, 0 is improper

if x < 1). Setting
f (t) = tx−1e−t,

we need to prove thatZ 1

0

f (t) dt < +∞ and

Z +∞

1

f (t) dt < +∞.

Consider the first integral. Since f (x) ≤ tx−1 andZ 1

0

tx−1dt =
·
tx

x

¸1
0

=
1

x
<∞,

we conclude that also
R 1
0
f (t) dt <∞.

Consider the second integral. If x ≤ 1 then tx−1 ≤ 1 for all t ≥ 1 whence f (t) ≤ e−t.
Since Z +∞

1

e−tdt = e−1 <∞,

we obtain
R +∞
1

f (t) dt <∞. If x > 1 then we use the inequality

tx−1 ≤ Ce
1
2
t for all t ≥ 1,

where C is a constant that depends on x. Indeed, the expansion of e
1
2
t into a power series

contains the terms 1
n!

¡
1
2
t
¢n
with any n ∈ N. Choose n > x− 1. Then we have

e
1
2
t ≥ 1

n!

µ
1

2
t

¶n

= Ctn ≥ Ctx−1,

where C = 1
n!2n

. Therefore, it follows that

f (t) = tx−1e−t ≤ Ce−
1
2
t.

Since
R∞
1

e−
1
2
tdt <∞, we obtain that also R +∞

1
f (t) dt <∞.

Claim 2. For all x > 0, Γ (x+ 1) = xΓ (x).
Proof. We have using integration by parts

Γ (x+ 1) =

Z +∞

0

txe−tdt = −
Z +∞

0

txde−t = − £txe−t¤+∞
0

+

Z +∞

0

e−tdtx

=

Z +∞

0

xtx−1e−tdt = xΓ (x) .
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Note that

Γ (1) =

Z +∞

0

e−tdt = 1.

Using Claim 2, we obtain by induction that Γ (n+ 1) = n! for any non-negative integer
n.
Here is the graph1 of Γ (x):
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2.5.4 Conditional convergence

Example. Let us show that the integral
R +∞
0

sinx
x
dx converges but not absolutely. Note

that the function sinx
x
has limit 1 as x→ 0. Hence, it can be extended to 0 as a continuous

function so that the limit of integration 0 can be considered as proper. We need only to
investigate the convergence at +∞. To prove the convergence, it suffices to prove that the
integral

R +∞
1

sinx
x
dx converges. Use integration by parts:Z +∞

1

sinx

x
dx = −

Z +∞

1

d cosx

x
= −

hcosx
x

i+∞
1

+

Z +∞

1

cosx d
1

x

= cos 1−
Z +∞

1

cosx

x2
dx.

The last integral converges becauseZ +∞

1

¯̄̄cosx
x2

¯̄̄
dx ≤

Z +∞

1

1

x2
dx < +∞.

Hence,
R +∞
1

sinx
x
dx converges, too.

1In fact, Γ (x) can be extended as an analytic function to complex x so that it is defined for all complex
x except for non-positive integers.
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Now let us prove that Z +∞

1

|sinx|
x

dx = +∞, (2.31)

which will show that the integral
R +∞
1

sinx
x
dx is not absolutely convergent. Here are the

graph of function |sinx|
x
:
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Note thatZ π2k+1

π2k

|sinx|
x

dx ≥
Z π2k+1

π2k

sin2 x

x
dx ≥ 1

π2k+1

Z π2k+1

π2k
sin2 xdx

=
1

π2k+1

Z π2k+1

π2k

1− cos 2x
2

dx

=
1

π2k+2

Z π2k+1

π2k
dx− 1

π2k+2

Z π2k+1

π2k
cos 2xdx

=
π2k+1 − π2k

π2k+2
− 0 = 1

4
.

Since for any n ∈ NZ +∞

1

|sinx|
x

dx ≥
Z π2n

π

|sinx|
x

dx =
n−1X
k=0

Z π2k+1

π2k

|sinx|
x

dx ≥ n

4
,

we obtain (2.31).
It is possible to prove that

R +∞
0

sinx
x
dx = 1

2
π.

Definition. If an improper integral
R b
a
f (x) dx converges but does not converge absolutely

then we say that it converges conditionally.

Hence, we have proved that
R +
0

sinx
x
dx converges conditionally.

The next theorem provides useful test for convergence without proving the absolute
convergence.
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Theorem 2.16 Let f (x) be a continuous function on [a,+∞) and g (x) be a continuously
differentiable monotone function on [a,+∞). Then the integralZ +∞

a

f (x) g (x) dx

converges provided one of the following two conditions is satisfied:

(a) (The Abel test) Integral
R +∞
a

f (x) dx converges and g (x) is bounded..

(b) (The Dirichlet test) The function F (x) =
R x
a
f (t) dt is bounded and limx→+∞ g (x) =

0.

Proof. Consider the function F (x) defined above, which is a primitive of f . Then
we have, using integration by parts:Z +∞

a

f (x) g (x) dx =

Z +∞

a

g (x) dF (x) = [Fg]+∞a −
Z +∞

a

F (x) g0 (x) dx. (2.32)

We need to show that the both terms in the right hand side are finite.
Let us first prove that the integral

R +∞
a

F (x) g0 (x) dx converges absolutely. Observe
that in the both cases function F is bounded. Indeed, in the case (b) this is an assump-
tion, while in the case (a), the convergence of

R +∞
a

fdx means that F (x) has a finite limit
as x → +∞, which together with the continuity of F implies that F is bounded. Let
|F (x)| ≤ C. Then Z +∞

a

|F (x) g0 (x)| dx ≤ C

Z +∞

a

|g0 (x)| dx.

In the both cases, g (x) has a finite limit as x→ +∞. Indeed, in the case (b) this is an
assumption, while in the case (a) it follows from the monotonicity and boundedness of g.
Since g is monotone, we have that always either g0 (x) ≥ 0 or g0 (x) ≤ 0. Assuming that
g0 (x) ≥ 0, we obtainZ +∞

a

|g0 (x)| dx =
Z +∞

a

g0 (x) dx = [g]+∞a = lim
x→+∞

g (x)− g (a) < +∞,

whence the claim follows. Similarly one handles the case g0 (x) ≤ 0 using |g0| = −g0.
To prove that the expression [Fg]+∞a has a finite value, consider two cases separately.
(a) In this case, F (x) has a finite limit at +∞. Since g (x) has also a finite limit, the

expression [Fg]+∞a is defined and is finite.
(b) If F (x) is bounded and g (x) → 0 as x → +∞ then Fg (x) → 0 as x → +∞ so

that [Fg]+∞a is finite (in fact, it is 0).

Example. 1. Consider
R +∞
1

sinx
xα

dx where α > 0. Let us show that this integral converges
for any α > 0. Consider function f (x) = sinx and g (x) = x−α. The primitive F (x) =R x
a
f (t) dt is bounded because it is cosx+C, while g (x)→ 0 as x→ +∞. Therefore, by

the Dirichlet test, the given integral converges.
Below are the graphs of the functions sinx√

x
and 1√

x
:
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The area under 1√
x
is +∞ whereas the signed are under sinx√

x
is finite, which is due to a

huge cancellation of the positive and negative parts of the area.
2. Consider

R +∞
1

sinx
xα
arctanxdx. Set now f (x) = sinx

xα
and g (x) = arctanx. The

function g is bounded and monotone increasing, while
R +∞
1

f (x) dx converges by the
previous example. Hence, by the Abel test, the given integral converges.

3 Sequences and series of functions

3.1 Uniform convergence

Let {fk}∞k=1 be a sequence of real-valued (or complex valued) functions on a set S. We
say that fk converges to f pointwise on S if fk (x)→ f (x) as k →∞ for any x ∈ S. We
say that fk converges to fk uniformly (gleichmässig) on S if

sup
S
|fk − f |→ 0 as k →∞.

Notation for the uniform convergence: fk ⇒ f .

Claim. If fk ⇒ f on S then fk (x)→ f (x) pointwise on S.
Proof. Indeed, supS |fk − f | → 0 implies that |fk (x)− f (x)| → 0 for any x ∈ S,

which exactly means that fk (x)→ f (x).
The converse is not true: a sequence may be convergent pointwise but not uniformly.

Example. 1. Let fk (x) =
x
k
on (0,+∞). If k → ∞ then fk (x) → 0 for any x but not

uniformly because supx |fk| =∞.
2. A more complicated example shows that the same can happen on a closed bounded

interval. Indeed, consider on [0, 1] functions

fk (x) =

 kx, 0 ≤ x ≤ 1
k−k ¡x− 2

k

¢
, 1

k
≤ x ≤ 2

k
,

0, 2
k
≤ x ≤ 1.

The graph of f5 is plotted below:
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The function fk is continuous and sup fk = 1 so that {fk} does not converge uniformly
to 0. However, for any x ∈ [0, 1], fk (x) → 0. Indeed, if x = 0 then it is obvious from
fk (0) = 0. If x > 0 then for large enough k we have 2/k < x so that fk (x) = 0.

A major property of the uniform convergence is as follows.

Theorem 3.1 If {fk} is a sequence of continuous functions on an interval I ⊂ R such
that fk ⇒ f on I then f is also continuous on I.

Proof. Fix a point x ∈ I and prove that f is continuous at x, that is, for any ε > 0
there exists δ > 0 such that

y ∈ I, |y − x| < δ =⇒ |f (y)− f (x)| < ε.

For that, first choose k so big that

sup
I
|fk − f | < ε/3.

Since fk is continuous at x, there exists δ such that

y ∈ I, |y − x| < δ =⇒ |fk (y)− fk (x)| < ε/3.

Therefore, for such y, we have

|f (y)− f (x)| ≤ |f (y)− fk (y)|+ |fk (y)− fk (x)|+ |fk (x)− f (x)|
< ε/3 + ε/3 + ε/3 = ε.

Example. It can happen that fk are continuous, fk (x) → f (x) pointwise while f is
discontinuous. Indeed, let

fk (x) =

½ −k ¡x− 1
k

¢
, 0 ≤ x ≤ 1

k
,

0, 1
k
≤ x ≤ 1,

so that fk (x) is a continuous function on [0, 1]. If k →∞ then fk (x)→ 0 for x > 0 and
fk (0)→ 1 so that the limit function

f (x) =

½
1, x = 0,
0, 0 < x ≤ 1

is discontinuous at 0.
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3.2 Uniform convergence of series

For any function f defined on a set S, define the norm of f on S by

kfkS := sup
x∈S

|f (x)| .

Or we just write kfk skipping subscript S if it is clear from the context that the sup is
taken over S. Then the uniform convergence fn ⇒ f on S can be stated as follows:

kfk − fk→ 0 as k →∞.

For comparison recall that for numerical sequences xk → x is equivalent to |xn − x|→ 0.
Consider now a series

P∞
k=1 fk (x) of functions fk defined on a set S, and let

Fn (x) =
nX

k=1

fk (x)

be the partial sums of the series.

Definition. We say that a series
P

fk converges pointwise/uniformly if the sequence
{Fn} of partial sums converges as n→∞ pointwise/uniformly.

Theorem 3.2 (Weierstrass convergence test) If {fk} is a sequence of functions on a set
S such that ∞X

k=1

kfkk <∞

then the series
P∞

k=1 fk (x) converges on S absolutely and uniformly.

Hence, this test reduces the question of the uniform convergence of a functional series
to the question of the convergence of a numerical series.
Proof. Obviously, for any x ∈ S,

∞X
k=1

|fk (x)| ≤
∞X
k=1

kfkk <∞

so that the series
P

fk (x) converges absolutely for any x ∈ S. In particular, the series
converges pointwise so that we can set

F (x) =
∞X
k=1

fk (x) .

We need to prove that the above series converges uniformly, that is, Fn ⇒ F as n→∞.
Let us prove that

kF − Fnk→ 0 as n→∞.
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Indeed, we have, for any x ∈ S

|F (x)− Fn (x)| =
¯̄̄̄
¯

∞X
k=n+1

fk (x)

¯̄̄̄
¯ ≤

∞X
k=n+1

|fk (x)| ≤
∞X

k=n+1

kfkk.

Since the right hand side is independent of x, taking sup of x in the left hand side, we
obtain

kF − Fkk ≤
∞X

k=n+1

kfkk.

The right hand side tends to 0 as n → ∞ because it is a tail of the convergent seriesP∞
k=1 kfkk, whence the claim follows.

Example. Let us prove that the series
P∞

k=1 x
2e−kx converges uniformly on [0,+∞).

Function fk (x) = x2e−kx is positive for x > 0 but vanishes at x = 0 and tends to 0 at
x→ +∞. Therefore, it has a maximum at some point x > 0. On the next diagram, see
the plots of functions fk (x) for k = 1, 2, 3:
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At the point of maximum, we have f 0k (x) = 0, which is equivalent to (ln fk)
0 = 0 that is,

(2 lnx− kx)0 = 0

whence x = 2
k
. Hence,

kfkk[1,+∞) = max
[1,+∞)

fk = fk

µ
2

k

¶
=

µ
2

k

¶2
e−2 =

4e−2

k2
.

Since the series
P

1
k2
converges, we conclude by the Weierstrass test that the given series

converges absolutely and uniformly on [0,+∞).
Example. Consider a power series

P∞
k=0 ckx

k (with coefficients ck ∈ R) and assume
that it converges for some x = x0 6= 0. We claim that the series converges absolutely in
(−R,R) where R = |x0|, and converges uniformly in any interval [−r, r] where 0 < r < R.
Indeed, we have, for any x ∈ [−r, r],¯̄

ckx
k
¯̄
=

¯̄̄̄
¯ckxk0

µ
x

x0

¶k
¯̄̄̄
¯ ≤ ¯̄ckxk0 ¯̄ ³ rR´k .

The fact that the series
P∞

k=0 ckx
k converges implies that ckx

k
0 → 0 as k → ∞. In

particular, the sequence
©
ckx

k
0

ª
is bounded, say,

¯̄
ckx

k
0

¯̄ ≤ C for all k and some constant
C. It follows that °°ckxk°°[−r,r] ≤ C

³ r
R

´k
for all x ∈ [−r, r] ,
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Since r
R

< 1 and, hence, the geometric series
P

k

¡
r
R

¢k
converges, we conclude by the

Weierstrass test that
P

k ckx
k converges absolutely and uniformly on [−r, r]. Conse-

quently, the sum of this series is a continuous function on (−R,R).

3.3 Integration under uniform convergence

Theorem 3.3 Let {fk} be a sequence of continuous functions on a closed bounded interval
[a, b], which converges uniformly on [a, b]. ThenZ b

a

lim
k→∞

fk (x) dx = lim
k→∞

Z b

a

fk (x) dx. (3.33)

Hence, the operations lim and
R b
a
are interchangeable provided the convergence is

uniform.
This theorem can be stated as follows: if fk ⇒ f on [a, b] and fk are continuous thenZ b

a

fk (x) dx→
Z b

a

f (x) dx.

Proof. Indeed, function f = limk→∞ fk is continuous by Theorem 3.1 (and, hence, f
is Riemann integrable). By the properties of the Riemann integral, we have¯̄̄̄Z b

a

fk (x) dx−
Z b

a

f (x) dx

¯̄̄̄
=

¯̄̄̄Z b

a

(fk − f) dx

¯̄̄̄
≤ sup |fk − f | (b− a) .

Since sup |fk − f |→ 0, we obtain¯̄̄̄Z b

a

fk (x) dx−
Z b

a

f (x) dx

¯̄̄̄
→ 0,

which was to be proved.

Example. The uniform convergence in Theorem 3.3 is essential. Indeed, consider the
following functions on [0, 1]:

fk (x) =

 k2x, 0 ≤ x ≤ 1
k−k2 ¡x− 2

k

¢
, 1

k
≤ x ≤ 2

k
,

0, 2
k
≤ x ≤ 1.

Obviously, limk→0 fk = 0 pointwise. However,Z 1

0

fk (x) dx =

Z 1/k

0

k2xdx+

Z 2/k

1/k

k2
µ
2

k
− x

¶
dx =

1

2
+
1

2
= 1

so that

lim
k→∞

Z 1

0

fk (x) dx = 1 6= 0 =
Z 1

0

lim
k→∞

fkdx.
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Corollary. If the series
P∞

k=1 fk (x) of continuous functions on [a, b] converges uniformly
then Z b

a

Ã ∞X
k=1

fk (x)

!
dx =

∞X
k=1

Z b

a

fk (x) dx.

Proof. Indeed, let

Fn =
nX

k=1

fk and F =
∞X
k=1

fk.

Then Fn ⇒ F and, by Theorem 3.3,Z b

a

Fndx→
Z b

a

Fdx.

Using the linearity of the integral, we obtain

∞X
k=1

Z b

a

fkdx = lim
n→∞

nX
k=1

Z b

a

fkdx = lim
n→∞

Z b

a

Fndx =

Z b

a

Fdx =

Z b

a

Ã ∞X
k=1

fk

!
dx,

which was to be proved.

Example. Consider a power series f (x) =
P∞

k=0 ckx
k that converges in (−R,R) for

some R > 0. As we already know, it converges uniformly in any interval [−r, r] where
0 < r < R. For any y ∈ (−R,R), integrating the series from 0 to y, we obtainZ y

0

f (x) dx =
∞X
k=0

Z y

0

ckx
kdx =

∞X
k=0

ck
k + 1

yk+1.

Hence, a primitive function of f can be obtained by term-by-term integration of the series.
Consider a geometric series

1

1− x
=

∞X
k=0

xk.

if |x| < 1. Integrating it term-by-term from 0 to y, where |y| < 1, we obtainZ y

0

dx

1− x
=

+∞X
k=0

yk+1

k + 1

whence

− ln (1− y) = y +
y2

2
+

y3

3
+

y4

4
+ ....

Or, changing x = −y, we obtain the following formula:

ln (1 + x) = x− x2

2
+

x3

3
− x4

4
+ ... , (3.34)

where the series converges for x ∈ (−1, 1). Note that the partial sums of this series are
the Taylor polynomials of the function ln (1 + x).

It is possible to prove that (3.34) extends to the borderline value x = 1 so that

ln 2 = 1− 1
2
+
1

3
− 1
4
+ ... .
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Example. Consider
R 1
0
ex

2
dx. The function ex

2
has no primitive in terms of elementary

functions. Let us evaluate this integral numerically using expansion

ex
2

=
∞X
n=0

x2n

n!
= 1 +

x2

1!
+

x4

2!
+ ....

Since this series converges for any x, it converges uniformly on any bounded closed interval,
as was shown in Example in the previous section. By Corollary to Theorem 3.3, we can
integrate the series term-by-term, that is,Z 1

0

ex
2

dx =
∞X
n=0

Z 1

0

x2n

n!
dx =

∞X
n=0

·
x2n+1

(2n+ 1)n!

¸1
0

=
∞X
n=0

1

(2n+ 1) (n!)
= 1 +

1

3 · 1! +
1

5 · 2! +
1

7 · 3! + ....

Partial sums of this series can be considered as numerical approximations to
R 1
0
ex

2
dx. For

example, one can compute

14X
n=0

1

(2n+ 1)n!
≈ 1.462651745 907 16

15X
n=0

1

(2n+ 1)n!
≈ 1 .462651745 90718

20X
n=0

1

(2n+ 1) (n!)
≈ 1.462 651745 90718

whence Z 1

0

ex
2

dx ≈ 1.462 651745 90718

3.4 Differentiation under uniform convergence

Definition. We say that a functional sequence {fk} converges locally uniformly to a
function f on in interval I if fk ⇒ f on any bounded closed subinterval J ⊂ I. We write

in this case fk
loc

⇒ f on I. The same definition applies to a functional series: it converges
locally uniformly if the sequence of its partial sums converges locally uniformly.

Remark. The relation with the other types of convergence is obvious:

fk ⇒ f =⇒ fk
loc

⇒ f =⇒ fk → f pointwise.
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Remark. It follows from Theorem 3.1 that if a sequence {fk} of continuous functions
converges locally uniformly then the limit is also continuous function, because the limit
is continuous on any bounded closed subinterval.

Example. Consider the sequence fk (x) = x/k on R. Obviously, fk → 0 pointwise but

fk 6⇒ 0 because kfkkR = ∞. Let us show that fk
loc

⇒ 0. Indeed, in any bounded closed
interval J , function |x| is bounded, say, by a constant CJ . Then kfkkJ ≤ CJ/k whence

kfkkJ → 0 and, hence, fk ⇒ 0 in J . We conclude that fk
loc

⇒ f on R.

Theorem 3.4 Let {fk} be a sequence of continuously differentiable functions on an in-
terval I ⊂ R. Assume that

1. fk → f pointwise on I,,

2. f 0k
loc

⇒ g on I.

Then f 0 = g.

Equivalently, this theorem can be stated as follows: if the sequence fk converges
pointwise and f 0k converges locally uniformly then³

lim
k→∞

fk
´0
= lim

k→∞
f 0k,

that is, the operations of differentiation and limit are interchangeable.
Proof. By the Newton-Leibniz formula, we have for all x, c ∈ I:

fk (x)− fk (c) =

Z x

c

f 0k (t) dt. (3.35)

Since the convergence of f 0k to g is locally uniform, function g is continuous on I. Since
f 0k ⇒ g on [x, c], we have by Theorem 3.3 thatZ x

c

f 0k (t) dt→
Z x

c

g (t) dt as k →∞.

Then, letting in (3.35) k →∞, we obtain

f (x)− f (c) =

Z x

c

g (t) dt.

By Theorem 2.9 we conclude that f 0 = g, which was to be proved.

Remark. Note that the statement of Theorem 3.4 is about the derivatives, but the proof
uses quite seriously integration.

Corollary. Let {fk} be a sequence of continuously differentiable functions on an interval
I ⊂ R. Assume that

1.
P∞

k=1 fk (x) converges on I,

2.
P∞

k=1 f
0
k (x) converges locally uniformly on I.
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Then Ã ∞X
k=1

fk

!0
=

∞X
k=1

f 0k.

The proof is the same as the proof of the Corollary to Theorem 3.3: just apply Theorem
3.4 to partial sums of the series in question.
As an example of application of this Corollary, we prove the following theorem, which

is important by itself.

Theorem 3.5 Let the series
P∞

k=0 ckx
k converge in (−R,R) , where R ∈ (0,+∞], and

let F (x) be the sum of the series. Then function F (x) is differentiable on (−R,R) and

F 0 (x) =
∞X
k=1

ckkx
k−1.

That is, the power series can be differentiated term-by-term.

For example, consider the series

exp (x) =
∞X
k=0

xk

k!
,

which converges on (−∞,+∞). By Theorem 3.5, we have

exp (x)0 =
∞X
k=0

µ
xk

k!

¶0
=

∞X
k=1

xk−1

(k − 1)! =
∞X
n=0

xn

n!
= exp (x) ,

so that the derivative of exp (x) coincides with the function itself. Of course, we already
know this from Analysis I.
Proof of Theorem 3.5. By Corollary to Theorem 3.4, we can writeÃ ∞X

k=0

ckx
k

!0
=

∞X
k=0

¡
ckx

k
¢0
=

∞X
k=1

ckkx
k−1,

provided the series
P

k ckx
k converges, which is given, and the series

P
k ckkx

k−1 converges
locally uniformly. It suffices to prove that this series converges uniformly on any interval
[−r, r] where 0 < r < R. To prove the latter, observe that, for all r < a < R and for all
indices k, °°kxk−1°°

[−r,r] = krk−1 ≤ Cak

where C is a constant depending on r, a only. Indeed, write a
r
= 1+ ε where ε > 0. Then,

using Bernoulli’s inequality, we obtain³a
r

´k
= (1 + ε)k > kε

whence
krk−1 < r−1ε−1ak = Cak,
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with C = r−1ε−1. It follows that°°kckxk−1°°[−r,r] ≤ C |ck| ak.

By Example considered above, the series
P

cka
k converges absolutely, that is,X

k

|ck| ak <∞

whence X
k

kkckxk−1k[r,−r] <∞.

By the Weierstrass test (Theorem 3.2), the series
P

kckx
k−1 converges uniformly on

[−r, r], which was to be proved.
Example. Knowing that the series

P∞
k=1 ckkx

k−1 converges in (−R,R), we can apply
Theorem 3.5 to this series, to obtain that F 0 is differentiable and

F 00 (x) =
∞X
k=2

ckk (k − 1) xk−2.

Continuing by induction, we obtain that F is differentiable infinitely many times on
(−R,R) and its derivative is obtain by term-by-term differentiation of the series.

Example. Consider again the identity

1

1− x
=

∞X
k=0

xk.

Differentiating it, we obtain

1

(1− x)2
=

∞X
k=1

kxk−1 =
∞X
k=0

(k + 1)xk.

Differentiating again,

2

(1− x)3
=

∞X
k=1

(k + 1) kxk−1 =
∞X
k=0

(k + 2) (k + 1)xk,

etc. All these identities hold for |x| < 1 and are particular cases of a binomial series.

3.5 Fourier series

3.5.1 Fourier coefficients

A Fourier series is a series of the form

a0
2
+

∞X
k=1

(ak cos kx+ bk sin kx) , (3.36)
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where x ∈ R and ak, bk are the coefficients of the series. Partial sums are

Sn (x) =
a0
2
+

nX
k=1

(ak cos kx+ bk sin kx) ,

and they are called a trigonometric polynomial for the obvious reason.
In this section, we consider the question whether a given function can be represented

as a sum of the Fourier series. We start with the following lemma.

Lemma 3.6 Let the Fourier series (3.36) converge uniformly on R to a function f (x).
Then, for all k,

ak =
1

π

Z 2π

0

f (x) cos kxdx and bk =
1

π

Z 2π

0

f (x) sin kxdx. (3.37)

Proof. Note that the integrals in (3.37) are defined because function f (x) is continu-
ous as the uniform limit of continuous functions. Fix non-negative integer n and multiply
the identity

f (x) =
a0
2
+

∞X
k=1

(ak cos kx+ bk sin kx) (3.38)

by cosnx. The resulting series still converges uniformly (because |cosnx| ≤ 1), whence
by Theorem 3.3Z 2π

0

f (x) cosnxdx =
a0
2

Z 2π

0

cosnxdx (3.39)

+
∞X
k=1

µ
ak

Z 2π

0

cos kx cosnxdx+ bk

Z 2π

0

sin kx cosnxdx

¶
.

Using the identity

cos a cos b =
1

2
(cos (a− b) + cos (a+ b)) ,

we obtainZ 2π

0

cos kx cosnxdx =
1

2

Z 2π

0

cos(k − n)x dx+
1

2

Z 2π

0

cos(k + n)x dx. (3.40)

Now, use the following formula: for any integer l,Z 2π

0

cos lx dx =

½
2π, l = 0
0, l 6= 0, (3.41)

because in the case l 6= 0 the integral is proportional to [sin lx]2π0 = 0. It follows from
(3.40) that Z 2π

0

cos kx cosnxdx =

 2π, k = n = 0
π, k = n 6= 0,
0, k 6= n.

Next, similarly we have, for all k, n,Z 2π

0

sin kx cosnxdx =
1

2

Z 2π

0

(sin(k + n)x+ sin(k − n)x) dx = 0
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because Z 2π

0

sin lx dx = 0 for all l ∈ Z. (3.42)

It follows from (3.39) that the only non-zero term in the right hand side is the one with
k = n. If n = 0 then we obtainZ 2π

0

f (x) dx =
a0
2
2π = πa0.

If n > 0 then Z 2π

0

f (x) cosnxdx = πan

so that in both cases we have (3.37).
The coefficients bk are found similarly by multiplying (3.38) by sinnx.
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Note that all the terms in the Fourier series are 2π-periodic functions on R. Therefore,
whenever the sum exists it will be also 2π-periodic. In what follows we’ll deal with either
functions defined on [0, 2π] or 2π-periodic functions on R.
Lemma 3.6 motives the following definition.

Definition. For any Riemann integrable function f on [0, 2π], define its Fourier coeffi-
cients by

ak = ak (f) =
1
π

Z 2π

0

f (x) cos kx dx and bk = bk (f) =
1
π

Z 2π

0

f (x) sin kx dx (3.43)

for all integers k ≥ 0. The Fourier series of function f is the series

a0
2
+

∞X
k=1

(ak cos kx+ bk sin kx) .

Since we do not know yet whether this series converges and if so then whether its sum
is f (x), we’ll write

f (x) ∼ a0
2
+

∞X
k=1

(ak cos kx+ bk sin kx) (3.44)

meaning that the coefficients ak and bk are those associated with f . We are going find
out under what conditions of f the sign ∼ can be replaced by = and in what sense the
series converges.

Example. 1. If f (x) ≡ 1 then we obtain from (3.43), (3.41), and (3.42), that a0 = 1
while ak = bk = 0 for all k ≥ 1. Hence, in this case the Fourier series of f (x) is identically
equal to 1 and, hence, coincides with f (x).
2. Consider on [0, 2π] a step function

f (x) =

½
1, x ≤ π,
0, x > π.

Then

a0 =
1

π

Z π

0

dx = 1,

ak =
1

π

Z π

0

cos kx dx = 0, k > 0,

bk =
1

π

Z π

0

sin kx dx = −1
π

·
cos kx

k

¸π
0

=
1

πk

³
1− (−1)k

´
=

½
0, k even,
2
πk
, k odd.

Hence, the Fourier series has the form

f ∼ 1
2
+

∞X
l=0

2

π (2l + 1)
sin (2l + 1)x =

1

2
+
2

π
sinx+

2

3π
sin 3x+

2

5π
sin 5x+ ...

It is not obvious at all whether one has equality here. Below are the graphs of the partial
sums with l ≤ 5 and l ≤ 50 (thick) of this series that do suggest that there is convergence
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excepts for the points x = 0, π, 2π:

6.2553.752.51.250

1

0.75

0.5

0.25

0

x

y

x

y

For what follows it is useful to consider a complex form of the Fourier series. First of
all, note that the Riemann integral

R b
a
f (x) dx can be defined when f is a complex valued

function simply by Z b

a

f (x) dx =

Z b

a

Re f (x) dx+ i

Z b

a

Im f (x) dx,

provided both Re f and Im f are integrable. Most properties of integration are eas-
ily transferred to the complex values functions (in particular, linearity, additivity, LM-
inequality, the Newton-Leibniz formula, integration-by-parts).

Definition. For any complex valued integrable function f on [0, 2π], define its complex
Fourier coefficients for all k ∈ Z by

ck = ck (f) =
1
2π

Z 2π

0

f (x) e−ikxdx . (3.45)

The complex Fourier series of f is the series

f (x) ∼
X
k∈Z

cke
ikx.

Claim. The complex Fourier series coincides with the Fourier series provided the both
converge.
Proof. Indeed, the complex Fourier series is a double series, that can be written down

as follows: X
k∈Z

cke
ikx = c0 +

∞X
k=1

cke
ikx +

∞X
k=1

c−ke−ikx

= c0 +
∞X
k=1

¡
cke

ikx + c−ke−ikx
¢
.
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Using definitions of ak, bk, ck and the Euler formula e
ix = cosx+ i sinx, we obtain

c0 =
1

2π

Z 2π

0

f (x) dx =
a0
2

and for k > 0

ck =
1

2π

Z 2π

0

f (x) cos kx dx− i
1

2π

Z 2π

0

f (x) sin kxdx =
ak − ibk
2

,

c−k =
1

2π

Z 2π

0

f (x) eikxdx =
ak + ibk
2

.

Therefore,

cke
ikx + c−ke−ikx =

1

2
(ak − ibk) (cos kx+ i sin kx)

+
1

2
(ak + ibk) (cos kx− i sin kx)

= ak cos kx+ bk sin kx.

It follows that X
k∈Z

cke
ikx =

a0
2
+

∞X
k=1

(ak cos kx+ bk sin kx) ,

which was to be proved.

3.5.2 Bessel’s inequality

Theorem 3.7 (Bessel’s inequality) For any integrable function f on [0, 2π]X
k∈Z

|ck (f)|2 ≤ 1

2π

Z 2π

0

|f (x)|2 dx. (3.46)

Remark. Since function |f |2 is integrable, it follows from (3.46) that the seriesPk∈Z |ck (f)|2
converges.

Remark. If f is real values then we have for k ≥ 0

|ck|2 = |c−k|2 = 1

4

¡
a2k + b2k

¢
,

so that by (3.46)

a20
2
+

∞X
k=1

¡
a2k + b2k

¢ ≤ 1

π

Z 2π

0

|f (x)|2 dx.

This is a version of Bessel’s inequality for real Fourier series.

Remark. In fact, under the conditions of Theorem 3.7 one has the equalityX
k∈Z

|ck (f)|2 = 1

2π

Z 2π

0

|f (x)|2 dx, (3.47)
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which will be proved later on under some restriction.

Proof. It suffices to prove that, for any positive integer n,X
|k|≤n

|ck|2 ≤ 1

2π

Z 2π

0

|f (x)|2 dx.

Consider first a function
g =

X
|k|≤n

cke
ikx,

which is a partial sum of the Fourier series.

Claim 1. We have the identityX
|k|≤n

|ck|2 = 1

2π

Z 2π

0

|g|2 dx.

The proof is based on the fact thatZ 2π

0

eikxe−ilxdx =
½
0, k 6= l,
2π, k = l.

Indeed, the case k = l is trivial, while in the case k 6= l the integral in question is equal toZ 2π

0

cos (k − l)x dx+ i

Z 2π

0

sin (k − l) x dx,

which vanishes by (3.41) and (3.42).
Next, using

g =
X
|k|≤n

ckeikx =
X
|k|≤n

cke
−ikx =

X
|l|≤n

cle
−ilx

we obtain
|g|2 = gg =

X
|k|≤n

cke
ikx
X
|l|≤n

cle
−ilx =

X
|k|≤n

X
|l|≤n

ckcle
i(k−l)x,

whenceZ 2π

0

|g|2 dx =
X
|k|≤n

X
|l|≤n

ckcl

Z 2π

0

ei(k−l)xdx (restricting summation to l = k)

=
X
|k|≤n

ckck2π = 2π
X
|k|≤n

|ck|2 ,

which was to be proved.

Claim 2. We have the identity Z 2π

0

fgdx =

Z 2π

0

|g|2 dx.
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Indeed, using the definition of g and Claim 1, we obtainZ 2π

0

fgdx =

Z 2π

0

f (x)
X
|k|≤n

ckeikxdx =
X
|k|≤n

ck

Z 2π

0

f (x) e−ikxdx

= 2π
X
|k|≤n

ckck = 2π
X
|k|≤n

|ck|2 =
Z 2π

0

|g (x)|2 dx.

which was to be proved.

Claim 3. We have inequality Z 2π

0

|g|2 dx ≤
Z 2π

0

|f |2 dx (3.48)

Indeed, setting h = f − g, we obtain by Claim 2Z 2π

0

hgdx =

Z 2π

0

(f − g) gdx =

Z 2π

0

fgdx−
Z 2π

0

|g|2 dx = 0. (3.49)

Noticing that

|f |2 = |g + h|2 = (g + h)
¡
g + h

¢
= |g|2 + 2Re (hg) + |h|2

and integrating this identity using (3.49), we obtainZ 2π

0

|f |2 dx =
Z 2π

0

|g|2 dx+ 2
Z 2π

0

Re (hg) +

Z 2π

0

|h|2 ≥
Z 2π

0

|g|2 dx,

which was to be proved.
Finally, combining Claims 1 and 3, we obtainX

|k|≤n
|ck|2 = 1

2π

Z 2π

0

|g|2 dx ≤ 1

2π

Z 2π

0

|f |2 dx,

which finishes the proof of the theorem.

Corollary. (Riemann’s lemma) For any integrable function f on [0, 2π],Z 2π

0

f (x) cos kx dx→ 0 and

Z 2π

0

f (x) sin kx dx→ 0 as k →∞,

where k is a positive integer.

Proof. Since

cos kx =
eikx + e−ikx

2
and sin kx =

eikx − e−ikx

2i
,

it suffices to prove that Z 2π

0

f (x) e−ikxdx→ 0 as |k|→∞
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where k ∈ Z. The latter is equivalent to ck → 0 as |k|→∞, and this is true because by
Bessel’s inequality the series

P
k∈Z |ck|2 converges.

In fact, the statement of Riemann’s lemma is true when k takes all real values but the
proof in this case is more complicated and does not follow from Bessel’s inequality. We’ll
need the following version of Riemann’s lemma.

Corollary. For any integrable function f on [0, 2π],Z 2π

0

f (x) sin(k +
1

2
)xdx→ 0 as k →∞,

where k is a positive integer.

Proof. Indeed,

sin(k +
1

2
)x = sin kx cos

x

2
+ cos kx sin

x

2

whenceZ 2π

0

f (x) sin(k +
1

2
)xdx =

Z 2π

0

³
f (x) cos

x

2

´
sin kxdx+

Z 2π

0

³
f (x) sin

x

2

´
cos kxdx.

Since the functions f (x) cos x
2
and f (x) sin x

2
are integrable, applying the previous Corol-

lary, we obtain that the both integrals in the right hand side tend to 0, which finishes the
proof.

3.5.3 Uniform convergence

Theorem 3.8 Let f be a 2π-periodic function on R which is continuously differentiable
on R. Then the Fourier series of f converges absolutely and uniformly on R.

So far, we do not claim that the Fourier series converges to f (x) - we just claim that
it converges and, moreover, uniformly. Later on we’ll prove that the sum of the Fourier
series is indeed f (x).
Proof. We start with the following claim that relates the Fourier coefficients of f to

those of f 0.
Claim. We have for any k ∈ Z,

ck (f
0) = ikck (f) . (3.50)

Indeed, using integration by parts and 2π-periodicity of f , we obtain

ck (f
0) =

1

2π

Z 2π

0

f 0 (x) e−ikxdx

=
1

2π

Z 2π

0

e−ikxdf (x)

=
1

2π

£
e−ikxf (x)

¤2π
0
+

ik

2π

Z 2π

0

f (x) e−ikxdx

= 0 + ikck (f) ,

which was to be proved.
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Since function f 0 is integrable on [0, 2π], we obtain by Bessel’s inequalityX
k∈Z

|ck (f 0)|2 <∞,

whence by (3.50) X
k∈Z

|kck (f)|2 <∞.

Using the inequality |ab| ≤ a2 + b2, we obtainX
k 6=0

|ck (f)| =
X
k 6=0

|kck (f)| 1|k| ≤
X
k 6=0

|kck (f)|2 +
X
k 6=0

1

k2
<∞,

which proves that X
k∈Z

|ck (f)| <∞.

Finally, since
¯̄
ck (f) e

ikx
¯̄
= |ck (f)|, we conclude by the Weierstrass test that the seriesP

k∈Z ck (f) e
ikx converges absolutely and uniformly on R.
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3.5.4 Pointwise convergence

To state the next theorem, we need the following notation. We say that a function f on
R has the left limit at point x if the limit

lim
y→x,y<x

f (y) exists and is finite.

In this case, we denote the value of the limit by f (x−) so that

f (x−) = lim
y→x,y<x

f (y) .

Similarly one defines the right limit f (x+) replacing above y < x by y > x.
Let a function f have the left limit at x. We say that f is left differentiable at x if

the limit

lim
y→x,y<x

f (y)− f (x−)
y − x

exists and is finite.

The value of this limit is called the left derivative of f and is denoted by f 0 (x−). Similarly
one defines the right differentiability from the right and the right derivative f 0 (x+).
For example, for the function

f (x) =

½
e−x, x ≥ 0,
sinx, x ≤ 0

we have f (0+) = 1, f (0−) = 0, f 0 (0+) = −1, f 0 (0−) = 1.

2.51.250-1.25-2.5

2

1

0

-1

-2

x

y

x

y

Of course, if f is differentiable at x then f is left and right differentiable.

Theorem 3.9 Let f be an 2π-periodic integrable function that is right and left differen-
tiable at some x ∈ R. Then the Fourier series of f at x converges to f(x−)+f(x+)

2
. In

particular, if f (x) is differentiable at x then the Fourier series of f at x converges to
f (x).
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Example. Let f (x) be a 2π-periodic function on R, which is defined on [0, 2π) by

f (x) =

½
1, 0 ≤ x ≤ π,
0, π < x < 2π.

As we have seen in the previous lecture, the Fourier series for this function is

f ∼ 1
2
+

∞X
l=0

2

π (2l + 1)
sin (2l + 1)x =

1

2
+
2

π
sinx+

2

3π
sin 3x+

2

5π
sin 5x+ ...

If x = π then the sum of the Fourier series is 1
2
, which coincides with f(π−)+f(π+)

2
= 1+0

2
=

1
2
. At all other points in (0, 2π) the function f is differentiable; therefore, the Fourier
series converges to f (x). For example, take x = π/2. Replacing ∼ by = and using
sin (2l + 1) π

2
= (−1)l, we obtain

1 =
1

2
+
2

π

∞X
l=0

(−1)l
2l + 1

,

whence ∞X
l=0

(−1)l
2l + 1

=
π

4
.

Proof of Theorem 3.9. Let

Sn (x) =
X
|k|≤n

cke
ikx.

We need to prove that

Sn (x)→ f (x−) + f (x+)

2
as n→∞.

Substituting

ck =
1

2π

Z 2π

0

f (t) e−iktdt,

into Sn (x), we obtain

Sn (x) =
1

2π

X
|k|≤n

Z 2π

0

f (t) eik(x−t)dt =
1

2π

Z 2π

0

f (t)

X
|k|≤n

eik(x−t)

 dt.

Let us compute the sum in the brackets setting u = x − t. Denoting this sum by D (u)
(it is called the Dirichlet kernel) we obtain for u 6= 0, using the formula for the sum of a
geometric series,

D (u) =
nX

k=−n
eiku =

nX
k=−n

¡
eiu
¢k
= e−inu

2nX
k=0

¡
eiu
¢k

= e−inu
(eiu)

2n+1 − 1
eiu − 1 =

eiu(n+
1
2) − e−iu(n+

1
2)

eiu/2 − e−iu/2
=
sin
¡
n+ 1

2

¢
u

sin u
2

.
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If u = 0 then D (u) = 2n+ 1, which is equal to limu→0D (u) . Hence, D (u) is continuous
function of u, and we obtain

Sn (x) =
1

2π

Z 2π

0

f (t)D (x− t) dt (change u = x− t)

= − 1
2π

Z x−2π

x

f (x− u)D (u) du =
1

2π

Z x

x−2π
f (x− u)D (u) du.

Since the functions f and D are 2π-periodic, the integral in the right hand side is the
same over any interval of length 2π. Therefore,

Sn (x) =
1

2π

Z π

−π
f (x− u)D (u) du (using D (u) = D (−u) )

=
1

2π

Z π

0

(f (x− u) + f (x+ u))D (u) du.

Applying this formula for function f ≡ 1 and using that Sn (x) = 1 we obtain
1

π

Z π

0

D (u) du = 1.

Therefore,

Sn (x)− f (x−) + f (x+)

2
=

1

2π

Z π

0

[f (x− u) + f (x+ u)]D (u) du

−1
π

Z π

0

f (x−) + f (x+)

2
D (u) du

=
1

2π

Z π

0

[(f (x− u)− f (x−))
+ (f (x+ u)− f (x+))]D (u) du.

Define function F+ (u) for u > 0 by

F+ (u) =
f (x+ u)− f (x+)

u

so that F+ is locally integrable in (0,+∞). By the hypotheses, limu→0 F+ (u) exists and
is finite so that F+ can be extended by continuity at u = 0. This implies that F+ is
integrable on any interval [0, a], in particular, on [0, π] (see Exercises). Similarly, define
for u > 0 the function

F− (u) =
f (x− u)− f (x−)

u

and observe that F− is integrable on [0, π].
Next, we write

[(f (x− u)− f (x−)) + (f (x+ u)− f (x+))]D (u) =
F− (u)u+ F+ (u)u

sin u
2

sin(n+
1

2
)u

= G (u) sin(n+
1

2
)u,
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where

G (u) =
F− (u) + F+ (u)

sin u
2

u.

Function G (u) is integrable on [0, π] because so are functions F− (u), F+ (u) while the
function u

sinu/2
can be considered as continuous on [0, π]: its is obviously continuous on

(0, π] and extends continuously to u = 0 since it tends to 2 as u→ 0. Since

Sn (x)− f+ (x) + f− (x)
2

=
1

2π

Z π

0

G (u) sin(n+
1

2
)udu,

we conclude by Riemann’s lemma that the both sides of this identity go to 0 as n→∞,
which finishes the proof.

78



Lecture 16 15.12.06 Prof. A. Grigorian, Analysis II, WS 2006-7

3.5.5 Uniform convergence revisited

It follows from Theorem 3.9 that if f (x) is 2π-periodic and differentiable at all x ∈ R
then the Fourier series of f converges to f pointwise on R. On the other hand, if f is in
addition continuously differentiable then by Theorem 3.8 the Fourier series of f converges
uniformly. Combining these two results, we obtain that in this case the Fourier series
converges to f uniformly.
This result will be extended in the next theorem to the case when f may be not

differentiable at some points.

Theorem 3.10 Let f be a 2π-periodic continuous function on R. Assume that f is
differentiable in [0, 2π] \A where A is a finite set, and that the derivative f 0 is continuous
in [0, 2π]\A and has finite left and right limits at the points of A. Then the Fourier series
of f converges to f uniformly on R.

Example. Consider function f (x) = (x− π)2 on [0, 2π] that is extended 2π-periodically
to R — see the graph below.

12.5107.552.50-2.5-5

10

7.5

5

2.5

0

x

y

x

y

This function satisfies the conditions of Theorem 3.10: Function f is continuous, differen-
tiable in [0, 2π]\A where A = {0, 2π}, the derivative f 0 is continuous away from 0 and 2π
and has right and left limits at these points. Let us compute the real Fourier coefficients
of function f :

a0 =
1

π

Z 2π

0

(x− π)2 dx = (change y = x− π)

=
1

π

Z π

−π
y2dy =

1

π

2π3

3
=
2π2

3
,
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and for k ≥ 1

ak =
1

π

Z 2π

0

(x− π)2 cos kxdx =
1

π

Z π

−π
y2 cos k (y + π) dx

= (−1)k 1
π

Z π

−π
y2 cos kydx.

The latter integral is evaluated by twice integrating by parts:Z π

−π
y2 cos kydx =

1

k

Z π

−π
y2d sin ky =

1

k

£
y2 sin ky

¤π
−π −

2

k

Z π

−π
y sin kydy

= 0 +
2

k2

Z π

−π
yd cos ky =

2

k2
[y cos ky]π−π −

2

k2

Z π

−π
cos kydy

=
4π

k2
(−1)k + 0,

whence

ak =
4

k2
.

Finally,

bk =
1

π

Z 2π

0

(x− π)2 sin kxdx = (−1)k 1
π

Z π

−π
y2 sin kydx = 0

because the function y2 sin ky is odd (obviously, the integral of an odd function over a
symmetric interval [−a, a] is zero). Hence, we obtain the Fourier series

(x− π)2 ∼ π2

3
+ 4

∞X
k=1

cos kx

k2
. (3.51)

By Theorem 3.10, we have here equality for all x and, moreover, the convergence is
uniform (the pointwise convergence holds also by Theorem 3.9).
For example, setting x = 0 we obtain a remarkable identity

π2

6
=

∞X
k=1

1

k2
= 1 +

1

22
+
1

32
+
1

42
+ ... .

Setting x = π, we obtain

π2

12
=

∞X
k=1

(−1)k−1
k2

= 1− 1

22
+
1

32
− 1

42
+ ... .

Proof of Theorem 3.10. Let Sn be as before the n-th partial sum of the complex
Fourier series of f . It suffices to prove the following two statements:
1. Sn (x)→ f (x) pointwise in R
2. The sequence {Sn (x)} convergences uniformly in R.
Then Sn converges uniformly to its pointwise limit f .
By Theorem 3.9, to prove the first statement, it suffices to prove that f is right and

left differentiable at any point x ∈ [0, 2π]. If x /∈ A then f is differentiable at x. Let
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x ∈ A. Then, for y close enough to x, the interval (x, y) contains no points from A so that
f is differentiable in (x, y). Since f is continuous, in particular, on [x, y], we can apply
the Lagrange mean value theorem, which say that there is a point ξ ∈ (x, y) such that

f 0 (ξ) =
f (y)− f (x)

y − x
.

If y → x from the left or from the right then also ξ → x from the same side and, hence,
f 0 (ξ) has the limit. Therefore, also quotient f(y)−f(x)

y−x has the limit, which means that f
is right and left differentiable.
The proof of the second statement, that is, of the fact that the Fourier series of f

converges uniformly, will follow the same approach as the proof of Theorem 3.8. For that
we need to consider the Fourier coefficients of the derivative f 0 while f 0 is not yet defined
in A. So, we are going to extend f 0 to A, and to do so, we need the following simple
property of the integrable functions.

Claim 1 If a function g is Riemann integrable on some interval [a, b] and a function h is
equal to g everywhere except for a single point, then h is also Riemann integrable in [a, b]
and Z b

a

gdx =

Z b

a

hdx.

Consequently, the same is true if h is equal to g everywhere except for a finite set.
Indeed, renaming h−g by h it suffices to consider the case when g ≡ 0. Then h (x) = 0

for all x ∈ [a, b] except for some x = c, and the integrability of h follows from Exercise 21.
Alternatively, we can argue as follows. For any partition p = {xk} of [a, b] and any tags
ξ = {ξk} associated with p, the Riemann sum S (f, p, ξ) is either 0 when c /∈ ξ or it is

S (f, p, ξ) = h (c) (xk−1 − xk)

for some interval [xk−1, xk] of the partition. Since h (c) (xk−1 − xk)→ 0 as m (p)→ 0, we

obtain that h is integrable and
R b
a
h (x) dx = 0.

Let the set A ordered in the increasing order be {al}ml=0, and let a0 = 0 and am = 2π
(clearly, we can add to A any point). Extend the derivative f 0, which is initially defined
outside A, to any point al arbitrarily, so that the function f

0 (x) is now defined on [0, 2π].
Let us show that this function is integrable on [0, 2π].
Indeed, within any interval (al−1, al) function f 0 (x) is continuous and has limits at

the endpoints of the interval. Obviously, f 0 can be extended to [al−1, al] as a continuous
function, and the continuous extension of f 0 is Riemann integrable in [al−1, al]. The global
extension of f 0 defined above, may be different from the continuous extension only at the
endpoints al−1, al. Therefore, it is also integrable on [al−1, al] by Claim 1. By Exercise 18,
function f 0 is integrable in the whole interval [0, 2π]. In particular, the Fourier coefficients
of f 0 are defined.
Claim 2. For all k ∈ Z

ck (f
0) = ikck (f) . (3.52)

Recall that this identity was used in the proof of Theorem 3.8 when f 0 was continuous
on [0, 2π]. To prove it in the present setting, we split the domain of integration as follows:

2πck (f
0) =

Z 2π

0

f 0 (x) e−ikxdx =
mX
l=1

Z al

al−1
f 0 (x) e−ikxdx.
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Since in any interval [al−1, al] function f 0 can be replaced by its continuous modification,
we obtain by the the integration by parts formula:Z al

al−1
f 0 (x) e−ikxdx =

Z al

al−1
e−ikxdf (x) =

£
e−ikxf (x)

¤al
al−1

+ ik

Z al

al−1
f (x) e−ikxdx.

Therefore, summing up these identities and using the 2π-periodicity of e−ikxf (x), we
obtain

2πck (f
0) =

mX
l=1

£
e−ikxf (x)

¤al
al−1

+ ik
mX
l=1

Z al

al−1
f (x) e−ikxdx

=
£
e−ikxf (x)

¤2π
0
+ ik

Z 2π

0

f (x) eikxdx = 0 + ik2πck (f) ,

whence (3.52) follows.
Now we can finish the proof as in Theorem 3.8. The identity (3.52) together with the

Bessel inequality yieldsX
k 6=0

|ck (f)| ≤
X
k 6=0

µ
k2 |ck (f)|2 + 1

k2

¶
=
X
k 6=0

|ck (f 0)|2 +
X
k 6=0

1

k2

≤ 1

2π

Z 2π

0

|f 0 (x)|2 dx+
X
k 6=0

1

k2
<∞.

Then by the Weierstrass test the series
P

k∈Z cke
ikx converges absolutely and uniformly.

3.5.6 Parseval’s identity

Theorem 3.11 (Parseval’s identity) Let f be an integrable function on [0, 2π]. If the
Fourier series of f converges to f uniformly on [0, 2π] thenX

k∈Z
|ck (f)|2 = 1

2π

Z 2π

0

|f (x)|2 dx.

Remark. In fact, the Parseval identity holds for any integrable function f on [0, 2π],
without the assumption that the Fourier series converges to f uniformly, but the proof is
more complicated and will not be presented here. Theorem 3.11 applies to any function
f satisfying the hypotheses of Theorem 3.10.

Proof. Denote again by Sn the partial sum of the Fourier series, that is,

Sn (x) =
X
|k|≤n

cke
ikx,

and recall that by Claim 1 from the proof of Theorem 3.7,X
|k|≤n

|ck|2 = 1

2π

Z 2π

0

|Sn (x)|2 dx.
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Since Sn ⇒ f , it follows that also |Sn|2 ⇒ |f |2 because°°|Sn|2 − |f |2°° ≤ k|Sn|− |f |k k|Sn|+ |f |k ≤ kSn − fk (kSnk+ kfk)→ 0 as n→∞
(see Exercise 31 for the properties of the norm used above). By Theorem 3.3, we obtainZ 2π

0

|Sn (x)|2 dx→
Z 2π

0

|f (x)|2 dx as n→∞.

Therefore, X
k∈Z

|ck|2 = lim
n→∞

X
|k|≤n

|ck|2 = 1

2π

Z 2π

0

|f (x)|2 dx,

which was to be proved.

Remark. If function f is real-value then as we have shown in the previous lectures, the
relation between the complex and real Fourier coefficients is as follows:

2
X
k∈Z

|ck|2 = a20
2
+

∞X
k=1

¡
a2k + b2k

¢
.

In this case, the Parseval identity takes the form

a20
2
+

∞X
k=1

¡
a2k + b2k

¢
=
1

π

Z 2π

0

f2 (x) dx. (3.53)

Example. For the function f (x) = (x− π)2 on [0, 2π] extended 2π-periodically, we have
the expansion into Fourier series (3.51), that is,

(x− π)2 =
π2

3
+ 4

∞X
k=1

cos kx

k2
.

Substituting the values of ak and bk into (3.47) and noticing thatZ 2π

0

f (x)2 dx =

Z π

−π
y4dy =

2

5
π5,

we obtain
2

9
π4 +

∞X
k=1

16

k4
=
2

5
π4,

whence ∞X
k=1

1

k4
=

π4

90
.

In conclusion let us mention yet another type of convergence, which is called the
convergence in quadratic mean and which means the following: fk → f in quadratic
mean on [a, b] if Z b

a

|fk − f |2 dx→ 0 as k →∞.

Of course, the uniform convergence implies the convergence in quadratic mean, but not
vice versa. The following theorem is presented here without proof.

Theorem. For any integrable function f on [0, 2π], its Fourier series converges to f in
quadratic mean on [0, 2π].
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Lecture 17 20.12.06 Prof. A. Grigorian, Analysis II, WS 2006-7

4 Metric spaces

Our aim here is to develop necessary tools for analysis of functions of several variables.
The crucial role in analysis of functions of a single variable was played by the notion of
the distance between two reals x, y, that is |x− y|. An analogous notion will be developed
here in an abstract context.

4.1 Notion of a distance function

Definition. Let X be an arbitrary set. A distance function (or a metric) on X is a
function d (x, y) of two variables x, y ∈ X such that the following properties are satisfied:

1. Positivity: d (x, y) is a non-negative real, and d (x, y) = 0 if and only if x = y (hence,
d (x, y) > 0 if x 6= y).

2. Symmetry: d (x, y) = d (y, x) for all x, y ∈ X.

3. The triangle inequality: d (x, y) ≤ d (x, z) + d (y, z) for all x, y, z ∈ X.

If d (x, y) is a metric on X then the couple (X, d) is called a metric space.

Example. 1. Let X = R. Then d (x, y) = |x− y| is a distance function on R.
2. Let X be an arbitrary set and define d (x, y) = 1 if x 6= y and d (x, y) = 0 if x = y.

Then d (x, y) is a distance function. This particular d (x, y) is called the discrete metric
on X.

Our main example of a metric space will be the set Rn = R×R× ...× R| {z }
n times

that consists

of all n-tuples (x1, ..., xn) — sequences of n reals. The elements of Rn are also referred to
as vectors.
If x = (x1, x2, ..., xn) ∈ Rn then we refer to xk as the components (or the coordinates)

of the vector x. For any two vectors x, y ∈ Rn their sum is defined as follows:

x+ y = (x1 + y1, x2 + y2, ..., xn + yn) .

For any real λ and any vector x, the product λx is defined by

λx = (λx1, λx2, ..., λxn) .

The set Rn with these two operation becomes a vector space. Recall the definition of
a vector space with the scalar field R. Real numbers will also be called scalars.

Definition. Let V be a set where two operations are defined: addition x+ y ∈ V for all
x, y ∈ V and multiplication by scalar λx ∈ V for all scalars λ ∈ R and vectors x ∈ V .
The set V with these operations is called a vector space (or a linear space) if the following
properties are satisfied:

1. Neutral element: there exists 0 ∈ V such that x+ 0 = 0 + x = x for all x ∈ V .
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2. Negative element: for any x ∈ V there is a vector denoted by −x ∈ V such that
x+ (−x) = (−x) + x = 0.

3. Associative law for addition: (x+ y) + z = x+ (y + z)

4. Commutative law for addition: x+ y = y + x

5. Neutral element for scalar multiplication: 1x = x.

6. Associative law for scalar multiplication: (λµ)x = λ (µx) .

7. Distributive law for addition of scalars: (λ+ µ)x = λx+ µx.

8. Distributive law for addition of vectors: λ (x+ y) = λx+ λy.

Example. 1. It is straightforward to check that Rn with the above operations is a vector
space. Note that the neutral element is the zero vector 0 = (0, 0, ..., 0) and the negative
to x is −x = (−x1, ...,−xn).
2. Let S be any set and F (S) the set of all real valued function on S. For any two

functions f, g ∈ F (S), addition f + g is defined by

(f + g) (x) = f (x) + g (x) ,

and the multiplication by scalar by (λf) (x) = λf (x) where λ ∈ R. Zero element is f ≡ 0.
Clearly, F (S) is a vector space.
If S = {1, 2, ..., n}, that is, S consists of n elements, then any function f on S can be

identified with the sequence {f (1) , ..., f (n)} of its values on S. Considering this sequence
as an element of Rn, we see that Rn is identical with the vector space F (S).
A natural way to introduce a distance function on a vector space is to use the notion

of a norm.

Definition. A function N on a vector space V is called a norm if it satisfies the following
properties:

1. Positivity: N (x) ≥ 0 and N (x) = 0 if and only if x = 0 (hence, N (x) > 0 if x 6= 0).
2. The scaling property: for any λ ∈ R, N (λx) = |λ|N (x)
3. The triangle inequality: N (x+ y) ≤ N (x) +N (y) .

A vector space V endowed with a norm N , is called a normed space.

Example. 1. Function N (x) = |x| is a norm in R. To resemble |x|, the norm in arbitrary
vector space is normally denoted by kxk.
2. Let V = B (S) be the set of all bounded functions on S, which is obviously a vector

space. The following is a norm in B (S):

kfk = sup
x∈S

|f (x)|

(see Exercise 31). To distinguish this norm from other norms, let us call it the sup-norm
and denote by kfksup.
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3. Let V = Rn. Considering Rn as the space B (S) with S = {1, 2, ..., n} and using
the sup-norm, we obtain the following norm in Rn:

kxksup = sup
1≤k≤n

|xk| = max
1≤k≤n

|xk| .

Another norm in Rn, which is called the 1-norm, is given by

kxk1 = |x1|+ |x2|+ ...+ |xn| .

Claim. If (V,N) is a normed space then d (x, y) = N (x− y) is a distance function on
V .
Proof. Let us check the three properties of a metric:
Positivity: d (x, y) = N (x− y) ≥ 0 and N (x− y) = 0 if and only if x = y, follows

from the positivity of the norm.
Symmetry:

d (x, y) = N (y − x) = N ((−1) (x− y)) = N (x− y) = d (y, x) ,

where we have used the scaling property of the norm.
The triangle inequality:

d (x, y) = N (x− y) = N ((x− z) + (z − y)) ≤ N (x− z)+N (z − y) = d (x, z)+d (z, y) ,

where we have used the triangle inequality for the norm.
Hence, any normed space is a metric space.

Example. Consider examples of a metric defined via a norm.
1. For V = B (S) with the sup-norm

dsup (f, g) = kf − gksup = sup
x∈S

|f (x)− g (x)| .

2. For V = Rn with the sup-norm

dsup (x, y) = kx− yksup = max
1≤k≤n

{|xk − yk|}

and for V = Rn with 1-norm:

d1 (x, y) = kx− yk1 =
nX

k=1

|xk − yk| .

Theorem 4.1 For any 1 ≤ p <∞, define the p-norm in Rn by

kxkp =
Ã

nX
k=1

|xk|p
!1/p

.

Then k · kp is a norm in Rn.

86



Proof. If p = 1 then we already know that kk1 is a norm. Let us assume in the sequel
that p > 1.
Positivity. Obviously, kxkp ≥ 0 and the equality takes places if and only if all xk = 0

that is, when x = 0.
The scaling property:

kλxkp =
Ã

nX
k=1

|λ|p |xp|p
!1/p

= |λ| kxk.

The triangle inequality is much more involved and will be proved after some prepara-
tion.

Claim 1. (The Hölder inequality) For any reals p, q > 1 such that

1

p
+
1

q
= 1 (4.1)

the following inequality holds for all x, y ∈ Rn:

kxkpkykq ≥ |x1y1|+ |x2y2|+ ...+ |xnyn| . (4.2)

If x = 0 or y = 0 then (4.2) holds trivially. Assume further that both x, y 6= 0. Notice
that the inequality (4.2) does not change if we multiply x by a scalar λ, since the both
sides multiply by |λ|. Therefore, multiplying x by λ = 1

kxkp and renaming λx by x, we

can assume that kxkp = 1. Similarly, we assume that kykq = 1.
Next, we use the Young inequality which was proved in Analysis I: for all non-negative

a, b,
ap

p
+

bq

q
≥ ab.

Applying it with a = |xk| and b = |yk| and summing up in k = 1, 2, ..., n, we obtain

nX
k=1

µ |xk|p
p

+
|yk|q
q

¶
≥

nX
k=1

|xk| |yk| .

Using the hypotheses that kxkp = kykq = 1 and (4.1) we obtain that the left hand side is
equal to

1

p

nX
k=1

|xk|p + 1
q

nX
k=1

|yk|q = 1

p
kxkpp +

1

q
kykqq =

1

p
+
1

q
= 1 = kxkpkykq,

whence (4.2) follows.
For any two vectors x, y ∈ Rn, set

x · y =
nX

k=1

xkyk.

The expression x · y is called the dot product (or the inner product) of x and y. Note that
x · y is a real number. The obvious properties of the dot product are:
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1. symmetry: x · y = y · x
2. linearity in each argument:

(λx) · y = λ (x · y)
and

(x+ y) · z = x · z + y · z.
Also, it follows from (4.2) that

kxkpkykq ≥ x · y (4.3)

whenever p and q satisfy (4.1). Positive numbers p, q satisfying (4.1) are called
Hölder conjugate.

Claim 2. If p and q are Hölder conjugate then, for any x ∈ Rn,

kxkp = sup
y∈Rn\{0}

x · y
kykq . (4.4)

It follows from (4.3) that

kxkp ≥ x · y
kykq

whence
kxkp ≥ sup

y 6=0

x · y
kykq .

Let us prove the opposite inequality. If x = 0 then it is obvious. Otherwise, choose y as
follows:

yk = xk |xk|p−2

so that

x · y =
nX

k=1

|xk|p = kxkpp

and, using q = p
p−1 ,

kykq =
Ã

nX
k=1

|yk|q
!1/q

=

Ã
nX

k=1

|xk|(p−1)
p

p−1

!p−1
p

= kxkp−1p .

Therefore, for this y,
x · y
kykq =

kxkpp
kxkp−1p

= kxkp.

It follows that
sup
y 6=0

x · y
kykq ≥ kxkp,

which finishes the proof of this claim. This argument implies that sup in (4.4) can be
replaced by max.
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Now we are ready to prove the triangle inequality. By Claim 2, we have

kx+ ykp = sup
z 6=0

(x+ y) · z
kzkq = sup

z 6=0

µ
x · z
kzkq +

y · z
kzkq

¶
≤ sup

z 6=0

x · z
kzkq + supz 6=0

y · z
kzkq

= kxkp + kykp,

which was to be proved.
A special role is played by the 2-norm:

kxk2 =
Ã

nX
k=1

|xk|2
!1/2

,

which is obviously related to the dot product as follows:

x · x = kxk22.

The Hölder inequality in this case becomes

x · y ≤ kxk2kyk2.

This particular case of the Hölder inequality is called the Cauchy-Schwarz inequality. Let
us give an independent proof of the Cauchy-Schwarz inequality. Note that x · x ≥ 0 for
any x ∈ Rn. In particular, for all x, y ∈ Rn and λ ∈ R,

(x+ λx) · (x+ λy) ≥ 0.

Expanding the left hand side using the linearity of the dot product, we obtain

x · x+ 2λ (x · y) + λ2 (y · y) ≥ 0.

Since this quadratic polynomial of λ is non-negative for all λ ∈ R, its discriminant must
be non-positive, that is,

(x · y)2 ≤ (x · x) (y · y) = kxk22kyk22,

whence the claim follows.
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Let us show how the sup-norm is related to the p-norm.

Claim. We have
kxkp → kxksup as p→∞.

Proof. Let m = kxksup so that |xk| ≤ m for all k = 1, 2, ..., l but |xk| = m for some
m. Then

kxkpp =
nX

k=1

|xk|p ≥ mp

and
kxkpp ≤ nmp

whence
m ≤ kxkp ≤ n1/pm.

Clearly, n1/p → 1 as p→∞ whence kxkp → m, which was to be proved.
For this reason, the sup-norm is also called the ∞-norm and is denoted by kxk∞ so

that
kxk∞ = kxksup = lim

p→+∞
kxkp.

Note that p = ∞ and q = 1 are Hölder conjugate because 1
∞ +

1
1
= 1, and the Hölder

inequality extends to this case as follows:

kxk∞kyk1 ≥ x · y,

because

x · y =
nX

k=1

xkyk ≤ max |xk|
nX

k=1

|yk| = kxk∞kyk1.

Summarizing the above, we can say that Rn possesses the following family of distance
functions: for any p ∈ [1,+∞]

dp (x, y) = kx− ykp =
½
(
Pn

k=1 |xk − yk|p)1/p , p <∞,
max1≤k≤n |xk| , p =∞.

4.2 Metric balls

In any metric space (X, d) one can consider metric balls defined as follows.

Definition. For any x0 ∈ X and r > 0 define the ball B (x, r) of radius r centered at x0
by

B (x0, r) = {x ∈ X : d (x, x0) < r} .

Example. In R with the distance d (x, y) = |x− y| the ball B (x0, r) is the symmetric
open interval (x0 − r, x0 + r).

Example. Consider R2 with the metric dp where 1 ≤ p ≤ ∞ and describe the metric
ball B (0, r) for various p.
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If p = 1 then

B (0, r) =
©
x ∈ R2 : kxk1 < r

ª
=
©
(x1, x2) ∈ R2 : |x1|+ |x2| < r

ª
Hence, the metric ball B (0, r) is a rhombus (rotated square) as on the diagram below:

x_1

x_2

x_1

x_2

If p = 2 then

B (0, r) =
©
x ∈ R2 : kxk2 < r

ª
=
©
(x1, x2) ∈ R2 : x21 + x22 < r2

ª
which is the circle:

x_1

x_2

x_1

x_2

If p = 4 then

B (0, r) =
©
x ∈ R2 : kxk4 < r

ª
=
©
(x1, x2) ∈ R2 : x41 + x42 < r4

ª
,

which is shown on the diagram:

x_1

x_2

x_1

x_2
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If p =∞ then

B (0, r) =
©
x ∈ R2 : kxk∞ < r

ª
=
©
(x1, x2) ∈ R2 : max {|x1| , |x2|} < r

ª
,

which is the square:

x_1

x_2

x_1

x_2

Let us prove the following general property of metric balls, which will be frequently
used.

Lemma 4.2 Let B (x1, r1) and B (x2, r2) be two metric balls in a metric space (X, d).
(a) If r1 + r2 ≤ d (x1, x2) then the balls are disjoint.
(b) If r1 − r2 ≥ d (x1, x2) then B (x1, r1) ⊃ B (x2, r2) .

Proof. (a) If x belongs to the both balls then d (x, x1) < r1 and d (x, x2) < r2 whence
by the triangle inequality

d (x1, x2) ≤ d (x, x1) + d (x, x2) < r1 + r2

which contradicts the assumption.
(b) For any x ∈ B (x2, r2), we have

d (x, x1) ≤ d (x, x2) + d (x1, x2) < r2 + d (x1, x2) ≤ r1

whence x ∈ B (x1, r1). Hence, B (x2, r2) ⊂ B (x1, r1) .

4.3 Limits and continuity

Definition. Let (X, d) be a metric space. We say that a sequence {xn}∞n=1 of points in
X converges to a point a ∈ X if d (xn, a)→ 0 as n→∞. The point a is called the limit

of {xn} and we write in this case limn→∞ xn = a or xn → a or xn
d→ a indicating that the

convergence relates to the distance function d.

Equivalently, xn → a if, for any ε > 0, there exists N ∈ N such that
n ≥ N =⇒ xn ∈ B (a, ε) ,

because the latter is equivalent to d (xn, a) < ε.
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Claim. Any sequence in a metric space can have at most one limit.
Proof. If xn → a and xn → b then xn ∈ B (a, ε) and xn ∈ B (b, ε) for any ε > 0

and for large enough n. But we can choose ε = 1
2
d (a, b) so that by Lemma 4.2 the balls

B (a, ε) and B (b, ε) are disjoint. Hence, xn cannot belong to both balls.

Definition. Let (X, dX) and (Y, dY ) be two metric spaces and f : X → Y be a function
(a mapping) from X to Y . We say that f (x) converges to b ∈ Y as x→ a ∈ X and write
f (x)→ b or

lim
x→a

f (x) = b

if, for any ε > 0, there exists δ > 0 such that

dX (x, a) < δ, x 6= a =⇒ dY (f (x) , b) < ε.

Denoting by BX and BY the metric balls in X and Y , respectively, rewrite the above
condition in the form

x ∈ BX (a, δ) \ {a} =⇒ f (x) ∈ BY (b, ε) .

Claim. If the limit of a function exists then it is unique.
The proof is the same as for sequences.

Definition. Function f : X → Y is called continuous at a ∈ X if limx→a f (x) = f (a).

In other words, for any ε > 0 there is δ > 0 such that

x ∈ BX (a, δ) =⇒ f (x) ∈ BY (f (a) , ε) . (4.5)

Function f : X → Y is called continuous if it is continuous at all points of X.

Example. Fix a point x0 ∈ X and consider a function f : X → R defined by f (x) =
d (x, x0). We claim that this function is continuous on X. For that, we need to check that
for any a ∈ X and any ε > 0 there exists δ > 0 such that

d (x, a) < δ =⇒ |d (x, x0)− d (a, x0)| < ε.

It follows from the triangle inequality that

|d (x, x0)− d (a, x0)| ≤ d (x, a) .

Therefore, it suffices to take δ = ε.

4.4 Open and closed sets

Let (X, d) be a metric space.

Definition. A set U ⊂ X is called open if for any x ∈ U there exists r > 0 such that
B (x, r) ⊂ U . A set F ⊂ X is called closed if its complement X \ F is open.

For example, the empty set ∅ and the full set X are open. Hence, their complements,
that is, X and ∅, are closed.
In R the open intervals are open sets and the closed intervals are closed sets.
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Theorem 4.3
(a) The union of any family of open sets is open.
(b) The intersection of a finite family of open sets is open.
(c) The intersection of any family of closed sets is closed.
(d) The union of a finite family of closed sets is closed.
(e) A set U ⊂ X is open if and only if U is the union of a family of metric balls.
(f) A set F ⊂ X is closed if and only if any convergence sequence from F has the

limit in F .

Proof. (a) Let F be a family of open sets. To prove that the union U =
S

S∈F S is
open let us verify that for any x ∈ U there is r > 0 such that B (x, r) ⊂ U . Indeed, x
must belong to some set S ∈ F . Since S is open, we have B (x, r) ⊂ S for some r > 0.
Hence, B (x, r) ⊂ U , which was to be proved.
(b) Let S1, S2, ..., Sn be a finite family of open sets and set U =

Tn
k=1 Sk. If x ∈ U

then x ∈ Sk for any k. Then, for any k, there is rk > 0 such that B (x, rk) ⊂ Sk. Set

r = min (r1, r2, ..., rn) > 0.

Then B (x, r) ⊂ Sk for any k, whence B (x, r) ⊂ U .

Remark. The intersection of infinitely many open sets may be not open. For example,
the intersection of all open intervals

¡− 1
n
, 1
n

¢
in R, where n ∈ N, is {0} which is not open.

(c) If F is a family of closed sets then the setµ T
S∈F

S

¶c

=
S
S∈F

Sc

is open by part (a). Hence,
T

S∈F S is closed.
(d) If S1, ..., Sn is a family of closed sets thenµ

nS
k=1

Sk

¶c

=
nT

k=1

Sc
k

is open by part (b) . Hence,
Sn

k=1 Sk is closed.
(e) If U is open then for any x ∈ U there is rx > 0 such that B (x, rx) ⊂ U . Clearly,

U is the union of all balls B (x, rx) as x varies in U .
To prove the converse statement, it suffices to prove that any metric ball is open (and

then use (a)). Let us show that the metric ball B (a, r) is open for any a ∈ X and r > 0.
Indeed, for any x ∈ B (a, r) set

ε = r − d (a, x) > 0.

Then r−ε = d (a, x), which implies by Lemma 4.2 that B (x, ε) ⊂ B (a, r). Hence, B (a, r)
is open.
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(f) Let F be closed and let {xn} be a sequence in F that converges to a ∈ X. Let us
show that a ∈ F . Assuming the contrary, that is, a belongs to the open set F c, we obtain
that there is r > 0 such that B (a, r) ⊂ F c. Since xn ∈ F , it follows that xn /∈ B (a, r).
The latter means that xn 6→ a, which contradicts the assumption.
Assume now that F contains the limits of all its convergence sequences and prove that

F is closed. We need to show that F c is open, that is, for any a ∈ F c there is r > 0
such that B (a, r) ⊂ F c. Assume from the contrary that F c is not open, that is, for some
a ∈ F c, no ball B (a, r) is contained in F c. This means that, for any n ∈ N there is
xk ∈ B

¡
a, 1

k

¢
such that xk /∈ F c, that is, xk ∈ F . Hence, we obtain a sequence {xk} of

points in F such that d (xk, a) <
1
k
whence xk → a as k → ∞. By hypothesis, we must

have a ∈ F , which contradicts the assumption a ∈ F c.

Remark. One can start with definition of the family of open sets in an axiomatic manner.
Namely, consider a set X and a family O of subsets of X that are called open sets, which
satisfies the following axioms:

1. ∅ ∈ O and X ∈ O.
2. The union of any family of sets from O is in O
3. The intersection of any finite family of sets from O is in O.
Any family O with such properties is called a topology in X, and the couple (X,O)

is called a topological space. The topology in X can be used to define the notion of
convergent sequences, continuous functions, etc.
In this course, we consider only the topology in a metric space, which is defined via

the distance function.

Example. As we already know, and metric ball is an open set. This implies that the
complement of any ball is a closed set. Consider the notion of a closed ball

B (x0, r) = {x ∈ X : d (x0, x) ≤ r}

and prove that a closed ball is a closed set. It suffices to prove that the complement of
the ball

C = {x ∈ X : d (x0, x) > r}
is open. Let x ∈ C and let us show that C contains a ball B (x, ε) for some ε > 0. Indeed,
just take

ε = d (x0, x)− r > 0

so that
r + ε = d (x0, x) ,

which implies similarly to Lemma 4.2 that the balls B (x0, r) and B (x, ε) are disjoint. It
follows that B (x, ε) ⊂ C, which proves the openness of C.
As a consequence, we obtain that a closed ball contains limits of all convergent se-

quences from this ball.

Theorem 4.4 Let X,Y be metric spaces and f : X → Y be a mapping.
(a) The mapping f is continuous if and only if f−1 (U) is open in X for any open

subset U ⊂ Y .
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(b) The mapping f is continuous if and only if f−1 (F ) is closed in X for any closed
subset F ⊂ Y .
(c) The mapping f is continuous at a ∈ X if f (xn)→ f (a) for any sequence {xn} ⊂ X

such that xn → a.

Proof. (a) Assume that f is continuous and prove that the inverse image f−1 (U)
is open in X for any open set U ⊂ Y . Take a ∈ f−1 (U). Then f (a) ∈ U and by the
openness of U there exists ε > 0 such that BY (f (a) , ε) ⊂ U . By the continuity of f at
a, there is δ > 0 such that

x ∈ BX (a, δ) =⇒ f (x) ∈ BY (f (a) , ε) . (4.6)

This implies that f (BX (a, δ)) ⊂ U whence BX (a, δ) ⊂ f−1 (U), which proves the open-
ness of f−1 (U).
Assume that f−1 (U) is open for any open set U ⊂ X and prove that f is continuous.

To prove the continuity of f at a ∈ X, we need to show that, for any ε > 0 there is
δ > 0 such that (4.6) holds. Consider the ball BY (f (a) , ε), which is an open subset of
Y . Hence, its inverse image is open in X. Since a belongs to the inverse image, there is
δ > 0 that also BX (a, δ) is contained in the inverse image, which implies that

f (BX (a, δ)) ⊂ BY (f (a) , ε) ,

which is equivalent to (4.6).
(b) Let f−1 (F ) be closed in X for any closed set F ⊂ Y . Then f−1 (U) is open for

any open U ⊂ Y, because U c is closed, f−1 (U c) is closed, and

f−1 (U)c = f−1 (U c) .

The converse statement is proved similarly and, hence, the result follows by (a) .
(c) Assume that f is continuous at a and prove that f (xn)→ f (a) for any sequence

xn → a. By the continuity, for any ε > 0 there is δ > 0 such that

x ∈ BX (a, δ) =⇒ f (x) ∈ BY (f (a) , ε) .

The hypothesis xn → a implies that, for any δ > 0 there is N ∈ N such that
n ≥ N =⇒ xn ∈ BX (a, δ) .

Combining the two statements, we see that for any ε > 0 there is N ∈ N such that
n ≥ N =⇒ f (xn) ∈ BY (f (a) , ε) ,

which means that f (xn)→ f (a).
Conversely, assume that f (xn) → f (a) for any sequence xn → a and prove that f is

continuous at a. Assume the contrary that f is not continuous at a, that is, there exists
ε > 0 such that for any δ > 0 there is x ∈ BX (a, δ) such that

f (x) /∈ BY (f (a) , ε) .

Applying this with δ = 1
k
where k ∈ N, we find xk ∈ BX

¡
a, 1

k

¢
such that

f (xk) /∈ BY (f (a) , ε)
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Therefore, xk → a while f (xk) 6→ f (a), which contradicts the hypothesis.

Corollary. If f : X → Y and g : Y → Z are two continuous mappings of metric spaces
then the composite mapping g ◦ f : X → Z is also continuous.

Proof. Indeed, for any open set U ⊂ Z, we have

(g ◦ f)−1 (U) = f−1
¡
g−1 (U)

¢
.

Since g−1 (U) is open in Y and, hence, f−1 (g−1 (U)) is open in X, we conclude that
(g ◦ f)−1 (U) is open in X. Therefore, g ◦ f is continuous by Theorem 4.4.

Corollary. If f, g : X → R are continuous mappings from a metric space X to R then
f + g, fg, f/g are also continuous (in the case f/g assume that g 6= 0).
Proof. Let us, for example, prove that f+g is continuous at any point a ∈ X. Indeed,

for any sequence xn → a we have by Theorem 4.4 f (xn) → f (a) and g (xn) → g (a).
Therefore, by the properties of convergent sequences, f (xn) + g (xn) → f (a) + g (a)
which implies again by Theorem 4.4 that f + g is continuous at a.

Consider now Rn. As we know there are many choices of distance functions in Rn even
among those induced by a norm.

Definition. Let N 0 and N 00 be two norms in Rn. We say that N 0 and N 00 are equivalent
if there are positive constants C1, C2 such that, for all x ∈ Rn,

C2N
0 (x) ≤ N 00 (x) ≤ C1N

0 (x) . (4.7)

It is easy to verify that the equivalence of norms in an equivalence relation.

Claim. Let the two norms N 0 and N 00 be equivalent and let d0 and d00 be the distance
functions of the norms N 0 and N 00 respectively. Then:
1. Convergence in d0 and in d00 is the same.
2. Continuity in d0 and in d00 is the same.
3. Open sets in d0 and in d00 are the same.

Proof. 1. If xk
d0−→ a then d0 (xk, a) → 0 as k → ∞, that is, N 0 (xk − a) → 0. By

(4.7), we have also N 00 (xk − a)→ 0 whence d00 (xk, a)→ 0 and xk
d00−→ a.

2. The continuity amounts to convergence of sequences by Theorem 4.4.
3. The closed sets are characterized in terms of convergent sequences by Theorem 4.3

and, hence, are the same, which implies the identity of the open sets.

Claim. All p-norms in Rn with p ∈ [1,+∞] are equivalent.
In the sequel, we always assume that the topology of Rn is defined using a p-norm.
Proof. It suffices to prove that any p-norm is equivalent to ∞-norm (=sup-norm).

Indeed, for any 1 ≤ p <∞, we have

kxkp =
Ã

nX
k=1

|xk|p
!1/p

≥ (max {|xk|}p)1/p = kxk∞

and

kxkp =
Ã

nX
k=1

|xk|p
!1/p

≤ (nmax {|xk|}p)1/p = n1/pkxk∞
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whence
kxk∞ ≤ kxkp ≤ n1/pkxk∞,

which was to be proved.
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4.5 Complete spaces

Let (X, d) be any metric space. A sequence {xn} ⊂ X is called Cauchy if

d (xn, xm)→ 0 as n,m→∞.

If xn → a then

d (xn, xm) ≤ d (xn, a) + d (xm, a)→ 0 as n,m→∞,

which means that any convergent sequence is Cauchy. The converse is true in R but not
in general.

Example. Let X = (0,+∞) be the half-line with the distance function d (x, y) = |x− y|.
Then (X, d) is a metric space. Consider a sequence xn =

1
n
, which is obviously Cauchy.

However, this sequence does not converge in X (although it converges to 0 in a larger
space R).

Definition. A metric space (X, d) is called complete (V ollständing) if any Cauchy se-
quence is convergent. Otherwise, the metric space is called incomplete.

The above example shows that the open half-line is incomplete.

Theorem 4.5 Let S be an arbitrary set and let X = B (S) be the vector space of all
bounded functions on S endowed with the sup-norm. Then X is a complete metric space.

Proof. Recall that the sup-norm is defined by

kfk = sup
S
|f | .

Let {fn} ⊂ X be a Cauchy sequence, that is,

kfn − fmk→ 0 as n,m→∞,

and let us show that the sequence {fn} converges. For any x ∈ S, we have

|fn (x)− fm (x)| ≤ sup |fn − fm| = kfn − fmk→ 0

which means that the numerical sequence {fn (x)} is Cauchy, for any fixed x. By Theorem
2.4 from Analysis I, the sequence {fn (x)} converges. Denote its limit by f (x) so that

fn (x)→ f (x) as n→∞, for any x ∈ S.

We have obtained a function f (x) on S. Let us show that f is bounded and that fn → f
in the sup-norm. By hypothesis, we have that, for any ε > 0 there exists N ∈ N such that

n,m ≥ N =⇒ sup |fn − fm| < ε.

It follows that, for any x ∈ S,

|fn (x)− fm (x)| < ε.
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Passing to the limit as m→∞, we obtain

|fn (x)− f (x)| ≤ ε

whence
sup |fn − f | ≤ ε.

It follows that f is bounded and that fn → f in the sup-norm as n→∞.
Corollary. The space Rn is complete with respect to any p-norm.

Proof. Indeed, we have Rn = B (S) with S = {1, 2, ..., n}. By Theorem 4.5, Rn

is complete with respect to the sup-norm, that is, ∞-norm. Then Rn is complete with
respect to the p-norm because the two norms are equivalent.
Consider a metric space (X, d) and a mapping f : X → X. We say that a point a ∈ X

is a fixed point (Fixpunkt) if f (a) = a. Many problems in Analysis amount to obtaining
a fixed point of a certain function or mapping.

Example. Let us show that any continuous mapping f : [0, 1]→ [0, 1] has a fixed point.
Indeed, the function f (x)− x is non-negative at x = 0 and non-positive at x = 1, which
implies by the intermediate value theorem that it vanishes at some point x, which is hence
a fixed point. On the other hand, the mapping f (x) = x+1 on R has obviously no fixed
point.

The next theorem ensures the existence of a fixed point under certain assumptions of
the space and the mapping. We say that a mapping f : X → X is a contraction mapping
if there is 0 < q < 1 such that

d (f (x) , f (y)) ≤ qd (x, y)

for all x, y ∈ X.

Theorem 4.6 (The Banach fixed point theorem) Let (X, d) be a complete metric space.
Then any contraction mapping f : X → X has exactly one fixed point.

Proof. Choose an arbitrary point x ∈ X and define a sequence {xn}∞n=0 by induction
using

x0 = x and xn+1 = f (xn) for any n ≥ 0.
Our purpose will be to show that the sequence {xn} converges and that the limit is a
fixed point of f . We start with the observation that

d (xn+1, xn) = d (f (xn) , f (xn−1)) ≤ qd (xn, xn−1) .

It follows by induction that

d (xn+1, xn) ≤ qnd (x1, x0) .

Claim. If {xn} is a sequence of points in a metric space such that, for some C > 0 and
q ∈ (0, 1),

d (xn+1, xn) ≤ Cqn for all n,

then {xn} is Cauchy.
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Indeed, for any m > n, we obtain using the triangle inequality

d (xm, xn) ≤ d (xn, xn+1) + d (xn+1, xn+2) + ...+ d (xm−1, xm)

≤ C
¡
qn + qn+1 + ...+ qm−1

¢
≤ Cqn

1− q
.

Therefore, d (xm, xn)→ 0 as n,m→∞, that is, the sequence {xn} is Cauchy.
Applying this Claim and the hypothesis that the space (X, d) is complete, we conclude

that {xn} converges, say to a. Then
d (f (xn) , f (a)) ≤ qd (xn, a)→ 0

so that f (xn) → f (a). On the other hand, f (xn) = xn+1 → a as n → ∞, whence it
follows that f (a) = a, that is, a is a fixed point.
If b is another fixed point then

d (a, b) = d (f (a) , f (b)) ≤ qd (a, b) ,

which is only possible if d (a, b) = 0 and, hence, a = b.

Example. Fix c > 0 and consider a function f (x) = 1
2

¡
x+ c

x

¢
, x > 0. It is easy to see

that a unique fixed point of this function is x =
√
c. It is the contents of Exercise 49 to

show that f is, in fact, a contraction mapping in X = [
√
c,+∞). The procedure of the

proof of Theorem 4.6 applies in this case and gives a sequence {xn} converging to √c,
which can be used for numerical approximation to

√
c.

Let us give a numerical example. Set c = 2 and, hence, f (x) = 1
2

¡
x+ 2

x

¢
. Define

{xn} by x0 = 1 and
xn+1 = f (xn) =

1

2

µ
xn +

2

xn

¶
.

Then x1 = f (1) = 3
2
, x2 = f

¡
3
2

¢
= 17

12
, x3 = f

¡
17
12

¢
= 577

408
, x4 = f

¡
577
408

¢
= 665 857

470 832
and

x5 = f

µ
665 857

470 832

¶
=
886 731 088 897

627 013 566 048
≈ 1.41421356237309505,

which is already a very good approximation for
√
2 (all the displayed digits are correct).

4.6 Compact spaces

Let (X, d) be a metric space and K be a subset of X. We consider families of open sets
that covers K. Namely, a family F of sets is called an open cover (offene Überdeckung)
of K if all members of F are open sets and the union of these sets contains K, that isS

U∈F
U ⊃ K.

Any subfamily of F that also covers K is called a subcover.

Definition. A subset K of a metric space X is called compact if any open cover of K
contains a finite subcover.
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Any finite set is obviously compact. Also, a closed bounded interval in R is a compact
set, as follows from Theorem 1.10 from Analysis I (later on we will obtain an independent
proof of this fact), while R itself is not compact.
Any non-empty subset Y ⊂ X of a metric space X can be considered itself as a metric

space, with the same distance function d. The metric space (Y, d) is called a subspace
of (X, d). In general, the properties of a subset K ⊂ Y may depend on whether K is
considered as a part of (Y, d) or (X, d). A certain property of a set K is called intrinsic
if it does not depend on the choice of the ambient space Y . For example, the property to
be open (or closed) is not intrinsic because if we choose K = Y then K is always open in
Y whereas K does not have to be open in X.

Claim. The compactness of a set K is an intrinsic property.
Proof. We need to prove that if K ⊂ Y ⊂ X then K is compact in a metric space

(X, d) if and only if it is compact in (Y, d). Assume that K is compact in (Y, d) and let
F be an open cover of K in X. For any set U , which is open in X, the set U 0 = U ∩ Y is
open in Y , which simply follows from

BY (x, r) = BX (x, r) ∩ Y.

Therefore, taking intersections of sets U ∈ F with Y , we obtain the family F 0 that is an
open cover of K in Y . By the compactness of K in Y , there is a finite subcover of F 0.
Taking the corresponding members of F , we obtain a finite subcover of F .
Conversely, let K be a compact in (X, d) and F be an open cover of K in Y . Any set

U ∈ F is open and, hence, is a union of balls in Y . Taking the union of the corresponding
balls in X, we obtain an open set eU in X such that U = eU ∩ Y . The union of all sets eU
is an open cover eF of K in X. By the compactness of K in X, there is a finite subcover
of eF , which yields the corresponding finite subcover of F .
One of the important features of compactness is the following relation to continuous

mappings.

Theorem 4.7 Let (X, dX) and (Y, dY ) be two metric spaces and f : X → Y be a con-
tinuous mapping. If K is a compact subset of X then the image f (K) is compact in
Y .

Hence, a continuous image of a compact set is compact.
Proof. Let F be an open cover of f (K) so that

f (K) ⊂ S
U∈F

U.

Taking inverse image of these sets, we obtain that

K ⊂ S
u∈F

f−1 (U) .

The sets f−1 (U) are open in X by Theorem 4.4. Hence, the family {f−1 (U)}U∈F is an
open cover of K in X. By the compactness of K, there is a finite subcover {f−1 (Uk)}Nk=1 .
Then the family {Uk}Nk=1 is a finite subcover of F , which finishes the proof.
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Definition. A subsetK of a metric spaceX is called sequentially compact (Folgenkompact)
if every sequence in K contains a convergent subsequence with the limit in K.

For example, a bounded closed interval in R is sequentially compact by the theorem of
Bolzano-Weierstrass (Theorem 2.3 from Analysis I), while R is not sequentially compact.

Definition. A subset K of a metric space X is called totally bounded if, for any ε > 0,
there is a finite cover of K by balls of radii ε.

The latter means that for any ε > 0 there is a finite sequence {x1, ..., xl} of points
in X such that the union of the balls B (xi, ε) contains K. Any sequence {xi} with this
property is called an ε-net of K in X. One can regard a finite ε-net as an approximation
of the set K by a finite set with error ≤ ε.
Clearly, any bounded interval in R is totally bounded, while R is not totally bounded.
It is easy to see that both sequential compactness and total boundedness are intrinsic

properties of K (cf. Exercise 50). We use these notions for the following useful criteria
for compactness.

Theorem 4.8 Let (X, d) be a metric space. Then the following are equivalent:
1. X is compact.
2. X is sequentially compact.
3. X is totally bounded and complete.

Proof. 1 =⇒ 2. Let {xn} be a sequence in X and let us show that there is a
convergent subsequence. Assume the contrary, that is, no point x ∈ X is a limit of a
subsequence of {xn}. This means that for any x ∈ X there is εx > 0 such that the ball
B (x, εx) contains only finitely many terms of the sequence {xn} (indeed, if B (x, ε) con-
tains infinitely many terms for any ε > 0 then setting ε = 1

k
and choosing xnk ∈ B

¡
x, 1

k

¢
we obtain a subsequence {xnk} that converges to x). The family of balls {B (x, εx)}x∈X
is an open cover of X, whence it follows that there is a finite family of such balls that
covers X. Since each ball contains only finitely many terms of {xn}, it follows that the
whole sequence {xn} contains only finitely many terms, which contradicts the definition
of a sequence.
2 =⇒ 3. Let us first prove that X is complete. Let {xn} be a Cauchy sequence in X.

By the sequential compactness of X, {xn} has a convergent subsequence. Then use the
following general fact.

Claim. If a Cauchy sequence {xn} has a convergent subsequence then {xn} is also con-
vergent.
Indeed, assume that a subsequence {xnk}∞k=1 converges to a ∈ X and prove that also

{xn}∞n=1 converges to a. By the fact that {xn} is Cauchy, for any ε > 0 there is N ∈ N
such that

n,m ≥ N =⇒ d (xn, xm) < ε.

Choose k so big that nk ≥ N and d (xnk , a) < ε. Then, for any n ≥ N ,

d (xn, a) ≤ d (xn, xnk) + d (xnk , a) ≤ 2ε

which implies that xn → a as n→∞.
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Let us prove that X is totally bounded, that is, for any ε > 0 there is a finite ε-net
for X. Assume from the contrary that for some ε > 0 there is no finite ε-net. Let us
construct a sequence {xn}∞n=1 ⊂ X as follows. Choose x1 arbitrarily. If x1, ..., xn−1 have
been already constructed, then choose xn as follows. The balls {B (xi, ε)}n−1i=1 do not cover
all X by hypothesis. Therefore, there is a point in X that does not belong to any of these
balls; denote this point by xn. By construction, we obtain that d (xn, xm) ≥ ε for any two
distinct indices n,m. This implies that the sequence {xn} is not Cauchy; moreover, any
subsequence of it is not Cauchy either. Hence, no subsequence of {xn} converges, which
contradicts the sequential compactness of X.
3 =⇒ 1. Let F be a family of open sets that covers X and let us show that it

has a finite subcover. Assume from the contrary that no finite subfamily of F covers X.
Choose a finite 1-net {x1, ..., xk} and notice that one of the balls B (xi, 1) admits no finite
subcover of F (indeed, if every ball B (xi, 1) admits a finite subcover then X does too).
Let this ball be B (a0, 1) (where a0 is one of the points x1, ..., xk). Choose a finite

1
2
-net,

say {y1, ..., yl} and notice that at least one of the balls B
¡
yi,

1
2

¢
that intersect B (a0, 1)

admits no finite subcover of F ; let this ball be B ¡a1, 12¢.
 

B(a0,1)

B(a1,1/2)

B(a2,1/4)

Continuing this way, we construct a sequence of balls {B (an, 2−n)}∞n=0 such that
(i) any two consecutive balls in this sequence has a non-empty intersection
(ii) none of the balls admits a finite subcover of F .
Indeed, if B

¡
an−1, 2−(n−1)

¢
is already constructed then choose a finite ε-net {z1, ..., zm}

with ε = 2−n. Then one of the balls B (zi, 2−n) that intersect B
¡
an−1, 2−(n−1)

¢
, admits

no finite subcover of F ; let it be B (an, 2−n).
The fact that B

¡
an−1, 2−(n−1)

¢
and B (an, 2

−n) intersect each other, implies by Lemma
4.2 that

d (an, an−1) ≤ 2−(n−1) + 2−n < 2−(n−2).
It follows that the sequence {an} is Cauchy (cf. the Claim in the proof of Theorem 4.6).
By the compactness of X, the sequence {an} converges, say to a ∈ X. The point a
belongs to one of the sets from F , say to U ∈ F . Since U is open, there is r > 0 such
that B (a, r) ⊂ U . For a large enough n, we have

d (a, an) + 2
−n < r
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because d (x, an) → 0 and 2−n → 0 as n → ∞. This implies B (an, 2−n) ⊂ B (a, r) and,
hence B (an, 2

−n) ⊂ U , which contradicts the assumption that B (an, 2
−n) admits no finite

subcover of F .
Definition. We say that a set K in a metric space is bounded if it is contained in a metric
ball.

For example, any bounded interval in Rn is a bounded set. It is easy to prove that in
general any totally bounded set is bounded, while the converse may not true (see Exercise
50). Now we can give a simple characterization of compact sets in Rn.

Theorem 4.9 A subset K ∈ Rn is compact if and only K is bounded and closed

Proof. First note that a compact set K in any metric space X must be closed and
bounded. Indeed, if K is not closed then by Theorem 4.3 there is a convergent sequence
in K whose limit is outside K. Clearly, this sequence has no convergent subsequence in
K so that K is not sequentially compact and, hence, is not compact, by Theorem 4.8. If
K is not bounded then K is not totally bounded and, hence, not compact by Theorem
4.8.
Conversely, let now K be a bounded closed subset of Rn and let us prove that K is

compact. Since Rn is a complete space (by Theorem 4.5) and K is a closed subset of Rn,
K is a complete space itself (cf. Exercise 47). In Rn any bounded set is totally bounded
because any ball can be covered by finitely many balls of arbitrarily small radii. This
particularly easy to see with the ∞-norm since in this norm a ball has a shape of a box:

B (a, r) = {x ∈ Rn : ak − r < xk < ak + r} ,

and any box can be covered by a finite family by arbitrarily small boxes. By Theorem
4.8, we conclude that K is compact.

Corollary. (The maximal/minimal value theorem) Let f be a continuous function on a
closed bounded set K ⊂ Rn. Then both maxK f and minK f exist.

Proof. Indeed, since K is a compact set by Theorem 4.9, f (K) is also compact by
Theorem 4.7. Hence, f (K) is bounded and closed subset of R. In particular, supK f and
infK f are finite. Since supK f and infK f are the limits of some sequences in f (K), they
must belong to f (K) by the closedness of this set. Hence, f (K) has both max and min .

Corollary. All norms in Rn are equivalent (see Exercise 51).
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5 Differential calculus of functions in Rn

We consider functions f : Ω→ Rm where Ω is an open subsets of Rn and define what is
means to differentiate such a function.

5.1 Differential and partial derivatives

Let us use the following notation for the components of x and f (x) :

x = (x1, ..., xn)

and
f (x) = (f1 (x) , ..., fm (x)) ,

where each fk (x) is a real valued function from Ω to R. Each component fk (x) can also
be written in the form fk (x1, ..., xn) and can be considered as a real valued function of n
real variables.
We can use the notion of the derivative of a function of a single variable to obtain

derivatives of fk as follows. Fix some index j = 1, 2, ..., n and consider xj as a variable
while all other xi with i 6= j are fixed. Then fk (x1, ..., xn) can be considered as a function
of xj alone so that we can take the derivative with respect to xj:

∂fk
∂xj

(x) = lim
h→0

fk (x1, ...xj + h, ...xn)− f (x1, ..., xj, ..., xn)

h
.

This derivative is called a partial derivative of f of the 1 st order. Note that in the

notation
∂fk
∂xj

one uses a round ∂ instead of a straight d to indicate that fk has also other

arguments apart from xk. The term “partial” refers to the fact that only one argument
varies while the others remain constant.
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Sometimes one uses also the notation ∂jfk or Djfk instead of
∂fk
∂xj
. The set of all partial

derivatives of the 1st order can be arranged as a m× n matrix

µ
∂fk
∂xj

¶
=


∂f1
∂x1

∂f1
∂x2

... ∂f1
∂xn

∂f2
∂x1

∂f2
∂x2

... ∂f2
∂xn

... ... ... ...
∂fm
∂x1

∂fm
∂x2

... ∂fm
∂xn

 ,

where k = 1, ...,m is the index of rows and j = 1, ..., n is the index of columns. This
matrix is called the Jacobian matrix of f and is denoted by Jf (or Jf (x)), so that

Jf =

µ
∂fk
∂xj

¶
.

Example. Consider a function f (x) : R2 → R1 given by

f (x1, x2) =

½ x1x2
x21+x

2
2
, x 6= 0,

0, x = 0.

It any point x 6= 0, this function is obviously differentiable both in x1 and x2 and

∂f

∂x1
=

x2 (x
2
1 + x22)− x1x22x1

(x21 + x22)
2 =

x32 − x2x
2
1

(x21 + x22)
2

and a similar identity holds for ∂f
∂x2
. Let us show that the partial derivatives exist also at

x = 0. Indeed, by definition,

∂f

∂x1
(0) = lim

h→0
f (h, 0)− f (0, 0)

h
= 0

because f (h, 0) = 0. Similarly, ∂f
∂x2
(0) = 0. Hence, f has partial derivatives of the first

order at all points in R2.
However, the function f is not continuous at 0. Indeed, if x1 = x2 then f (x1, x2) =

1
2

so that the limit of f (x) at 0 along the line x1 = x2 is equal to
1
2
, whereas f (0) = 0.

So, one needs a better definition of differentiability.

Definition. We say that the function f is differentiable at a point x ∈ Ω if there exists
a linear mapping A : Rn → Rm such that

f (x+ h)− f (x) = Ah+ o (h) as h→ 0. (5.1)

Let us explain all the entries here. A vector h ∈ Rn is an increment of the argument x.
Fix some norm k · k in Rn and consider the metric balls with respect to the corresponding
distance function. By the openness of Ω, there is a ball B (x, ε) that is contained in Ω.
Therefore, if khk < ε then x+ h ∈ Ω and f (x+ h) makes sense.
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Next, Ah means the action of the linear mapping A at h so that Ax ∈ Rm. Finally,
o (h) stands for any function ϕ (h) with values in Rm such that

kϕ (h)k
khk → 0 as h→ 0.

Shortly, the identity (5.1) means that the increment f (x+ h)−f (x) of the function f for
small h can be split into two terms - the leading linear term Ah and a small term o (h).
The variable h is also called the differential of x and is denoted by dx (so that dx ∈ Rn

is an independent variable). The function h 7→ Ah is called the differential of f at the
point x and is also denoted by df (x) so that df = Adx. The mapping A is called the
(full) derivative of f at the point x and is denoted by df

dx
(x) or by f 0 (x) . We can rewrite

(5.1) in the form
f (x+ h)− f (x) = f 0 (x)h+ o (h) .

Recall that the differentiability of a function f : R→ R is equivalent to

f (x+ h)− f (x) = ah+ o (h)

for some a ∈ R and f 0 (x) = a. Obviously, this is fully compatible with the more general
definition above since in this case A is a linear mapping from R to R that is given by
multiplication by a real number a.
Recall that any linear mapping A : Rm → Rn is represented by a m×n matrix, which

will also be denoted by A. Consider h as a column vector in Rn, that is, a n× 1 matrix.
Then Ah is the product of m × n and n × 1 matrices, which results in a m × 1 matrix,
that is, is a column vector in Rm, as expected. Hence, f 0 (x) can be considered as a m×n
matrix.

Example. Let f : Rn → Rm be a linear mapping given by f (x) = Ax. Then we have

f (x+ h)− f (x) = Ah

so that f (x) is differentiable at any point x and f 0 (x) = A.

Lemma 5.1 If a function f is differentiable at x then f is continuous at x.

Proof. Since
f (x+ h)− f (x) = Ax+ o (h)

as h → 0 it suffices to prove that the right hand side here goes to 0 as h → 0. The fact
that o (h)→ 0 is obvious. That Ah→ 0 follows from the following claim.

Claim. For any m× n matrix A there is a constant C such that

kAhk ≤ Ckhk for any h ∈ Rn. (5.2)

(Exercise 46).

Remark. The best constant C such that (5.2) is called the norm of the mapping (or
matrix) A and is denoted by kAk. Equivalently, we have

kAk = sup
h∈Rn\{0}

kAhk
khk

(note that the norms in Rn and Rm, which are used here, are arbitrary but fixed). Then
the above Claim means that kAk <∞ for any linear mapping.
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Lemma 5.2 Let Ω be an open subset of Rn. If function f : Ω→ Rm is differentiable at
x ∈ Ω then all partial derivatives ∂fk

∂xj
(x) exist and

f 0 (x) = Jf (x) .

Note that both f 0 (x) and Jf (x) arem×nmatrices. This lemma implies, in particular,
that the derivative f 0 (x) is uniquely defined.
Proof. Let f 0 (x) = A = (akj) where k is the index of rows and j is the index of

columns. In the identity
f (x+ h)− f (x) = Ah+ o (h) (5.3)

set h = (0, ..., hj, ...0) so that h has the only non-vanishing component hj. Then

Ah =


a11 ... a1j ... a1n
... ... ... ... ...
ak1 ... akj ... akn
... ... ... ... ...
am1 ... amj ... amn



0
...
hj
...
0

 =


a1jhj
...

akjhj
...

amjhj

 .

Taking in the identity (5.3) the k-th component, we obtain

fk (x+ h)− f (x) = akjhj + o (hj) .

Dividing by hj and passing to the limit as hj → 0, we obtain

∂fk
∂xj

(x) = akj,

which was to be proved.
Evaluating the partial derivatives is relatively easy since it amounts to familiar dif-

ferentiation of functions of single variable. Lemma 5.2 suggests that the full derivative
f 0 (x) can be evaluated via the partial derivatives, although one has to know a priori that
f is differentiable. Our next purpose is to state a condition of differentiability in terms of
partial derivatives.

Theorem 5.3 Let Ω ⊂ Rn be an open set and assume that a function f : Ω → Rm has
all partial derivatives of the first order at all points of Ω. If all partial derivatives ∂fk

∂xj
are

continuous at a point x ∈ Ω then f is differentiable at x.

Proof. Consider first the case when m = 1, that is, f is a real valued function on Ω.
For simplicity of notation, assume that the point x where the partial derivatives of f are
continuous, is the origin 0. Note that the Jacobian matrix Jf is a 1× n matrix, that is,
a row

Jf = (∂f1, ..., ∂fn) .

Let us prove that f 0 (0) = Jf (0), that is,

f (h)− f (0) = Jf (0)h+ o (h) as h→ 0.

We assume that khk∞ < ε where ε is chosen so that B (0, ε) ⊂ Ω (where the ball is also
taken in the ∞-norm). Consider a sequence of points {ak}nk=0 defined as follows:

ak = (h1, h2, ..., hk, 0, ..., 0) .
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That is, a0 = 0, a1 = (h1, 0, ..., 0),..., an = (h1, ..., hn) = h. Clearly, kakk∞ ≤ khk∞ < ε so
that all points ak are contained in Ω. Then we have

f (h)− f (0) = f (an)− f (a0) =
nX

k=1

(f (ak)− f (ak−1)) .

To estimate the difference f (ak)− f (ak−1), consider the function

g (t) = f (h1, ..., hk−1, t, 0, ..., 0)

so that g (0) = f (ak−1) and g (hk) = f (ak). Clearly, g (t) is defined for any t ∈ [0, hk]
and is differentiable in t because

g0 (t) = ∂kf (h1, ..., hk−1, t, 0, ..., 0) .

Applying the mean value theorem to function g, we obtain that

f (ak)− f (ak−1) = g (hk)− g (0) = g0 (ξ)hk = ∂kf (bk)hk

where ξ ∈ (0, hk) and
bk = (h1, ..., hk−1, ξ, 0, ..., 0) .

Note that kbkk∞ ≤ khk∞. Therefore, we have

f (h)− f (0) =
nX

k=1

∂kf (bk)hk

=
nX

k=1

∂kf (0)hk +
nX

k=1

(∂kf (bk)− ∂kf (0)) hk

= Jh+ o (h) ,

because bk → 0 as h → 0 and, hence, ∂kf (bk) − ∂kf (0) → 0 by the continuity of the
partial derivatives at 0.
Consider now the general case whenm is arbitrary. By the above argument, we obtain

the differentiability at x of all components fk separately so that

fk (x+ h)− fk (x) = Akh+ o (h)

where Ak = f 0k (x) is an 1×n matrix, that is, a row. Combining together all rows Ak into
a matrix A, we obtain

f (x+ h)− f (x) = Ah+ o (h) ,

which means that f is differentiable.
We say that a function f : Ω→ Rn is continuously differentiable in Ω if all the partial

derivatives of f of the first order exist in Ω are are continuous in Ω.

Corollary. If f is continuously differentiable in Ω then f is differentiable in Ω (that is,
at any point in Ω).

Proof. Indeed, if f is continuously differentiable in Ω then Theorem 5.3 applies to
any point of Ω and gives the differentiability in Ω.
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5.2 The rules of differentiation

5.2.1 Linearity

Theorem 5.4 (The linearity of differentiation) If f, g : Ω → Rn are two functions that
are differentiable at a point x ∈ Ω then also their linear combination af + bg (where
a, b ∈ R) is differentiable at x and

(af + bg)0 (x) = af 0 (x) + bg0 (x) .

Proof. We have
f (x+ h)− f (x) = f 0 (x)h+ o (h)

and
g (x+ h)− g (x) = g0 (x)h+ o (h) ,

whence it follows that the function F = af + bg satisfies

F (x+ h)− F (x) = (af 0 (x) + bg0 (x))h+ o (h)

whence F 0 (x) = af 0 (x) + bg0 (x) .

5.2.2 The chain rule

Theorem 5.5 (The chain rule) Let U ⊂ Rn and V ⊂ Rm be open sets and let a function
f : U → V be differentiable at x ∈ U and g : V → Rl be differentiable at y = f (x) ∈ V .
Then the composite function g ◦ f : U → Rl is differentiable at x and

(g ◦ f)0 = g0 (y) f 0 (x) .

Note that

Rn f 0(x)−→ Rm g0(y)−→ Rl

so that the product (composition) g0 (y) f 0 (x) is a linear mapping from Rn to Rl, and so
is the derivative (g ◦ f)0.
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Proof. We have
f (x+ a)− f (x) = f 0 (x) a+ ϕ (a) ,

where ϕ (a) = o (a) as a→ 0 and

g (y + b)− g (y) = g0 (y) b+ ψ (b) ,

where ψ (b) = o (b) as b→ 0. Set here y = f (x) and y + b = f (x+ a), that is,

b = f (x+ a)− f (x) = f 0 (x) a+ ϕ (a) , (5.4)

we obtain

g ◦ f (x+ a)− g ◦ f (x) = g0 (y) b+ ψ (b)

= g0 (y) f 0 (x) a+ g0 (y)ϕ (a) + ψ (b) . (5.5)

We are left to prove that

g0 (y)ϕ (a) + ψ (b) = o (a) as a→ 0. (5.6)

Using the finiteness of the norm of the matrix g0 (y) and we obtain, for some constant C,

kg0 (y)ϕ (a) k ≤ Ckϕ (a) k = o (kak)
whence

g0 (y)ϕ (a) = o (a) as a→ 0.

To handle the term ψ (b) in (5.6), note that by (5.4) and the finiteness of the norm of the
matrix f 0 (x), there exists a positive constant C, such that

kbk ≤ kf 0 (x) ak+ kϕ (a) k ≤ Ckak,
whence

kψ (b)k = o (kbk) = o (kak)
and ψ (b) = o (a) as a→ 0.

Corollary. (The chain rule in terms of partial derivatives) Under the conditions of The-
orem 5.5,

∂ (g ◦ f)k
∂xj

(x) =
mX
i=1

∂gk
∂yi

(y)
∂fi
∂xj

(x) ,

where y = f (x).

Proof. By Lemma 5.2, the partial derivative
∂(g◦f)k
∂xj

is the (k, j)-entry of the matrix

(g ◦ f)0. Since this matrix is the product of the matrices

g0 (y) =
µ
∂gk
∂yi

¶
and

f 0 (x) =
µ
∂fi
∂xj

¶
,
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the result follows by the rule of multiplication of the matrices.

Corollary. (The derivative of the inverse mapping) Let U ⊂ Rn and V ⊂ Rn be open sets
and assume that the function f : U → V has the inverse g : V → U . If f is differentiable
at x ∈ U and g is differentiable at y = f (x) then

g0 (y) = f 0 (x)−1 .

Note that both mappings f 0 (x) and g0 (y) are from Rn to Rn and, hence, are repre-
sented by n× n matrices. Therefore, to compute g0 (y) one needs to evaluate the inverse
matrix f 0 (x)−1 .
Proof. The composition g ◦ f is the identity mapping I : U → U . This mapping is

obviously differentiable and I 0 (x) is the identity mapping id : Rn → Rn. Therefore, by
the chain rule,

id = I 0 (x) = (g ◦ f)0 (x) = g0 (y) f 0 (x) ,

whence the result follows.

Example. Let F be a mapping making the change of the polar coordinates to Cartesian:

F (r, θ) = (x, y) = (r cos θ, r sin θ) ,

that is, F maps some open set U ⊂ R2 (any set where the polar coordinates are defined)
to R2. Its full derivative exists and equal to the Jacobian matrix

F 0 = JF =

µ
∂x
∂r

∂x
∂θ

∂y
∂r

∂y
∂θ

¶
=

µ
cos θ −r sin θ
sin θ r cos θ

¶
, (5.7)

because JF is continuous in (r, θ). If G is the inverse to F , that is, G makes the change
of the Cartesian coordinates to polar G (x, y) = (r, θ) then

G0 (x) = (F 0)−1 =
µ

cos θ sin θ
−1

r
sin θ 1

r
cos θ

¶
=

µ
x/r y/r
−y/r2 x/r2

¶
.

Since

G0 (x) =
µ ∂r

∂x
∂r
∂y

∂θ
∂x

∂θ
∂y

¶
we obtain

∂r

∂x
=

x

r
,

∂r

∂y
=

y

r
(5.8)

∂θ

∂x
= − y

r2
,

∂θ

∂y
=

x

r2
.

Of course, this can also be found directly using that r =
p
x2 + y2 and tan θ = y/x.
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5.2.3 Change of variables

Let f = f (y) be a real-valued function of y ∈ V where V is an open subset of Rn. Let U
be another open subset of Rn and assume that we have a function y = y (x) that maps U
to V . We consider y = y (x) as a change of coordinates

y1 = y1 (x1, ..., xn)
y2 = y2 (x1, ..., xn)
...
yn = yn (x1, ..., xn)

so that f (y) can be considered as a function of x as follows: f (y (x)) . In fact, this function

is just composition of the two mappings U
y→ V

f→ R. By the chain rule, we then have

∂f

∂xj
=

nX
i=1

∂f

∂yi

∂yi
∂xj

,

provide the both functions f (y) and y (x) are differentiable.
Consider again the change of the Cartesian coordinates (x, y) in R2 to the polar coor-

dinates (r, θ). Using (5.7), we obtain

∂f

∂r
=

∂f

∂x

∂x

∂r
+

∂f

∂y

∂y

∂r
=

∂f

∂x
cos θ +

∂f

∂y
sin θ

and
∂f

∂θ
=

∂f

∂x

∂x

∂θ
+

∂f

∂y

∂y

∂θ
= r

µ
−∂f
∂x
sin θ +

∂f

∂y
cos θ

¶
.

For the inverse change, we obtain using (5.8),

∂f

∂x
=

∂f

∂r

∂r

∂x
+

∂f

∂θ

∂θ

∂x
=

∂f

∂r

x

r
− ∂f

∂θ

y

r2

and
∂f

∂y
=

∂f

∂r

∂r

∂y
+

∂f

∂θ

∂θ

∂y
=

∂f

∂r

y

r
+

∂f

∂θ

x

r2
.

For example, if f = ra sin bθ then

∂f

∂x
= ara−1 sin bθ

x

r
− rab cos bθ

y

r2
= ra−1 (a sin bθ cos θ − b cos bθ sin θ) .

5.3 Mean value theorem

Definition. Let f be a real valued function on an open set U ⊂ Rn. For any x ∈ U and
any vector v ∈ Rn, define the directional derivative ∂f

∂v
(x) by

∂f

∂v
(x) = lim

t→0
f (x+ tv)− f (v)

t
=

df (x+ tv)

dt

¯̄̄̄
t=0

.

where t is a real valued variable. Alternative notation: ∂vf = Dvf =
∂f
∂v
.

114



Note that the partial derivatives are particular cases of directional derivatives. Let ej
be the unit vector in the direction of xj, that is,

ej = (0, ..., 0, 1, 0, .., 0)

where the only 1 is at position j. We claim that ∂f
∂xi
= ∂f

∂ej
. Indeed,

∂f

∂ej
= lim

t→0
f (x+ tej)− f (x)

t
=

= lim
t→0

f (x1, ..., xj + t, ..., xn)− f (x1, ..., xn)

t
=

∂f

∂xj
.

Lemma 5.6 If f is differentiable at x then all directional derivatives of f at x exist and,
for any v ∈ Rn,

∂f

∂v
(x) = f 0 (x) v,

where the right hand side is the product of 1× n and n× 1 matrices.
Proof. Indeed, by the definition of differentiability,

f (x+ tv)− f (x) = f 0 (x) (tv) + o (tv) .

Dividing by t and passing to the limit, we obtain the claim.
As a consequence, ∂f

∂v
(x) is a linear functional of v, which is not obvious from the

definition.

Definition. If x, y are two point in Rn then denote by [x, y] the closed interval between
x, y, that is,

[x, y] = {(1− t)x+ ty : 0 ≤ t ≤ 1} .

Theorem 5.7 (Mean-value theorem) Let f be a differentiable function in an open set
U and let x, y be two distinct points in U such that the interval [x, y] is contained in U .
Then there exists a point ξ ∈ [x, y] such that

f (y)− f (x) = f 0 (ξ) (y − x) .

Proof. Set v = y − x and consider a function g (t) = f (x+ tv) so that g (0) = f (x)
and g (1) = f (y). Then g is differentiable in [0, 1] as composition of functions t 7→ x+ tv
and f . By the mean value theorem from Analysis I, there exists s ∈ [0, 1] such that

g (1)− g (0) = g0 (s) .

Set ξ = x+ sv so that ξ ∈ [x, y] and notice that

∂vf (ξ) =
df (ξ + tv)

dt

¯̄̄̄
t=0

=
df (x+ tv)

dt

¯̄̄̄
t=s

= g0 (s) .

Using Lemma 5.6, we obtain

f (y)− f (x) = g (1)− g (0) = g0 (s) = ∂vf (ξ) = f 0 (x) v = f 0 (x) (y − x) ,

which was to be proved.
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5.4 Higher order partial derivatives

5.4.1 Changing the order

Let U ⊂ Rn be an open set and consider a function f : U → R. If the partial derivative
∂f
∂xi
exists then we can try to differentiate it considering the its partial derivative:

∂

∂xj

∂f

∂xi
.

If this derivative exists then it is called a partial derivative of the second order and is
denoted by ∂2f

∂xj∂xi
or by ∂jif or by Djif . If i = j then one uses notation ∂2f

∂x2i
= ∂iif = Diif .

If i 6= j then ∂2f
∂xj∂xi

is called a mixed derivative.

Similarly, one can consider partial derivatives of an arbitrary order k ∈ N:
∂

∂xi1

µ
∂

∂xi2

µ
...

∂f

∂xik

¶¶
=

∂kf

∂xi1∂xi2...∂xik
= ∂i1i2....ikf = Di1i2...ikf.

Theorem 5.8 (Hermann Schwarz’s Theorem) If a function f : U → R has in U both
partial derivatives ∂ijf and ∂jif and they are both continuous at a point x ∈ U then
∂ijf (x) = ∂jif (x) .

Proof. Assume for simplicity that x = 0 is the origin of Rn and also that i = 1 and
j = 2. In the course of the proof, we will not vary the variables x3, ..., xn so that we can
consider them constantly equal to 0. Therefore, f can be regarded as a function f (x1, x2)
of two variables x1 and x2, defined for |x1| < ε and |x2| < ε for small enough ε > 0.
Consider an auxiliary function

F (x1, x2) = f (x1, x2)− f (x1, 0)− f (0, x2) + f (0, 0)

= ϕ (x1)− ϕ (0)

where
ϕ (t) = f (t, x2)− f (t, 0) .

By hypothesis, function ϕ is differentiable on [0, x1]. By the mean value theorem, there
exists s1 ∈ [0, x1] such that

ϕ (x1)− ϕ (0) = ϕ0 (s1)x1 = (∂1f (s1, x2)− ∂1f (s1, 0))x1.

The function
ψ (t) = ∂1f (s1, t)

is differentiable in t ∈ [0, x2] so that we obtain that there exists s2 ∈ [0, x2] such that

ψ (x2)− ψ (0) = ψ0 (s2)x2

that is,
∂1f (s1, x2)− ∂1f (s1, 0) = ∂2∂1f (s1, s2)x2.
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Combining the above lines, we obtain

F (x1, x2) = ∂2∂1f (s1, s2)x1x2.

If we represent F in the form

F (x1, x2) = f (x1, x2)− f (0, x2)− f (x1, 0) + f (0, 0)

= eϕ (x2)− eϕ (0)
where eϕ (t) = f (x1, t)− f (0, t)

then a similar argument shows that there are es1 ∈ [0, x1] and es2 ∈ [0, x2] such that
F (x1, x2) = ∂1∂2f (es1, es2)x1x2.

Assuming that x1 and x2 are 6= 0, we obtain from the comparison of the two expressions
for F , that

∂2∂1f (s1, s2) = ∂1∂2f (es1, es2) .
Note that all variables s1, s2,es1, es2 are functions of x1, x2 and by construction they all go
to 0 as x1, x2 → 0. Passing to the limit in the above identity and using the continuity of
the mixed derivatives at 0, we obtain

∂2∂1f (0, 0) = ∂1∂2f (0, 0) ,

which was to be proved.
Without the continuity assumption, the derivatives ∂ijf and ∂jif can be different as

it is shown in the next example.

Example. Consider the function in R2

f (x, y) =

(
xy x

2−y2
x2+y2

, (x, y) 6= 0,
0, x = y = 0,

and evaluate ∂12f (0) and ∂21f (0). By definition,

∂1∂2f (0, 0) = lim
x→0

∂2f (x, 0)− ∂2f (0, 0)

x
.

Let us find ∂2f (x, 0):

∂2f (x, 0) = lim
y→0

f (x, y)− f (x, 0)

y
= lim

y→0
x
x2 − y2

x2 + y2
= x.

Since also ∂2f (0, 0) = 0, we conclude

∂1∂2f (0, 0) = lim
x→0

x− 0
x

= 1.

Similarly, we have

∂1f (0, y) = lim
x→0

f (x, y)− f (0, y)

x
= lim

x→0
y
x2 − y2

x2 + y2
= −y
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and

∂21f (0, 0) = lim
y→0

∂1f (0, y)− ∂1f (0, 0)

y
= lim

y→0
−y − 0

y
= −1.

Hence, ∂12f (0) 6= ∂21f (0) .

Definition. We say that a function f : U → R belongs to the class Ck (U) (where k is
a non-negative integer) if all partial derivatives of f of the order ≤ k exist in U and are
continuous in U .

Note that if k = 0 then C0 (U) is the class of all continuous functions in U .

Corollary. If f ∈ Ck (U) then the value of any partial derivative of f the order ≤ k does
not depend on the order of differentiation. More precisely, if i1, ..., il a sequence of l ≤ k
indices and j1, ..., jl is a permutation of i1, ..., il then ∂i1....ilf = ∂j1....jlf .

Proof. By Theorem 5.8, any two neighboring indices in the sequence i1, ...il , say im
and im+1, can be interchanged without changing the value of the derivative:

∂i1...imim+1...ilf = ∂i1...im−1
¡
∂im∂im+1

¢
∂im+2....ilf

= ∂i1...im−1
¡
∂im+1∂im

¢
∂im+2....ilf

= ∂i1...im+1im...ilf.

Now the claim follows from the fact that the sequence j1, ..., jl can be obtained from
i1, ..., il using finitely many interchanging of neighboring indices.

5.4.2 Taylor’s formula

The previous Corollary allows to introduce another notation for higher order derivatives:
if f ∈ Ck (U) then any partial derivative of the order l ≤ k can be written as

∂lf

∂xα11 ∂xα22 ...∂xαnn
,

where α1 + ... + αn = l. This notation means that we differentiate f α1 times in x1, α2
times in x2, etc (while the order of differentiation does not matter), that is,

∂lf

∂xα11 ∂xα22 ...∂xαnn
= ∂1...1|{z}

α1

2...2|{z}
α2

... n...n|{z}
αn

f .

Definition. A multiindex α of dimension n is any sequence α = (α1, ...., αn) of non-
negative integers. For any multiindex α, define its order

|α| = α1 + ....+ αn

and factorial
α! = α1!...αn!.

For any vector x ∈ Rn, set
xα = xα11 ...xαnn .

For any function f ∈ Ck (U) where U is an open set in Rn and for any multiindex α of
dimension n and order ≤ k, set

Dαf =
∂|α|f

∂xα11 ∂xα22 ...∂xαnn
.
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Theorem 5.9 (Taylor’s theorem) Let U be an open subset of Rn and f : U → R be a
function of the class Ck (U), where k ≥ 0. Then, for any x ∈ U ,

f (x+ h) =
X
|α|≤k

Dαf (x)

α!
hα + o

¡khkk¢ as h→ 0. (5.9)

Here α is a multiindex of dimension n. Note that if khk is small enough then x+h ∈ U
by the openness of U . Hence, f (x+ h) is defined for sufficiently small khk.
The function X

|α|≤k

Dαf (x)

α!
hα

is called the Taylor polynomial of the order k of function f at point x. This is obviously
a polynomial in the variables h1, ..., hn.
If U is an interval in R, that is, n = 1, then we obtain the Taylor formula from Analysis

I:

f (x+ h) =
kX

α=0

f (α) (x)

α!
hα + o

³
|h|k

´
where α is a non-negative integer.
For an arbitrary n, let us expand the terms in (5.9) with |α| ≤ 2. If |α| = 0 then

α = (0, ..., 0) and
Dαf (x)

α!
hα = f (x) .

If |α| = 1 then α has the form (0, ..., 0, 1, 0, ..., 0) with one term 1 and all others 0. If the
term 1 is at position i then

Dαf (x)

α!
hα = ∂if (x)hi

and X
|α|=1

Dαf (x)

α!
hα =

nX
i=1

∂if (x)hi = ∂1f (x)h1 + ...+ ∂nf (x)hn.

If |α| = 2 then there are two possibilities: either α has the form (0, ...0, 2, 0, ..., 0) with
the term 2 at some position i or α has two terms 1 at positions i < j, and all other 0. In
the first case,

Dαf (x)

α!
hα =

∂iif (x)

2
h2i ,

and in the second case
Dαf (x)

α!
hα = ∂ijf (x)hihj .

Therefore,X
|α|=2

Dαf (x)

α!
hα =

nX
i=1

∂iif (x)

2
h2i +

X
i<j

∂ijf (x)hihj =
1

2

nX
i,j=1

∂ijf (x)hihj

Hence, the Taylor formula for k = 2 can be written in the form

f (x+ h) = f (x) +
nX
i=1

∂if (x)hi +
1

2

nX
i,j=1

∂ijf (x)hihj + o
¡khk2¢ . (5.10)
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5.4.3 Local extrema

Postponing the proof of the Taylor formula, let us first show that, similarly to Analysis
I, the Taylor formula can be used to investigate local extrema of functions.

Definition. We say that a function f : U → R has a local maximum at a point x ∈ U if
there is a ball B (x, r) ⊂ U such that

f (x) ≥ f (y) for any y ∈ B (x, r) ,

that is, f (x) is the maximal value of f in B (x, r). A local maximum is strict if

f (x) > f (y) for any y ∈ B (x, r) \ {x} .

Similarly one defined a local minimum and a strict local minimum A local extremum is
either a local maximum or a local minimum.

In order to state the conditions for the local extrema of a function, we will use the
notions of the gradient and the Hessian of a function. For a function f : U → R, the
gradient grad f (x) is defined for any x ∈ U as a vector in Rn with components

grad f (x) = (∂1f (x) , ∂2f (x) , ..., ∂nf (x)) ,

provided the corresponding partial derivatives exist. The gradient grad f (x) looks identi-
cal to the Jacobian matrix Jf (x) but the difference is that grad f is a vector in Rn while
Jf (x) is a matrix of dimension 1×n although with the same components as the gradient.
Assuming that all second order partial derivatives of f exists in U , we can consider at

any point x ∈ U the matrix called the Hessian of f :

Hess f (x) = (∂ijf (x))
n
i,j=1 =


∂11f (x) ∂12f (x) ... ∂1nf (x)
∂21f (x) ∂22f (x) ... ∂2nf (x)

... ... ... ...
∂n1f (x) ∂n2f (x) ... ∂nnf (x)

 .

It follows from Theorem 5.8 that if all the second order derivatives are continuous then
Hess f (x) is a symmetric n× n matrix.
Recall that with any n× n matrix A = (aij) one associates the quadratic form

Q (h) =
nX

i,j=1

aijhihj,

which is defined as a function of h = (h1, ..., hn) ∈ Rn. The matrix A (and the form Q) is
called

• non-negative definite if Q (h) ≥ 0 for all h ∈ Rn; in this case, write A ≥ 0;
• non-positive definite if Q (h) ≤ 0 for all h ∈ Rn; in this case, write A ≤ 0;
• positive definite if Q (h) > 0 for all h 6= 0; write A > 0;
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• negative definite if Q (h) < 0 for all h 6= 0; write A < 0;

• indefinite if Q (h) takes both positive and negative values.

For example, if A = id then Q (h) = h21 + ...+ h2n is positive definite. Hence, id ≥ 0.
If n = 2 and A =

µ
0 1
1 0

¶
then

Q (h) = a11h
2
1 + a12h1h2 + a21h2h1 + a22h

2
2 = 2h1h2.

Since Q (h) can be both positive and negative, the matrix A is indefinite.

Theorem 5.10 Let U ⊂ Rn be an open set and f : U → R be a function on U .
(a) (Necessary condition for a local extremum) Let x ∈ U be a local extremum of f . If

f is differentiable at x then grad (x) = 0. If f ∈ C2 (U) and x is a point of local maximum
then Hess f (x) ≤ 0; if x is a point of a local minimum then Hess f (x) ≥ 0.
(b) (Sufficient condition for a local extremum) Let f ∈ C2 (U). If, for some x ∈ U ,

grad f (x) = 0 and Hess f (x) > 0 then x is a point of a strict local minimum of f . If
grad f (x) = 0 and Hess f (x) < 0 then x is a point of a strict local maximum of f .

Proof. (a) We need to prove that ∂if (x) = 0 for all i = 1, ..., n. Consider function
f (x1, ..., xn) as a function of xi only, with fixed xj for j 6= i. Then this function as
a function of xi still has a local extremum at the given point x. Using the necessary
condition for a local extremum from Analysis I, we conclude that ∂if (x) = 0.
Without using Analysis I, we can argue as follows. Assume that x is a point of a local

minimum. By the definition of the differentiability,

f (x+ h)− f (x) = f 0 (x)h+ o (h) = c1h1 + ...+ cnhn + o (h) as h→ 0,

where ci = ∂if (x). We need to prove that all ci = 0. If some ci 6= 0 then set h =
(0, ..., 0, t, 0, ..., 0) where t is at position i. For this h, we obtain

f (x+ h)− f (x) = cit+ o (t) as t→ 0.

If f has a local minimum at x then f (x+ h)− f (x) ≥ 0 for sufficiently small khk, that
is, cit+ o (t) ≥ 0 for small enough |t|. For small enough |t|, the term o (t) is smaller than
|cit| (because ci 6= 0). Therefore, the sign of cit+ o (t) is the same as the sign of cit. But
we cannot have cit ≥ 0 for all small enough |t| because changing t to −t we change the
sign of cit. This contradiction shows that all ci must be 0.
Assume now that f ∈ C2 (U). We have by the Taylor formula (5.10)

f (x+ h)− f (x) =
nX
i=1

∂if (x)hi +
1

2

nX
i,j=1

∂ijf (x)hihj + o
¡khk2¢

=
1

2
Q (h) + o

¡khk2¢ , (5.11)

where we have used that ∂if (x) = 0 and Q (h) is the quadratic form associated with
Hess f (x). Let x be a point of a local minimum and let us prove that Hess f (x) ≥ 0, that
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is, Q (h) ≥ 0 for all h ∈ Rn. Indeed, if Q (h) < 0 for some h then replace h by th where
t ∈ [0, 1]. Then we obtain

f (x+ th)− f (x) =
1

2
Q (h) t2 + o

¡
t2
¢
,

and the right hand side is negative if t is sufficiently small. However, at a point of minimum
the left hand side is non-negative. This proves that Q (h) ≥ 0 and, hence, Hess f (x) ≥ 0.
The case of a local maximum is treated similarly.
(b) If grad (x) = 0 then we have the expansion (5.11). Assume that Hess f (x) > 0,

that is, the function Q (h) is positive for all h ∈ Rn \ {0}. We need to prove that
1

2
Q (h) + o

¡khk2¢ > 0
provided khk is small enough but h 6= 0. Function Q (h) is a continuous function on Rn

being a linear combination of continuous functions hihj. Consider a set

S = {h ∈ Rn : khk = 1}
where khk = N (h) is any norm in Rn. Then S is bounded (obviously, it is contained is
any ball B (0, r) with r > 1) and closed (because S = N−1 ({1}) and N is a continuous
function from Rn to R). Hence, by the minimal value theorem, function Q (h) has the
minimum on S, let minS Q = m. Since Q|S > 0, we have m > 0. For any h 6= 0, we have
h
khk ∈ S whence

Q

µ
h

khk
¶
≥ m,

and
Q (h) ≥ mkhk2.

On the other hand, if khk is sufficiently small, then o (khk2) < εkhk2 for any given ε > 0.
Therefore, we obtain that, for sufficiently small khk 6= 0

f (x+ h)− f (x) =
1

2
Q (h) + o

¡khk2¢ ≥ µ1
2
m− ε

¶
khk2 > 0

provided ε is chosen small than 1
2
m. This means that f (x+ h) > f (x) in a small ball

around x unless h = 0, that is, x is a point of a strict local minimum of f .
The case Hess f (x) < 0 is similar.

Example. Let us find local extrema of the function

f (x, y) = xy ln
¡
x2 + y2

¢
.

Firstly, let us find all the critical points, that is, the points where grad f = 0, which in
this case amounts to the equations ∂xf = ∂yf = 0. Since

∂xf = y ln
¡
x2 + y2

¢
+

2x2y

x2 + y2

∂yf = x ln
¡
x2 + y2

¢
+

2xy2

x2 + y2
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Figure 1: Function f (x, y) in the domain |x| ≤ 1, |y| ≤ 1.

solving the equations ∂xf = ∂yf = 0 we obtain the following roots:

(0,±1) , (±1, 0) ,
µ
± 1√

2e
,± 1√

2e

¶
,

µ
∓ 1√

2e
,± 1√

2e

¶
.

The points (0,±1), (±1, 0) cannot be points of local extrema because f (x, y) is odd with
respect to x and y separately, and an odd function cannot take a local extremum at 0.
Finding the second derivatives, we obtain

∂xxf =
6xy

x2 + y2
− 4x3y

(x2 + y2)2

∂xyf = ln
¡
x2 + y2

¢
+ 2− 4x2y2

(x2 + y2)2

∂yyf =
6xy

x2 + y2
− 4xy3

(x2 + y2)2
.

At point
³
± 1√

2e
,± 1√

2e

´
we have

Hess f =

µ
∂xxf ∂xyf
∂xyf ∂yyf

¶
=

µ
2 0
0 2

¶
and this matrix is obviously positive definite, whence it follows that these two points are

the points of a strict local minimum. Similarly,
³
∓ 1√

2e
,± 1√

2e

´
are points of a strict local

maximum.

Remark. In order to decide whether a given symmetric matrix A is positive definite one
can apply one of the following approaches, known from Linear Algebra:

1. A > 0 if and only if, for any 1 ≤ k ≤ n,

det (aij)
k
ij=1 > 0.
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2. A > 0 if the corresponding quadratic form Q (x) =
Pn

i,j=1 aijxixj can be represented

in the form y21 + ...+ y2n for some linear change of the variables.

3. A > 0 if all the eigenvalues (Eigenwerte) of A are positive.
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5.4.4 Proof of Taylor’s formula

Proof of Theorem 5.9. Let U be an open subset of Rn and f ∈ Ck (U). Denote by
Tk (h) the Taylor polynomial of function f at a point x ∈ U of the order k, that is,

Tk (h) =
X
|α|≤k

Dαf (x)

α!
hα. (5.12)

We need to prove that

Rk (h) := f (x+ h)− Tk (h) = o
¡khkk¢ as h→ 0. (5.13)

Use induction in k. If k = 0 then (5.13) becomes

f (x+ h)− f (x) = o (1) ,

which is true by the continuity of f . Let us prove the inductive step from k − 1 to k
assuming k ≥ 1. Fix some index i = 1, ..., n and consider the derivative ∂if which is of
class Ck−1 (U).
Claim. The Taylor polynomial of the function ∂if of the order k−1 is equal to ∂iTk (h).
We have from (5.12)

∂iTk (h) =
X
|α|≤k

Dαf (x)

α!
∂ih

α.

If αi = 0 then hα does not depend on hi and ∂ih
α = 0. Hence, all α with αi = 0 can

be omitted in the above sum; in other words, we can restrict the summation to those α
with αi ≥ 1. Denote β = (0, ..., 1, ..., 0) where the only 1 is at position i. Then α− β is a
multiindex of order |α|− 1 and the following identities take place:

∂ih
α = αi

¡
hα11 ...hαi−1i ...hαnn

¢
= αih

α−β,

α! = α1!...αi!...αn! = αi (α1!... (αi − 1)!...αn!) = αi (α− β)!,

Dαf = Dα−βDβf = Dα−β∂if.

Therefore,

∂iTk (h) =
X
|α|≤k
αi≥1

Dα−β∂if (x)
αi (α− β)!

αih
α−β =

X
|γ|≤k−1

Dγ (∂if) (x)

γ!
hγ

where αi has cancelled out and we have changed γ = α − β. This identity proves the
claim because the right hand side is the Taylor polynomial of the function ∂if of the order
k − 1.
Applying the inductive hypothesis to the function ∂if ∈ Ck−1 (U), we obtain

∂if (x+ h) = ∂iTk (h) + o
¡khkk−1¢ as h→ 0.

Using the function Rk (h) defined by (5.13), we can rewrite this as

∂iRk (h) = o
¡khkk−1¢ as h→ 0. (5.14)
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Since k ≥ 1, the function Rk (h) belongs to C1 in a small ball around 0 and, hence, is
differentiable in this ball. Applying the mean value theorem to this function and using
Rk (0) = 0, we obtain

Rk (h) = Rk (h)−Rk (0) = R0k (ξ)h =
nX
i=1

∂iRk (ξ)hi

where ξ is some point in [0, h]. Then kξk ≤ khk and we obtain from (5.14)

|Rk (h)| ≤
nX
i=1

|∂iRk (ξ)| khk∞ = o
¡kξkk−1¢ khk∞ = o

¡khkk¢ ,
which was to be proved.

5.5 Implicit function theorem

Consider the following problem: how to find y as a function of x if its known that they
are related by some identity F (x, y) = 0? Here x, y are so far real variables and F (x, y)
is a function in an open subset W ⊂ R2. Function y = f (x) defined in this way is called
an implicit function.
For example, if x2 + y2 = 1 then one can explicitly solve this to find two continuous

functions y = ±√1− x2. Consider another example without explicit solution:

x+ cosx+ y + 5 sin y = 0. (5.15)

Here y cannot be explicitly expressed via x, but nevertheless one may hope to prove the
existence of the function y = f (x) that satisfies this relation. Here is the plot of the set
of points (x, y) that satisfies (5.15):

7.56.2553.752.51.250-1.25-2.5-3.75-5-6.25-7.5
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This curve is not a graph of a function but it can be split into a number of graphs if
we restrict the domain of x to the intervals between the turning points.
Consider now a more general situation when x is a point in Rn, y is a point in Rm and

the couple (x, y) is considered as a point in Rn+m with components

(x1, ..., xn, y1, ..., ym) .
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Let W be an open set in Rn+m where a mapping F : W → Rm is defined, and we would
like to solve the equation F (x, y) = 0 with respect to y in order to obtain a function
y = f (x). In the coordinate form, using the components Fj of F , we obtain the system
of m equations 

F1 (x1, ..., xn, y1, ..., ym) = 0
F2 (x1, ..., xn, y1, ..., ym) = 0
...
Fm (x1, ..., xn, y1, ..., ym) = 0

which need to be solved with respect to m unknown y1, ..., ym considering x1, ..., xn as
given parameters.
To get some flavor of what can happen consider a simple case when F is linear functions

of y:
F (x, y) = A (x) +B (x) y,

where A (x) ∈ Rm and B (x) is a m ×m matrix, both depending only on x. Then the
equation F (x, y) = 0 becomes

A (x) +B (x) y = 0,

which is solvable provided the matrix B (x) is invertible, and we obtain

y = −B−1 (x)A (x) .
Consider an arbitrary differentiable mapping F :W → Rm where W ⊂ Rn+m is open.

Denote by ∂xF the Jacobian matrix of F (x, y) considered as a function of x ∈ Rn only,
that is,

∂xF = (∂xiFj) , i = 1, ..., n, j = 1, ...,m

that is, ∂xF is an m × n matrix (j is the index of rows and i is the index of columns).
Similarly, the Jacobian matrix in y

∂yF = (∂yiFj)
m
i,j=1

is an m×m matrix. The full Jacobian matrix of F (x, y) is m× (n+m) matrix that can
be presented in the form

JF = (∂xF | ∂yF ) . (5.16)

In the case F = A (x) +B (x) y, we have ∂yF (x, y) = B (x). Hence, the solvability of the
equation F (x, y) = 0 in the linear case is equivalent to the fact that the matrix ∂yF is
invertible. It turns out that the same condition will be used in the general case.
In order to state the result, we need some terminology.

Definition. Let U be an open set in some Rk and f : U → Rm. We say that function f
belongs to class C l if, for any component fj, all the partial derivatives D

αfj of the order
|α| ≤ l exist and are continuous functions in U . If l = 0 then f belongs to C0 just means
that f is continuous.
Notation: f ∈ C l or f ∈ Cl (U,Rm) . The latter notation indicates also the domain of

f and the target space.

Lemma 5.11 The arithmetic operations on C l functions result in C l functions. Compo-
sition of C l functions is a C l function.
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Hint for the proof. For the case l = 0, this was proved in Corollaries to Theorem
4.4. For the general case, one uses induction in l and the chain rule (see Exercises).
The next theorem is one of the main results of multivariable Differential Calculus.

Theorem 5.12 (The implicit function theorem) Let W be an open set in Rn+m and
F ∈ C l (W,Rm), l ≥ 1. Assume that, for some (a, b) ∈W ,

F (a, b) = 0 and ∂yF (a, b) is invertible.

Then there are open sets U ⊂ Rn and V ∈ Rm such that a ∈ U , b ∈ V , U × V ⊂W , and
a function f : U → V of the class C l such that

F (x, y) = 0 ⇔ y = f (x) for x ∈ U, y ∈ V .

Moreover, for any x ∈ U ,
f 0 (x) = − (∂yF )−1 ∂xF. (5.17)

 

U 
xRn 

yRm 

W 

a 

b 

V 

F(x,y)=0 ⇔ y = f(x) 

Figure 2: Illustration to Theorem 5.12

Example. Consider again the function (5.15), that is,

F (x, y) = x+ cosx+ y + 5 sin y
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where x, y ∈ R. We have
Fy = 1 + 5 cos y

and this is non-zero if cos y 6= −1
5
. Hence, for any point (a, b) ∈ R2 such that F (a, b) = 0

and cos b 6= −1
5
, the equation F (x, y) = 0 can be solved in a neighborhood of (a, b) and y

can be represented as a function of x. In other words, in a neighborhood of such a point
(a, b), the set {F (x, y) = 0} is a graph of a function.
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At the plot above, we have two sets in R2: {F (x, y) = 0} and

{∂yF (x, y) = 0} =
½
y = ± arccos

µ
−1
5

¶
+ 2πk, k ∈ Z

¾
, (5.18)

the latter being a collection of the horizontal lines. It is easy to see that the turning
points of the curve {F = 0} are contained in the set (5.18).
Finally, let y = f (x) be a function that satisfies F (x, y) = 0. Then it follows from

(5.17) that

f 0 (x) = −∂xF
∂yF

= − 1− sinx
1 + 5 cos y

= − 1− sinx
1 + 5 cos f (x)

.

Although the function f (x) is not known explicitly, (5.17) allows to compute its derivative.

Remark. In general, formula (5.17) can be memorized as follows. If f is a function as
in the statement of Theorem 5.12 then, for any x ∈ U , we have

F (x, f (x)) ≡ 0.
Differentiating the function g (x) = F (x, f (x)) in x and using the chain rule, we obtain

0 = g0 (x) = ∂xF + (∂yF ) f
0 (x) ,

whence (5.17) follows. This argument also proves (5.17) provided the differentiability of
f is already known. However, in the actual proof, the differentiability of f is comes in a
bundle with (5.17).

Proof of Theorem 5.12. For simplicity of notation, assume that a = 0 in Rn and
b = 0 in Rm. Also, choose in Rn, Rm, Rn+m the ∞-norm.
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Set A = ∂xF (0) and B = ∂yF (0). The we have the identity

F (x, y) = Ax+By + ϕ (x, y) (5.19)

where ϕ is a function fromW to Rm such that ϕ (x, y) = o (k(x, y)k) as (x, y)→ 0 (indeed,
by (5.16), Ax+By is the differential of F at 0). Identity (5.19) can be considered as the
definition of ϕ. We need the following properties of ϕ:

ϕ ∈ Cl (W,Rm) , ϕ (0) = 0, ∂yϕ (0) = 0.

The first two are obvious. To obtain the third one, let us differentiate (5.19) in y so that

∂yF = B + ∂yϕ.

It follows that
∂yϕ (0) = ∂yF (0)−B = 0.

In the same way one shows ∂xϕ (0) = 0 but we do not need this.
The equation F (x, y) = 0 can be written as

Ax+By + ϕ (x, y) = 0

or, since the matrix B is invertible,

y = −B−1 (Ax+ ϕ (x, y)) =: G (x, y) .

Hence, the equation F (x, y) = 0 is equivalent to

y = G (x, y) .

The idea of the proof is to show that, for any fixed x close enough to 0, G (x, ·) can be
considered as a contraction mapping in some neighborhood of 0 in Rm so that it has a
unique fixed point y, which then satisfies the equation y = G (x, y), that is, F (x, y) = 0.
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Note that the function G (x, y) has the following properties:

G ∈ C l (W,Rm) , G (0) = 0, ∂yG (0) = 0,

which trivially follow from those of ϕ.
Set U and V to be the following balls

U = {x ∈ Rn : kxk < δ} , V = {y ∈ Rm : kyk < ε} ,

where positive constants ε and δ will be chosen to satisfied the following conditions:

1. Since the partial derivatives ∂yiGj are continuous and vanish at 0, for any c > 0 (to
be specified later), there exists ε > 0 so that

kxk ≤ ε, kyk ≤ ε =⇒ (x, y) ∈W and |∂yiGj (x, y)| ≤ c. (5.20)

2. Since the invertibility of the matrix ∂yF (0) means that det ∂yF (0) 6= 0 and det ∂yF
is obviously a continuous function of (x, y), ε can be chosen so small that in addition
to (5.20)

kxk ≤ ε, kyk ≤ ε =⇒ ∂yF (x, y) is invertible. (5.21)

3. Since function G (x, 0) is continuous in x, for any ε > 0 (in particular, for the ε
defined above) there is δ ∈ (0, ε] such that

kxk ≤ δ =⇒ kG (x, 0)k < 1

2
ε. (5.22)

Note that the condition δ ≤ ε ensures that in the above line (x, 0) ∈W .

Consider also the closed balls:

U = {x ∈ Rn : kxk ≤ δ} , V = {y ∈ Rm : kyk ≤ ε} .

It follows from the choice of ε and δ that U × V ⊂W .

Claim 1. For an appropriate choice of c, we have for all x ∈ U and y, y0 ∈ V ,

kG (x, y)−G (x, y0)k ≤ 1
2
ky − y0k. (5.23)

Indeed, by the mean value theorem, for any component Gj of G, we have, for some
ξ ∈ [y, y0],

|Gj (x, y)−Gj (x, y
0)| = |∂yGj (x, ξ) (y − y0)| =

¯̄̄̄
¯
mX
i=1

∂yiGj (x, ξ) (yi − y0i)

¯̄̄̄
¯ ≤ cmky− y0k∞,

where we have used (5.20). Hence, (5.23) follows if we choose c = 1
2m
.

Claim 2. If x ∈ U and y ∈ V then G (x, y) ∈ V .
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Indeed, we have by (5.23) and (5.22)

kG (x, y) k ≤ kG (x, y)−G (x, 0) k+ kG (x, 0) k < 1

2
kyk+ 1

2
ε ≤ ε.

Hence, for any fixed x ∈ U , we can consider the mapping G (x, ·) : V → V . The set V
is a closed subset of Rm and hence is complete as a metric space. By (5.23), this mapping
is a contraction. Hence, by Theorem 4.6, there is a unique point y ∈ V that G (x, y) = y.
Since such y exists for any x ∈ U , we can define a function f (x) = y that maps U to
V . It follows from the construction of f that y = f (x) is equivalent to G (x, y) = y and,
hence, to F (x, y) = 0 (assuming that x ∈ U and y ∈ V ).
Let us show that function f is continuous in U . Moreover, we prove the following

stronger statement.

Claim 3. There exists constant C such that

kf (x)− f (x0) k ≤ Ckx− x0k for all x, x0 ∈ U. (5.24)

Indeed, we have

kf (x)− f (x0)k = kG (x, f (x))−G (x0, f (x0))k
≤ kG (x, f (x))−G (x0, f (x))k+ kG (x0, f (x))−G (x0, f (x0))k .(5.25)

The second term in (5.23) is estimated by (5.23):

kG (x0, f (x))−G (x0, f (x0))k ≤ 1
2
kf (x)− f (x0) k.

To estimate the first term, let us consider each component Gj separately and use the
mean value theorem: there is ξ ∈ [x, x0] such that

Gj (x, f (x))−Gj (x
0, f (x)) = ∂xGj (ξ, f (x)) (x− x0) =

nX
i=1

∂xiGj

¡
ξj, f (x)

¢
(xi − x0i) .

Since ∂xiGj (x, y) is a continuous function on a bounded closed set U×V , by the maximal
value theorem it is bounded on this set, say, by a constantC. Therefore,

¯̄
∂xiGj

¡
ξj, f (x)

¢¯̄ ≤
C and we obtain

|Gj (x, f (x))−Gj (x
0, f (x))| ≤ Cnkx− x0k

whence
kG (x0, f (x))−G (x0, f (x0))k ≤ Cnkx− x0k.

Hence, it follows from (5.25) that

kf (x)− f (x0) k ≤ Cnkx− x0k+ 1
2
kf (x)− f (x0) k.

Moving the term 1
2
kf (x)− f (x0) k to the left hand side and renaming the constant C, we

obtain (5.24).

Claim 4. The function f : U → Rm is differentiable in U and

f 0 (x) = − (∂yF )−1 ∂xF, (5.26)
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where the right hand side is evaluated at the point (x, f (x)).
For any point (x0, y0) ∈W , we have by the differentiability of F ,

F (x, y)− F (x0, y0) = A (x− x0) +B (y − y0) + ϕ (x, y) (5.27)

where A = ∂xF (x0, y0), B = ∂yF (x0, y0), and

ϕ (x, y) = o (kx− x0k+ ky − y0k) as x→ x0 and y → y0. (5.28)

Fix x0 ∈ U and prove that f (x) is differentiable at x0. Set y0 = f (x0), y = f (x) for
x ∈ U and observe that

F (x, y) = F (x0, y0) = 0.

Recall that by (5.21), the matrix B is invertible. Hence, (5.27) yields

f (x)− f (x0) = −B−1A (x− x0)−B−1ϕ (x, f (x)) .

We are left to prove that

B−1ϕ (x, f (x)) = o (kx− x0k) as x→ x0.

Since the matrix B−1 has a finite norm, it suffices to prove that

ϕ (x, f (x)) = o (kx− x0k) as x→ x0. (5.29)

Using (5.28), we obtain

ϕ (x, f (x)) = o (kx− x0k+ kf (x)− f (x0) k) as x→ x0,

whence (5.29) follows because by (5.24)

kf (x)− f (x0) k ≤ Ckx− x0k.
Claim 5. Function f belongs to Cl (U,Rm) .
Induction in l. Inductive basis for l = 1. By (5.26), we have

(∂ifj (x))
m
i,j=1 = − (∂yF )−1 ∂xF (x, f (x)) . (5.30)

The partial derivatives of F are continuous and so is f (x). Hence, all the components
in the right hand side of (5.30) are continuous, whence the continuity of the partial
derivatives ∂ifj follows. Hence, f ∈ C1.
Inductive step from l−1 to l. Assuming that F ∈ C l let us prove that f ∈ C l. By the

inductive hypothesis, we have f ∈ C l−1. Since the partial derivatives ∂xF and ∂yF are
of the class C l−1, it follows by Lemma 5.11 that the right hand side of (5.30) is in C l−1,
that is, any partial derivative ∂xifj is in Cl−1 (U). This implies that f ∈ C l (U), which
was to be proved.

Theorem 5.13 (The inverse function theorem) Let Ω be open subset of Rn and f : Ω→
Rn be a mapping of class C l, l ≥ 1. Assume that f 0 (a) is invertible for some a ∈ Ω, as an
n× n matrix. Then there are open sets U and V in Rn such that a ∈ U ⊂ Ω, f (a) ∈ V ,
and f |U is a bijection from U onto V . Moreover, the inverse mapping f−1 : V → U
belongs to class C l and ¡

f−1
¢0
(y) = (f 0 (x))−1 , (5.31)

for all y ∈ V , where x = f−1 (y).
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Remark. Let f : I → R be a C1 function on an open interval I ⊂ R such that f 0 (x) 6= 0
for all x ∈ R. Theorem 5.12 ensures the invertibility of the function f (x) locally, that is,
in a neighborhood of any point in its image. However, in this case a stronger statement is
true. Indeed, since f 0 (x) is a continuous function, by the intermediate value theorem we
have either f 0 (x) > 0 for all x ∈ I or f 0 (x) < 0 for all x ∈ I. Then Theorem 4.12 from
Analysis I yields that the inverse f−1 exists globally, that is, on the entire image f (I). In
higher dimensions, the existence of the global inverse require additional conditions, which
we do not consider here.

Proof. The equation y = f (x) is equivalent to the equation

F (x, y) := y − f (x) = 0.

Note that function F (x, y) is defined for x ∈ Ω and y ∈ Rn and takes values in Rn, that
is, F : Ω × Rn → Rn. Obviously, F ∈ Cl. Let us apply Theorem 5.12 with respect
to the variable x. For that, check condition ∂xF 6= 0. Indeed, ∂xF = −f 0 (x) and by
hypothesis this is non-zero at the point (a, f (a)). Therefore, by Theorem 5.12, there
are open neighborhoods U and V of the points a and f (a), respectively, and a function
g : V → U of class C l such that

F (x, y) = 0⇔ x = g (y) for x ∈ U and y ∈ V,

that is,
y = f (x)⇔ x = g (y) for x ∈ U and y ∈ V. (5.32)
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However, this does not mean yet that f maps U to V (although g maps V to U). To
achieve that, we need to reduce U. Consider the set

U0 = f−1 (V ) ∩ U

which is open by the continuity of f . Clearly, a ∈ U0.
Let us show that f maps U0 into V and g maps V into U0. If x ∈ U0 then f (x) ∈ V

by definition of U0; hence, f maps U0 into V . If y ∈ V then x = g (y) ∈ U whence by
(5.32) y = f (x) and x ∈ f−1 (V ). It follows that x ∈ U0; hence, g maps V into U0.
The both compositions f ◦g and g ◦f are defined by (5.32) are the identity mappings.

Hence, f : U0 → V and g : V → U0 are mutually inverse. We are left to rename U0 to U
to match the notation of the statement of the theorem.
To prove (5.31), differentiate the identity g ◦ f = I where I : U → U is the identity

mapping. Using the chain rule, we obtain

id = (g ◦ f)0 = g0 (y) f 0 (x)

for all y = f (x), whence g0 (y) = f 0 (x)−1.

Example. Consider the mapping f : R2 → R2 defined by

f (x, y) =
¡
x2 − y2, 2xy

¢
.

The full derivative is given by the Jacobian matrix

f 0 (x, y) = Jf (x, y) =

µ
∂xf1 ∂yf1
∂xf2 ∂yf2

¶
=

µ
2x −2y
2y 2x

¶
,

and this is invertible if and only det Jf = 4(x2 + y2) 6= 0 that is, when (x, y) 6= 0. By
Theorem 5.12, the mapping f is invertible in a neighborhood of any non-zero point in its
image.
Using complex numbers z = x+ iy, observe that f (z) = z2. This makes it clear that

the full image f (R2) is R2 because any complex number w has a square root z, that is,
z = w2. Furthermore, if w 6= 0 then there are two distinct roots z1, z2 of this equation
such that z2 = −z1. This means that there is no global inverse f−1 even in R2 \{0} where
the derivative f 0 is invertible at any point.

5.6 Surfaces in Rn

5.6.1 Linear subspaces

Consider the following two ways of describing a subspace of Rn.
1. For any linear mapping C : Rn → Rk, the kernel

kerC = {v ∈ Rn : Cv = 0}

is a subspace of Rn. Hence, for a given subspace S, one may try to find a linear mapping
C so that S = kerC. In this case one can also say that S is given by the equation Cv = 0.
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2. For any linear mapping A : Rm → Rn, the image

imageA = {Au : u ∈ Rm}
is a subspace of Rn. For a given subspace S, one may try to find A so that S = imageA.
In this case, we obtain the parametric equation of S: v = Au, meaning that every vector
v ∈ S is represented in the form v = Au where u ∈ Rm is a parameter.
Our aim here is to develop two similar approaches for describing surfaces in Rn.
Some remarks about dimS. By definition, the dimension of imageA is the rank of

A. Equivalently, rankA the maximal number of linearly independent rows of A and the
maximal number of linearly independent columns of A (see Linear Algebra). Hence, if S
is given in the parametric form S = imageA, then

dimS = rankA.

In the case when S is given by the equation S = kerC we have by a theorem from Linear
Algebra,

dimS = dimkerC = n− rankC.

5.6.2 Parametric equation of a surface

Definition. A parametric surface in Rn is any continuous mapping f : U → Rn where
U is an open set in Rm, m ≤ n. The image of f , that is, the set S = f (U) is called a
surface. That is, S is defined by the parametric equation x = f (u), u ∈ U .
The surface S is said to be differentiable if f is differentiable, and S is of class C l if

f ∈ C l. A surface S of class C1 is said to be immersed if the n ×m matrix f 0 (x) has
the maximal rank m at any point x ∈ U . The number m is called the dimension of the
immersed surface.

The set U is called the set of parameters of the given surface. Denoting by u1, ..., um
the coordinates in Rm and by x1, ..., xn the coordinates in Rn, we obtain the parametric
equations of the surface S in the coordinate form: x1 = f1 (u1, .., um)

...
xn = fn (u1, ..., um) .

Example. (Planes) Let U = Rm and f (u) = Au for some n ×m matrix A. Then the
linear subspace S = f (U) is surface, and if rankA = m then this surface is immersed.
Let f be an affine mapping, that is, f (u) = Au + b where A is as above and b ∈ Rn.
Then the surface S = f (Rm) is called a plane. If rankA = m then the plane is immersed
of dimension m.

Example. (Curves) Let U be an interval in R and consider a continuous mapping
f : U → Rn. By definition, this is a parametric surface, but in the case m = 1 it is also
called a path, and its image is called a curve. Denoting the parameter by t (instead of
u) we obtain the equations of the path in the form xi = fi (t). The parameter t can be
interpreted as a time and the equation x = f (t) describes the movement of a point in
time in the space Rn. The derivative f 0 (t) has the meaning of the velocity of the point
at time t.
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Example. (Graphs) Let U be an open subset of Rm and f : U → Rk be an arbitrary
function. Consider the graph of f that is, the set

S = {(u,w) ∈ Rn : w = f (u) , u ∈ U} .

Here n = m+ k, and the couple (u,w) with u ∈ Rm and w ∈ Rk is considered as a point
in Rn. Of course, this is a generalization of a familiar notion of the graph of a function
f : I → R where I is an interval in R.
Since S = {(u, f (u)) : u ∈ U}, the graph S can be regarded as the image ef (U) of the

mapping ef : U → Rn defined by

ef (u) = (u, f (u)) .

Lemma 5.14 Under the above notation, if the mapping f is of class C l, l ≥ 1, then the
graph S of f is an immersed surface of dimension m of class C l.

Proof. Since ef ∈ C l, the set S = ef (U) is a surface of class C l by definition. The

derivative ef 0 is the n×m matrix

ef 0 (u) = µ id
f 0 (u)

¶
, (5.33)

where id is the unit matrix m × m and f 0 (u) is the k × m matrix. Since the first m

rows of this matrix are linearly independent, it follows that rank ef 0 (u) = m. Hence, the
surface S is immersed of dimension m.

5.6.3 Tangent plane

Definition. (A tangent plane) Let f : U → Rn be a parametric surface and S = f (U).
If f is differentiable at a point u ∈ U then the tangent plane at point u to S is the plane
in Rn given in parametric form by

T (h) = f (u) + f 0 (u)h,

where h ∈ Rm is a parameter.

Note that T : Rm → Rn is an affine mapping and, hence, determines a plane. Note
that T (h) is the first Taylor polynomial of f which is the best affine approximation to
f (u+ h).
The tangent plane is denoted by TuS or, by some abuse of notation, by TxS where

x = f (u). It follows from the definition that

TxS = x+ image f 0 (u) .

In particular, dimTxS = rank f
0 (u). It follows that if S is an immersed surface of dimen-

sion m then dimTxS = m for any x ∈ S.
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For applications, it is convenient to write the parametric equation of the tangent plane
in the form

T (h) = f (u) + h1∂u1f (u) + h2∂u2f (u) + ...+ hm∂umf (u) ,

where the parameter h1, ..., hm take all real values. Note that ∂uif , i = 1, ...,m, are vectors
in Rn. If rank f (u) = m then these vectors form a basis in image f 0 (u).

Example. Consider the mapping f : R2 → R3 given by in the parametric form by

f (u, v) = (coshu cos v, coshu sin v, u)

where u ∈ R and v ∈ [0, 2π]. This surface is called the catenoid and its is shown on the
picture:
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The parametric equation of the tangent plane at (u, v) is

T (t, s) = f (u, v) + t∂uf + s∂vf

= f (u, v) + t (sinhu cos v, sinhu sin v, 1) + s (− coshu sin v, coshu cos v, 0) ,
where t and s take all real values. For example, at the point u = v = 0 we have
f (u, v) = (1, 0, 0) , and

T (t, s) = (1, 0, 0) + t (0, 0, 1) + s (0, 1, 0) = (1, t, s) .

This tangent plane is shown on the plot:
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5.6.4 Surfaces given by the equation F (x) = 0

Theorem 5.15 Let Ω be an open set in Rn and F : Ω → Rk, k ≤ n, be a function of
class C l, l ≥ 1. If F 0 (a) has the rank k at some point a ∈ Ω then there is an open set
V ⊂ Ω containing a such that the set

S = {x ∈ V : F (x) = 0}
is an immersed surface of the class C l of dimensionm = n−k. In particular, dimTxS = m
for all x ∈ S.
Furthermore, we have

TxS = x+ kerF 0 (x) .

In other words, X ∈ TxS is equivalent to X − x ∈ kerF 0 (x), that is

F 0 (x) (X − x) = 0.

This is the equation of the tangent plane TxS.
Proof. Note that F 0 (x) is an k×n matrix. The fact that rankF 0 (a) = k means that

there is k columns of the matrix F 0 (a) that form an invertible k×k matrix. Without loss
of generality, assume that these are the last k columns. Denote

u = (x1, ..., xm) ∈ Rm and w = (xm+1, ..., xn) ∈ Rk.

Then equation F (x) = 0 can be written in the form F (u,w) = 0 with the condition that
the matrix ∂wF (a) is invertible. By the implicit function theorem, there are open sets
U ⊂ Rm, W ⊂ Rl such that a ∈ U ×W ⊂ Ω, and a C l function f : U →W such that

F (u,w) = 0 ⇔ w = f (u) for u ∈ U and w ∈W. (5.34)

Set V = U ×W . Then the set

S = {x ∈ V : F (x) = 0} = {(u,w) ∈ U ×W : F (u,w) = 0}
is the graph of the function w = f (u), u ∈ U . By Lemma 5.14, S is an immersed surface

of class C l of dimension m, and S is given in the parametric form by x = ef (u) whereef (u) = (u, f (u)) and u ∈ U .

Since the tangent plane at point x = ef (u) is given by
TxS = x+ image ef 0 (u) ,

it remains to show that
image ef 0 (u) = kerF 0 (x) .

By (5.34), we have F (u, f (u)) = 0 for all u ∈ U , that is, F ◦ ef ≡ 0. Differentiating this
identity and using the chain rule, we obtain

F 0 (x) ef 0 (u) = 0,
which implies

image ef 0 (u) ⊂ kerF 0 (x) . (5.35)
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Since rankF 0 (x) = k (we can assume that choosing U and W small enough), we obtain

dimkerF 0 (x) = n− rankF 0 (x) = m,

while by Lemma 5.14
dim image ef 0 (u) = rank ef 0 (u) = m.

Hence, the subspaces kerF 0 (x) and image ef 0 (u) have the same dimension, and the inclu-
sion (5.35) implies that they are identical.

Example. Consider the equation x21 + ... + x2n = 1 that defines a unit sphere in the
2-norm. Then F (x) = x21 + ...+ x2n − 1 and

F 0 (x) = (∂x1F, ..., ∂xnF ) = 2 (x1, ..., xn)

whence the equation of the tangent plane is

nX
i=1

xi (Xi − xi) = 0.

In other words, X − x is orthogonal to x as one expects.
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