
Analysis and stochastic processes on metric measure spaces

Alexander Grigor’yan
Department of Mathematics

University of Bielefeld
33501 Bielefeld, Germany

November 2017

Contents

1 Analysis on manifolds 1
1.1 Elliptic operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 Semi-linear elliptic inequalities . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1.2 Negative eigenvalues of Schrödinger operators . . . . . . . . . . . . . . . . . . . 2
1.1.3 Estimates of the Green function . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 The heat equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2.1 Heat kernels on connected sums . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2.2 Heat kernels of Schrödinger operators . . . . . . . . . . . . . . . . . . . . . . . 5
1.2.3 Heat kernels of operators with singular drift . . . . . . . . . . . . . . . . . . . . 6

1.3 Escape rate of Brownian motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Analysis on metric measure spaces 7
2.1 Heat kernels on fractal-like spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Stochastic completeness of jump processes . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 Jump processes on ultra metric spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3 Homology theory on graphs 11

Abstract

This contribution deals with the properties of certain differential and nonlocal operators on various
spaces, with the emphasis on the relationship between the analytic properties of the operators in
question and the geometric properties of the underlying space. In most situations, these operators
are Markov generators. In such cases, we are also concerned with probabilistic aspects, such as
the path properties of the corresponding Markov process.

1 Analysis on manifolds

The main object of interest in this part of the project is the Laplace-Beltrami operator Δ on a
Riemannian manifold M . In most cases M can be assumed geodesically complete and non-compact.
Denote by B (x, r) the geodesic ball on M of radius r centered at x ∈ M , and by V (x, r) the
Riemannian volume of B (x, r).

Manifold M is called parabolic if any positive superharmonic function on M is const. It is known
that the following properties are equivalent:

• M is parabolic;

• there is no positive Green function of Δ on M ;

• Brownian motion on M is recurrent;

(see [16]).
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1.1 Elliptic operators

1.1.1 Semi-linear elliptic inequalities

Consider on M the differential inequality

Δu + uσ ≤ 0 (1)

where σ > 1 is a constant, and ask if it has a positive solution u on M . This question was initially
motivated by certain problems in differential geometry, but after many years of research of many
authors it has become a popular question in PDEs.

A classical result of Gidas and Spruck [15] says that the equation

Δu + uσ = 0 in Rn

with n > 2 and σ < n+2
n−2 has no positive solution, whereas for any σ ≥ n+2

n−2 this equation has a
positive solution. The case of an inequality (1) has a different answer: if σ ≤ n

n−2 then (1) has no
positive solution, whereas for σ > n

n−2 there are positive solutions.
The existing methods of handling the differential inequality (1) and various generalizations use

quite strongly specific properties of PDEs in Rn (see, for example, [47]). Here we are interested in
understanding minimal geometric assumptions needed for non-existence of a positive solution of (1).
Assume that M is geodesically complete. A famous theorem of Cheng and Yau [10] says that if, for
some x and all r � 1,

V (x, r) ≤ Cr2, (2)

then M is parabolic. Since a solution of (1) is superharmonic, we see that under (2) the inequality
(1) has no positive solution.

The following is a combined result of [29] and [43].

Theorem 1 Let M be a geodesically complete, non-compact manifold. If, for some x ∈ M and all
r � 1,

V (x, r) ≤ Crp logq r, (3)

where

p =
2σ

σ − 1
and q =

1
σ − 1

, (4)

then the inequality (1) has no positive solution.

Note that p > 2 so that the assumption (3) is weaker than (2).
The conditions (3)-(4) are sharp in the following sense: if

p =
2σ

σ − 1
and q >

1
σ − 1

then there is an example of M satisfying (3) and having a positive solution of (1).

1.1.2 Negative eigenvalues of Schrödinger operators

Let V be a non-negative function on Rn. Denote by Neg (V,Rn) the number of negative eigenvalues
of the Schrödinger operator H = −Δ − V (x) on Rn, assuming that V is such that the operator H
with domain C∞

0 (Rn) is essentially self-adjoint in L2 (R). In the case n ≥ 3 it is known that

Neg (V,Rn) ≤ Cn

∫

Rn

V n/2dx, (5)

which is the content of a celebrated theorem of Cwikel–Lieb–Rozenblum (see [11], [46], [48]). In the
case n = 2 this estimate is not true, and an equally good upper bound for Neg (V ) is still unknown.
However, Neg

(
V,R2

)
admits a lower bound :

Neg
(
V,R2

)
≥ c

∫

R2

V dx,
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where c > 0 is an absolute constant, which was proved in [36].
Obtaining good enough upper bounds for Neg

(
V,R2

)
is unexpectedly difficult. A major contribu-

tion to this area was done by M. Solomyak [50], which was then improved by E.Shargorodsky [49]. In
[35] we obtained a new type of upper bounds. Fix some p > 1 and define for any non-negative integer
n the following quantities:

An(V ) =
∫

{e2n−1<|x|<e2n}
V (x)(1 + | ln |x||)dx,

Bn(V ) =

(∫

{en<|x|<en+1}
V p(x)|x|2(p−1)dx

)1/p

.

Similarly An and Bn are defined for n < 0. The main result of [35] is the following theorem.

Theorem 2 We have

Neg
(
V,R2

)
≤ 1 + C

∑

{n∈Z:An>c}

√
An + C

∑

{n∈Z:Bn>c}

Bn, (6)

where C, c are some positive constants depending only on p.

The complexity of this estimate is in striking contrast with (5); it reflects a more complicated
mechanism of formation of negative eigenvalues in R2 which is related to the parabolicity of R2.

In [35] we introduced many new tools. In particular, we used the Green function g0 (x, y) of the
operator −Δ+V0 in R2 where V0 ≥ 0 is any non-zero function from C∞

0

(
R2
)
, and proved the following

estimate of g0:

g0 (x, y) ' log 〈x〉 ∧ log 〈y〉+ log+

1
|x− y|

,

that follows from the estimate (11) of the heat kernel of −Δ + V0 that is discussed below. The sign
' means that the ratio of the both sides is between two positive constants.

Although (6) covers most previously known upper bounds of Neg
(
V,R2

)
, it still does not cover

some interesting potentials in R2 where the finiteness of Neg
(
V,R2

)
can be seen in ad hoc way.

1.1.3 Estimates of the Green function

Another question about Schrödinger operator is obtaining estimates of the Green function gV (x, y)
of −Δ + V on an arbitrary manifold M via the Green function g (x, y) of Δ. The following universal
lower estimate was proved in [18].

Theorem 3 On any nonparabolic Riemannian manifold M and for any V ≥ 0, we have

gV (x, y) ≥ g (x, y) exp

(

−

∫
M

g(x, z)g(z, y)V (z) dz

g(x, y)

)

. (7)

A striking feature of this result is that it does not require any restriction on M . Moreover, the
same result holds in a higher generality of abstract harmonic spaces.

1.2 The heat equation

A central object in Analysis on Manifold is the heat kernel pt (x, y) that is the fundamental solution
of the heat equation

∂tu = Δu,

where t > 0 is a time and x, y are points of M . For example, if M = Rn then the heat kernel is given
by the classical Gauss-Weierstrass formula

pt (x, y) =
1

(4πt)n/2
exp

(

−
|x− y|2

4t

)

.
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The question of obtaining heat kernel estimates under certain geometric assumptions on the un-
derlying manifold M has been extensively studied a few decades (see [8], [12], [51]). For example, if
the manifold M is geodesically complete and has non-negative Ricci curvature then, by a theorem of
Li and Yau [45],

pt (x, y) �
C

V
(
x,
√

t
) exp

(

−
d2 (x, y)

ct

)

, (8)

where d is the geodesic distance on M , and C, c are positive constant. The sign � means that both
≤ and ≥ are true but with different values of C, c.

1.2.1 Heat kernels on connected sums

Here we consider heat kernel estimates on the connected sum M1#M2 of two manifolds M1,M2 of
equal dimensions. By definition, M1#M2 denotes any manifold that is obtained by connecting exterior
domains in M1 and M2 via a compact connected manifold. For example, even estimating the heat
kernel on Rn#Rn is a highly non-trivial task. Although the first approach to the latter problem was
initiated in [6] in 1996, the full answer was obtained in [41] in 2009.

Theorem 4 If x, y are two points lying on different sheets of M = Rn#Rn with n ≥ 3, then, for
large enough t, |x| , |y|,

pt (x, y) �
C

tn/2

(
1

|x|n−2 +
1

|y|n−2

)

e−
d2(x,y)

ct .

More generally, consider a connected sum M = M1#...#Mk where we assume that, for each
manifold Mi, the heat kernel satisfies the two-sided Li-Yau estimate (8). The question of estimating
of the heat kernel on such a manifold M was largely solved in a series of papers of A. Grigor’yan and
L. Saloff-Coste culminating in [41]. A remarkable observation of [41] is that one has to distinguish
parabolic and non-parabolic ends Mi. The results of [41] are exhaustive when the manifold M is
non-parabolic, that is, when at least one end Mi is non-parabolic. Assume also that, for some oi ∈Mi

and all large enough r,
V (oi, r) ' rαi ,

where αi > 0. Denote |x| = d (x, oi).

Theorem 5 Assume that αi 6= 2 for all i = 1, .., k. Set

α∗
i =

{
αi, if αi < 2,
4− αi, if αi > 2

and
α = min {α∗

i : i = 1, ..., k} .

Then, for all t� 1, x ∈Mi and y ∈Mj with i 6= j and large enough |x| , |y|,

pt (x, y) � C

(
1

tα/2 |x|α
∗
i −2 |y|α

∗
j−2

1

tα
∗
j /2 |x|α

∗
i −2

+
1

tα
∗
i /2 |y|α

∗
j−2

)

× |x|(2−αi)+ |y|(2−αj)+ exp

(

−
d2 (x, y)

ct

)

.

In the case when k = 2 and α1 = α2 = n > 2, we obtain a = α∗
i = n, and we obtain the estimate

of Theorem 4.
Consider an example of a mixed case M = M1#M2 with

M1 = R1
+ × S

2 and M2 = R3.

In this case the manifold M1 is parabolic with the volume growth exponent α1 = 1, and M2 is
non-parabolic with α2 = 3. It follows that

α∗
1 = 4− α1 = 3, α∗

2 = α2 = 3, and α = min (α∗
1, α

∗
2) = 3.
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Hence, if x ∈M1 and y ∈M2, then we obtain by Theorem 5

pt (x, y) =
C

t3/2

(

1 +
|x|
|y|

)

e−
d2(x,y)

ct .

The parabolic case was treated in [41] only in a special case, while the general parabolic case still
remains open. In particular, the following estimate was proved for M = R2#R2 (equivalently, for a
catenoid) in [41].

Theorem 6 If x and y are two points lying on different sheets of M = R2#R2 then, for |x| , |y| ≥√
t� 1,

pt (x, y) �
C

t

(
1

log |x|
+

1
log |y|

)

e−
d2(x,y)

ct ,

while for |x| , |y| ≤
√

t we have

pt(x, y) �
C

t log2
√

t

(
log
√

t + log2
√

t− log |x| log |y|
)

.

The proofs in [41] are based on [39], [38], [40], [42].

1.2.2 Heat kernels of Schrödinger operators

Consider in Rn the Schrödinger operator

H = −Δ + Φ

where Φ ≥ 0 is a smooth function, and let pΦ
t (x, y) be the heat kernel of H. Here we describe some

results about the estimates of pΦ
t obtained in [17] using the method of h-transform from [40].

It is well-known that if n > 2 and, for some ε > 0,

Φ (x) ≤ C |x|−(2+ε)
, for all |x| > 1, (9)

then

pΦ
t (x, y) �

C

tn/2
e−

|x−y|2

ct . (10)

This estimate reflects the fact that the potentials with the upper bound (9) are small perturbations
of the Laplace operator (so called short range potentials), so that the estimate (10) is obtained by a
perturbation argument.

The case n = 2 is quite different as it is stated below. Set

〈x〉 := 2 + |x| .

Theorem 7 Let Φ be a non-zero function with a compact support in R2. Then the heat kernel of H
satisfies

pΦ
t (x, y) �

C log〈x〉 log〈y〉

t log
(
〈x〉+

√
t
)
log
(
〈y〉+

√
t
)e−

|x−y|2

ct . (11)

In particular, in the range t ≥ 〈x〉2 + 〈y〉2, we have

pΦ
t (x, y) '

log〈x〉 log〈y〉

t log2 t
.

Now let us consider the most interesting potential

Φ (x) = b |x|−2
, for all |x| > 1. (12)

that is on the borderline between the short and long range potentials.
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Theorem 8 Let Φ be a potential (12) in Rn with n ≥ 2. Then the heat kernel of H satisfies the
estimate for all t > 0 and x, y ∈ Rn:

pΦ
t (x, y) �

C

tn/2+β

(
1
√

t
+

1
〈x〉

)−β ( 1
√

t
+

1
〈y〉

)−β

e−
|x−y|2

ct , (13)

where

β = −
n

2
+ 1 +

√(n

2
− 1
)2

+ b.

In particular, in the most interesting range t ≥ 〈x〉2 + 〈y〉2, the estimate (13) becomes

pΦ
t (x, y) '

〈x〉β〈y〉β

tn/2+β

Note that the value of the coefficient b in (12) determines the exponent n
2 + β of the power decay of

the heat kernel as t→∞. Since b takes values in (0,∞), the exponent of t ranges in (n
2 ,∞).

For comparison let us mention that, for a long range potential

Φ (x) = b |x|−(2−α)
, for all |x| > 1,

with α ∈ (0, 2), the long time decay of the heat kernel is already superpolynomial as follows:

pΦ
t (0, 0) � C exp

(
ct

2−α
2+α

)
.

1.2.3 Heat kernels of operators with singular drift

Consider in Rn \ {0} the operator
Lu = Δu−∇ψ ∙ ∇u

with a singular potential
ψ (x) = |x|−α

where α > 0. We have proved in [37] the following estimates of the heat kernel of L.

Theorem 9 For all 0 < t < 1, we have

sup
x,y

pt (x, y) ≤ exp
(
Ct−

α
α+2
)

and
sup

x
pt (x, x) ≥ exp

(
ct−

α
α+2
)
,

for some positive constants C, c.

The singularity of the drift term at the origin causes a higher rate of blow up of the heat kernel
at t → 0, and the fact that the latter should be given by the term exp

(
t−

α
α+2
)

is not obvious at all
and was not predicted by any “physical” argument.

By a certain transformation we reduce the problem to estimating the heat kernel of a weighted
Laplace operator, and the latter amounts to proving a certain isoperimetric inequality on a weighted
manifold (Rn, μ), where measure μ is given by

dμ = exp

(

−
1
|x|α

)

dx.

Due to specific properties of this measure μ, the previously known methods for obtaining isoperimetric
inequalities on warped products did not work, and we had to develop in [37] a new machinery for that.
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1.3 Escape rate of Brownian motion

A manifold M is called stochastically complete if Brownian motion on M has lifetime ∞, which is
equivalent to the condition ∫

M

pt (x, y) dμ (y) = 1

for all x ∈M and t > 0.
It is known that a geodesically complete Riemannian manifolds is stochastically complete provided

∫ ∞ rdr

log V (x, r)
=∞ (14)

for some x ∈M . It was proved in [19] that under the condition (14) one can obtain also quantitative
estimate on how fast Brownian motion escapes to ∞. The following result was proved in [19].

Theorem 10 Let M be a Cartan-Hadamard manifold, satisfying (14). Fix a point x ∈M and define
a function ϕ (t) for large t by the identity

t =
∫ ϕ(t)

1

r dr

log V (x, r)
.

Then, Brownian motion on M at time t stays in the ball B (x, ϕ (Ct)) for large enough t with probability
1, where C > 0 is an absolute constant (for example, C = 130).

In other words, the function
R (t) = ϕ (Ct)

is an upper rate function of Brownian motion.
Examples of spherically symmetric manifolds show that this estimate of the escape rate in terms

of V is essentially sharp.
For example, if

V (x, r) ' rα

then we obtain an upper rate function

R (t) = const
√

t log t. (15)

Note for comparison that by Khinchine’s law of the iterated logarithm, an optimal upper rate function
in Rn is

R (t) =
√

(4 + ε) t log log t.

The function (15) is therefore not very sharp in Rn because of distinction between log log t and log t,
but it is sharp in the class of all manifolds with polynomial volume growth (see [28])

Historically the upper rate function (15) was obtained by Hardy and Littlewood in 1914 for sums
of independent Bernoulli random variables, which was superseded in ten years by Khinchine’s law.
From the modern point of view, the Hardy-Littlewood function (15) still make sense as an optimal
upper rate function for Brownian motion on manifolds with polynomial volume growth.

2 Analysis on metric measure spaces

2.1 Heat kernels on fractal-like spaces

Let (M,d, μ) be a metric measure space, that is, (M,d) is a metric space and μ is a Radon measure
on M with full support. We denote by B (x, r) the metric balls in M and assume that all metric balls
are precompact. Set V (x, r) = μ (B (x, r)).

Let (E ,F) be a regular Dirichlet form in L2 (M,μ) (see [14]). We investigate the properties of the
Hunt process associated the Dirichlet form, and its heat kernel pt (x, y) that is defined as the integral
kernel (should it exists) of the corresponding heat semigroup.
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We distinguish two main cases: when the Dirichlet form (E ,F) is local, that is, the associated
process is a diffusion, and when the Dirichlet form (E ,F) is of jump type, that is, it is given by

E (f, g) =
∫

M

∫

M

(f (x)− f (y)) (g (x)− g (y)) J (x, y) dμ (x) dμ (y) , (16)

where J is a symmetric jump kernel.
Fix two positive parameters α, β. We look for conditions on the measure and energy that would

ensure the following heat kernel bounds:

• sub-Gaussian bound in the local case:

pt (x, y) �
C

tα/β
exp

(

−c

(
dβ(x, y)

t

) 1
β−1
)

; (17)

• stable-like bound in the jump case:

pt (x, y) �
C

tα/β

(

1 +
d (x, y)
t1/β

)−(α+β)

=
Ct

(
t1/β + d (x, y)

)α+β
. (18)

It was proved in [23] that in the both cases α is the Hausdorff dimension of (M,d) and, moreover,

V (x, r) ' rα. (19)

In the case of (17), the parameter β is called the walk dimension, which is an invariant of (M,d) as
well. By [23], in this case β ≥ 2 (in fact, β > 2 for most interesting fractals). In the case of (18), the
parameter β is called the index of the associated jump process.

There are many reasons for considering these two types of estimates. Firstly, both are known to
hold on various families of fractals, in particular, on the Sierpinski gasket and carpet (cf. [2]).

Secondly, the following dichotomy was proved in [30]: if pt (x, y) satisfies the estimate

pt (x, y) � Ct−α/βΦ

(
d (x, y)
t1/β

)

with some function Φ then this has to be either (17) or (18).
It was proved in [3] that the sub-Gaussian estimate (17) is equivalent to the parabolic Harnack

inequality.
An important problem is to find some practical conditions on (M,d, μ) and (E ,F) that should be

equivalent to (17) resp. (18).
Some results about existence of the heat kernel and its upper bounds were obtained in [20], [22],

[27].
In order to state the results about equivalent conditions for the estimates (17), let us define first

the following notions.

Definition 11 A function u ∈ F is called harmonic in an open set Ω ⊂M if

E (u, ϕ) = 0

for all ϕ ∈ F ∩ C0 (Ω).

Definition 12 We say that the uniform elliptic Harnack inequality is satisfied if there is a constant
C such that, for any function u ∈ F that is harmonic and non-negative in a ball B (x, r) ⊂M ,

esssup
B(x,r/2)

u ≤ C essinf
B(x,r/2)

u.

Definition 13 For any compact set K ⊂M and open set Ω ⊃ K, define the capacity of the capacitor
(K, Ω) by

cap(K, Ω) = inf {E (ϕ,ϕ) : ϕ ∈ F ∩ C0 (Ω) , ϕ|K ≡ 1} .
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The series of works [22] [44], [21] leads to the following result.

Theorem 14 Under certain connectivity property of (M,d), the sub-Gaussian estimate (17) is equiv-
alent to the conjunction of the following three conditions:

• the volume regularity (19);

• the uniform elliptic Harnack inequality;

• the capacity condition: for all balls B = B (x, r) and 2B = B (x, 2r),

cap(B, 2B) ' rα−β . (20)

Of course, the elliptic Harnack inequality is in general quite difficult to verify, so the search for
better conditions goes on.

If M is a complete Riemannian manifold with the canonical Dirichlet form, then the Gaussian
heat kernel bound (that is, the case β = 2 in (17)) is known to be equivalent to the conjunction of
the following two conditions:

• the volume regularity (19);

• the Poincaré inequality
∫

B(x,2r)

|∇f |2 dμ ≥
c

r2

∫

B(x,r)

(
f − f

)2
dμ, (21)

where f = 1
μ(B(x,r))

∫
B(x,r)

f dμ.

In the most interesting case β > 2 that typically occurs in fractals, one replaces the Poincaré
inequality (21) by the β-Poincaré inequality

∫

B(x,r)

dΓ〈f, f〉 ≥
c

rβ

∫

B(x,r)

(
f − f

)2
dμ, (22)

where Γ〈f, f〉 is the energy measure of f . Then both (19) and (22) are also necessary for (17), but
not sufficient.

In order to state the next result, we need the notion of a generalized capacity.

Definition 15 Let u ∈ F ∩ L∞ (M) . For any compact set K ⊂ M and open set Ω ⊃ K, define the
generalized capacity of the capacitor (K, Ω) by

capu(K, Ω) = inf
{
E
(
u2ϕ,ϕ

)
: ϕ ∈ F ∩ C0 (Ω) , ϕ|K ≡ 1

}
.

The following theorem is a slightly reformulated result of [25].

Theorem 16 The estimate (17) is equivalent to the conjunction of three properties:

• the volume regularity (19);

• the β-Poincaré inequality (22);

• the generalized capacity estimate: for any function u ∈ F ∩L∞ and for any two concentric balls
B1 := B(x,R) and B2 := B(x,R + r),

capu(B1, B2) ≤
C

rβ

∫

B

u2dμ. (23)
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However, the latter condition is still difficult to check. Our conjecture is that it can be replaced
by a simpler capacity condition (20). Note that (23) with u = 1 and R = r is equivalent to (20).

A similar question is in place for the stable-like estimate (18). Some approach to upper bounds
was developed in [24]. The equivalent conditions for the two-sided estimates (18) in the case β < 2
were obtained by Z.-Q. Chen and T. Kumagai [9], who proved that (18) is equivalent to the volume
regularity (19) and the following estimate of the jump kernel J :

J (x, y) '
1

d (x, y)α+β
. (24)

The condition (24) replaces in this case the Poincaré inequality. The case β ≥ 2 is still open.
There is one specific setting though where obtaining heat kernel bounds for the jump kernel

J (x, y) = d (x, y)−(α+β) is relatively easy for any β > 0: this is the case when (M,d) an ultra-metric
space. The theory of Markov processes on ultra-metric spaces was developed in [5], using specific
properties of ultra-metric. In particular, this theory applies when M = Qp is the space of p-adic
numbers with the p-adic distance, and yields the estimate (18) with α = 1 (see the estimate (27) in
Section 2.3 below).

2.2 Stochastic completeness of jump processes

In [26] we investigated the stochastic completeness of the jump process associated with the Dirichlet
form (16). We say that the distance function d (x, y) and the jump kernel J (x, y) are adapted to each
other, if there exists a constant C such that

∫

M

(1 ∧ d(x, y)2)J(x, y)dμ (y) ≤ C for all x ∈M. (25)

For example, the following jump kernel in Rn

J(x, y) =
const

|x− y|n+α ,

is adapted to the Euclidean distance provided α ∈ (0, 2). Moreover, by Lévy-Khinchine theorem, the
Lévy measure W (dy) of any Lévy process in Rn satisfies the condition

∫

Rn\{0}

(
1 ∧ |y|2

)
W (dy) <∞.

Since W (dy) corresponds in our notation to J (x, y) dμ (y), we see that the Euclidean distance in Rn

is adapted to any Lévy process.
The main result of [26] is the following theorem.

Theorem 17 If J and d are adapted and if, for some x ∈M and c > 0,

V (x, r) ≤ exp (cr log r) for all large enough r,

then the jump process with the jump kernel J is stochastically complete.

2.3 Jump processes on ultra metric spaces

An ultra-metric space is a metric space (M,d) where the distance function satisfies the ultra-metric
inequality

d (x, y) ≤ max (d (x, z) , d (z, y)) ,

that is obviously stronger than the usual triangle inequality. The ultra-metric inequality implies that
any two metric balls B (x, r), B (y, r) of the same radius are either disjoint or identical. This in turn
implies that, for any non-negative real r, the family of all distinct balls of radius r form a partition of
M .

Let (M,d) be a locally compact ultra-metric space. A model example is the field Qp of p-adic
numbers with the p-adic distance or its straightforward generalization Qn

p . Fix a Radon measure μ
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on M with full support, a probability distribution function σ (r) on [0, +∞) and define the following
operator P on functions on M :

Pf (x) =
∫ ∞

0

(
1

μ (B (x, r))

∫

B(x,r)

fdμ

)

dσ (r) (26)

(cf. [4] and [5]). This operator is clearly a Markov operator. As it follows from the aforementioned
property of ultra-metric balls, P is a bounded non-negative definite self-adjoint operator in the Hilbert
space L2 (M,μ). The latter allows us to define the heat semigroup {Pt}t≥0 simply by Pt = P t

and, hence, the associated continuous time random walk {Xt}t≥0 on M (note that typically Markov
operators are not positive definite, so that the operator P t cannot be defined in general).

The spectral decomposition for Pt follows easily from the representation (26), which leads to
explicit expression for the heat kernel pt (x, y) of Pt and then also to simple estimates of pt (x, y) (see
[5]).

For example, let M = Qp with the p-adic distance d (x, y) = ‖x− y‖p and the Haar measure μ.
Then μ (B (x, r)) ' r. Choose

σ(r) = exp(−(c/r)α),

where α, c > 0.

Theorem 18 In Qp the heat kernel of the heat semigroup {Pt} with the above probability distribution
function σ (r) satisfies the estimate

pt (x, y) '
t

(t1/α + ‖x− y‖p)
1+α

, (27)

for all t > 0 and x, y ∈ Qp. Consequently, the Green function g (x, y) of {Pt} is finite if and only if
α < 1, and in this case

g (x, y) ' ‖x− y‖α−1
p .

As a locally compact abelian group, Qp has the dual group that is again Qp. Hence, the Fourier
transfer is defined as a unitary operator in L2(Qp, μ). Using the Fourier transfer, Vladimirov and
Volovich [52], [53] introduced a class Dα of fractional derivatives on functions on Qp. This operator
acts as follows:

Dαf (x) =
pα − 1

1− p−α−1

∫

Qp

f(x)− f(y)

‖x− y‖1+α
p

dμ(y).

The following theorem was proved in [5].

Theorem 19 Operator Dα coincides with the generator of the semigroup {Pt} with the following
probability distribution function

σ(r) = exp(−(p/r)α).

Consequently, the heat kernel of Dα satisfies (27).

It does not seem possible to obtain this estimate of the heat kernel of Dα by using the Fourier
Analysis approach.

3 Homology theory on graphs

In a series of papers [31], [32], [33], [34], we introduced the notion of a differential form on a digraph
(=directed graph) with the exterior derivative d, as well as the dual object – a ∂-invariant path with
the boundary operator ∂, which leads to the dual notions of cohomology and homology of graphs.

Let V be a finite set. An elementary p-path on V is any sequence i0...ip of (p + 1) vertices of V ,
which is also denoted by ei0...ip

. The formal linear combinations of all ei0...ip
with coefficients from a

field K form a linear space Λp. Define a linear boundary operator ∂ : Λp → Λp−1 by

∂ei0...ip =
p∑

k=0

(−1)k
ei0...îk...ip

,

11



where îk means omission of ik.
Let G = (V,E) be a digraph, where E is the set of directed edges (=arrows) on V . A p-path

ei0...ip is called allowed if all the pairs ikik+1 are arrows. Denote by Ap the subspace of Λp generated
by all allowed p-paths. In general, if v ∈ Ap then ∂v does not have to be in Ap−1. For example, on
the digraph

0• → •1 → •2

the 2-path e012 is allowed and, hence, lies in A2 while its boundary

∂e012 = e12 − e02 + e01 (28)

is not in A1 because e02 is not allowed.
This observation motivates the following definition.

Definition 20 Define the subspace Ωp of Ap by

Ωp = Ωp (G) = {v ∈ Ap : ∂v ∈ Ap−1} .

The elements of Ωp are called ∂-invariant p-paths.

For example, if G contains the following “triangle”

↗

1
•↘

0• → •2

then the 2-path e012 is ∂-invariant by (28) . If G contains the following “square”

1• −→ •3

↑ ↑
0• −→ •2

then the 2-path v = e013 − e023 is ∂-invariant, because v ∈ A2 and

∂v = (e13 − e03 + e13)− (e23 − e03 + e02) = e13 + e13 − e23 − e02 ∈ A1.

It is easy to see that ∂ acts from Ωp to Ωp−1 and that ∂2 = 0. Hence, we obtain a chain complex
Ω∗ (G)

...
∂
← Ωp−1

∂
← Ωp

∂
← Ωp+1 ← ...

where p ≥ 0 and Ω−1 = {0}. The homology groups Hp = Hp (G) of this chain complex are called the
path homologies of G.

There are also dual notions of d-invariant p-forms, cochain complex Ω∗ (G) and path cohomologies
H∗ (G) of G that we do not address here. If G is a (undirected) graph then G can always be considered
as a digraph, by turning each edge of G into a double arrow.

There has been a number of attempts to define the notion of (co)homology for graphs. For example,
one can consider a graph as an one-dimensional simplicial complex, or take into account all its cliques
(=complete subgraphs) as simplexes of the corresponding dimensions. However, such homologies do
not have usually necessary functorial properties.

Another approach to homologies of digraphs can be realized via Hochschild homologies, using a
natural path algebra of a graph. However, it is known that in this case the Hochschild homologies of
order ≥ 2 are trivial, which makes this approach useless. In singular homology theories of graphs,
certain “small” graphs are predefined as basic cells. However, simple examples show that the singular
homology groups do depend essentially on the choice of the basic cells.

Our notion of path homologies of digraphs has the following advantages.

• The path homologies of all dimensions can be non-trivial, even for planar graphs the path
homologies can be non-trivial in dimension 2.

• The path homologies can be easily computed using any software package containing operations
with matrices.

12



• The path homology theory is compatible with the homotopy theories of graphs [1] and digraphs
[31].

• The path homologies have good functorial properties with respect to graph-theoretical opera-
tions, for example, the homologies of the Cartesian product of digraphs (as well as of the join)
satisfy the Künneth formula.

• The path homology theory is dual to the cohomology theory of digraphs. The latter was intro-
duced independently by A.Dimakis and F.Müller-Hoissen [13], using a classification of Bourbaki
[7] of exterior derivations on algebras.

One of the most essential and technically difficult results of our work is the Künneth formula for
products. For two digraphs X and Y , denote by X�Y their Cartesian product, that is, the product
based on the pattern �.

Theorem 21 For any two finite digraphs X and Y we have

Ω∗ (X�Y ) ∼= Ω∗ (X)⊗ Ω∗ (Y ) ,

that is, for any integer r ≥ 0,

Ωr (X�Y ) ∼=
⊕

{p,q≥0:p+q=r}

(Ωp (X)⊗ Ωq (Y ))

Consequently, by the abstract theorem of Künneth, the same isomorphism holds for homologies:

H∗ (X�Y ) ∼= H∗ (X)⊗H∗ (Y ) .

The fact that the Künneth formula holds at the level of chain complexes is very surprising. It
contrasts the classical algebraic topology, where the Künneth formula holds only in homologies. This
result provides an indirect evidence that our notion of the chain complex Ω∗ (G) for digraphs is very
meaningful by itself.

Define now the join X ∗Y of digraphs X,Y as a digraph whose set of vertices is a disjoint union of
the sets of vertices of X and Y , and the set of arrows of X ∗Y consists of all the arrows of X,Y as well
as of new arrows from any vertex of X to any vertex of Y . In the next result we use the augmented
chain complex Ω̃∗.

Theorem 22 For any two finite digraphs X, Y and for any integer r ≥ −1, we have

Ω̃r (X ∗ Y ) ∼=
⊕

{p,q≥−1:p+q=r−1}

(
Ω̃p (X)⊗ Ω̃q (Y )

)
.

It follows that, for any r ≥ 0,

H̃r (X ∗ Y ) ∼=
⊕

{p,q≥0:p+q=r−1}

(
H̃p (X)⊗ H̃q (Y )

)
.
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