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1 Introduction

Since the time of Newton and Leibniz, differentiation and integration have been major
concepts of mathematics. The theory of integration has come a long way from Riemann’s
integration of continuous functions to measure theory, including construction of Hausdorff
measures on metric spaces.

In this survey we discuss the notion of differentiation in metric spaces, especially in
fractals with self-similar structures. The existing theory of the upper gradient of Heinonen–
Koskela [24] and Cheeger [12] provides an analogue of Rademacher’s theorem about dif-
ferentiability of Lipschitz functions. However, it imposes quite strong assumptions on the
metric space in question, including the Poincaré inequality with the quadratic scaling fac-
tor. Such assumptions are typically satisfied on the limits of sequences of non-negatively
curved manifolds, but never on commonly known fractal spaces.

More specifically, our goal is the notion of a Laplace-type operator on general metric
measure spaces, in particular, on fractal spaces. The Laplace operator in Rn is a second
order differential operator. Hence, unlike the upper gradient that is a generalization of the
first order differential operator, we aim at a generalization of a second order differential
operator. Our present understanding is that such operators should be carried by a larger
family of metric spaces.

By a Laplace-type operator we mean the generator of a strongly local regular Dirichlet
form. The theory of Dirichlet forms was developed by M.Fukushima et al., and its detailed
account can be found in [15] (see also [31]). Although the original motivation of this theory
was to create a universal framework for construction of Markov processes in Rn, it suits
perfectly for development of analysis on metric measure spaces.

Strongly local regular Dirichlet forms and associated diffusion processes have been
successfully constructed on large families of fractals, in particular, on the Sierpinski gasket
by Barlow–Perkins [8], Goldstein [16] and Kusuoka [28], on p.c.f. fractals by Kigami [26],
[27], and on the Sierpinski carpet by Barlow–Bass [3] and Kusuoka–Zhou [29].

It has been observed that the quantitative behavior of the diffusion processes on fractals
is drastically different from that in Rn. In particular, the expected time needed for the
diffusive particle to cover distance r is of the order rβ with some β > 2, whereas in Rn
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it is r2. In physics such a process is called an anomalous diffusion. The parameter β is
called the walk dimension of the diffusion. It also determines sub-Gaussian estimates of
the heat kernel.

It was shown in [20] that the walk dimension β is, in fact, an invariant of the metric
space alone, and it can be characterized in terms of the family of Besov seminorms.

In this note we give an overview of some results related to the notion of the walk
dimension.

2 Classical heat kernel

The heat kernel in Rn is the fundamental solution of the heat equation ∂u
∂t = Δu:

pt(x) =
1

(4πt)n/2
exp

(

−
|x|2

4t

)

.

This function is also called the Gauss-Weierstrass function. Let us briefly mention some
applications of this notion.

1. The Cauchy problem for the heat equation with the initial condition u|t=0 = f is
solved by u (t, ∙) = pt ∗ f , under certain restriction on f , for example, for f ∈ Cb (Rn)
(where Cb (X) stands for the space of bounded continuous functions on X). Since then
pt ∗ f → f as t → 0+, the smooth function pt ∗ f can be regarded as a mollification of f .
This idea was used by Weierstrass in his proof of the celebrated Weierstrass approximation
theorem.

2. It is less known but the heat kernel can be used to prove some Sobolev embedding
theorems (see [17, pp.156-157]).

3. The function pt/2(x) coincides with the transition density of Brownian motion {Xt}
in Rn (Fig. 1).

Figure 1: The probability that Xt ∈ A is given by integration of the heat kernel
pt/2 (X0 − ∙) over A.

4. Approximation of the Dirichlet integral: for any f ∈ W 1,2 (Rn) we have
∫

Rn

|∇f |2 dx = lim
t→0

1
2t

∫

Rn

∫

Rn

pt (x − y) |f(x) − f(y)|2 dxdy.

3 Examples of fractals

Let (M,d) be a locally compact separable metric space and μ be a Radon measure on
M with full support. A triple (M,d, μ) will be referred to as a metric measure space. A
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metric measure space (M,d, μ) is called α-regular for some α > 0 if all metric balls

B (x, r) := {y ∈ M : d (x, y) < r}

are relatively compact and if for all x ∈ M and r < diam M we have

μ (B (x, r)) ' rα. (1)

The sign ' means that the ratio of the two sides is bounded from above and below by
positive constants, and diam M = supx,y∈M d (x, y) .

It follows from (1) that

dimH M = α and Hα ' μ

where dimH M denotes the Hausdorff dimension of M (with respect to the metric d) and
Hα denotes the Hausdorff measure of dimension α. The number α is also referred to as
the fractal dimension of M. In some sense, α is a numerical characteristic of the integral
calculus on M .

The original meaning of the popular term “fractal” refers to α-regular spaces with
fractional values of α. Such spaces first appeared in mathematics as curious examples
and initially served as counterexamples to various theorems. The most famous example
of a fractal set is the Cantor set that was introduced by Georg Cantor in 1883. However,
Mandelbrot [32] in 1982 put forward a novel point of view according to which fractals are
typical of nature rather than exceptional. This point of view is also confirmed from within
pure mathematics by the spectacular development of the analysis on fractals and metric
measure spaces over the past three decades, which sheds new light on some aspects of
classical analysis in Rn. See [1] for a very good introduction to analysis on fractals.

There is nowadays no commonly accepted rigorous definition of the term “fractal”.
Typical fractal sets are obtained by some self-similar constructions as limits of sequences of
iterations. Important examples of fractal sets are the Sierpinski gasket (SG) and Sierpinski
carpet (SC) that were introduced by Wac law Sierpiński in 1915. They are shown on Fig.
2, 3 and 4, 5, respectively.

Figure 2: Sierpinski gasket, α = log 3
log 2 ≈ 1.58

Figure 3: Three interations of construction of SG
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Figure 4: Sierpinski carpet, α = log 8
log 3 ≈ 1.89

Figure 5: Two iterations of construction of SC

Another example of a fractal is the Vicsek snowflake (VS) shown on Fig. 6 and 7.

Figure 6: Vicsek snowflake

Figure 7: Three iterations of construction of VS
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4 Dirichlet forms

On certain metric spaces, including fractal spaces, it is possible to construct a Laplace-type
operator, by means of the theory of Dirichlet forms by Fukushima [15].

A (symmetric) Dirichlet form in L2 (M,μ) is a pair (E ,F) where F is a dense subspace
of L2 (M,μ) and E is a symmetric bilinear form on F with the following properties:

1. It is positive definite, that is, E (f, f) ≥ 0 for all f ∈ F .

2. It is closed, that is, F is complete with respect to the norm

(∫

M
f2dμ + E (f, f)

)1/2

.

3. It is Markovian, that is, if f ∈ F then f̃ := min(f+, 1) ∈ F and E(f̃ , f̃) ≤ E (f, f).

Any Dirichlet form has the generator: a positive definite self-adjoint operator L in
L2 (M,μ) with domain dom (L) ⊂ F such that

(Lf, g) = E (f, g) for all f ∈ dom (L) and g ∈ F .

For example, the bilinear form

E (f, g) =
∫

Rn

∇f ∙ ∇g dx (2)

in F = W 1,2 (Rn) is a Dirichlet form in L2 (Rn, dx), whose quadratic part is the Dirichlet
integral. Its generator is L = −Δ with dom (L) = W 2,2 (Rn) .

Another example of a Dirichlet form in L2 (Rn, dx):

E(f, f) =
∫

Rn

∫

Rn

(f(x) − f(y))2

|x − y|n+s dx dy, (3)

where s ∈ (0, 2) and F = B
s/2
2,2 (Rn) . It has the generator L = cn,s (−Δ)s/2 with a positive

constant cn,s.
A Dirichlet form (E ,F) is called local if E (f, g) = 0 for any two functions f, g ∈ F

with disjoint compact supports, and (E ,F) is called strongly local if E (f, g) = 0 whenever
f = const in a neighborhood of supp g. The Dirichlet form (E ,F) is called regular if
C0 (M) ∩ F is dense both in F and C0 (M), where C0 (M) is the space of continuous
functions on M with compact supports endowed with the sup-norm.

For example, both Dirichlet forms (2) and (3) are regular, the form (2) is strongly
local, while the form (3) is nonlocal.

The generator of any regular Dirichlet form determines the heat semigroup
{
e−tL

}
t≥0

,

as well as a Markov process {Xt}t≥0 on M with the transition semigroup e−tL, that is,

Exf (Xt) = e−tLf(x) for all f ∈ C0 (M) .

If (E ,F) is local then {Xt} is a diffusion while otherwise the process {Xt} contains jumps.
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For example, the Dirichlet form (2) determines Brownian motion in Rn, whose transi-
tion density is exactly the Gauss-Weierstrass function

pt(x) =
1

(4πt)n/2
exp

(

−
|x|2

4t

)

.

The Dirichlet form (3) determines a jump process: a symmetric stable Levy process of the
index s. In the case s = 1 its transition density is the Cauchy distribution

pt(x) =
cnt

(
t2 + |x|2

)n+1
2

=
cn

tn

(

1 +
|x|2

t2

)−n+1
2

,

where cn = Γ
(

n+1
2

)
/π(n+1)/2. For an arbitrary s ∈ (0, 2) we have

pt(x) '
1

tn/s

(

1 +
|x|
t1/s

)−(n+s)

.

If a metric measure space M possesses a strongly local regular Dirichlet form (E ,F)
then we consider its generator L as an analogue of the Laplace operator. In this case the
differential calculus is defined on M .

Nontrivial strongly local regular Dirichlet forms have been successfully constructed
on large families of fractals, in particular, on SG by Barlow–Perkins [8], Goldstein [16]
and Kusuoka [28], on SC by Barlow–Bass [3] and Kusuoka–Zhou [29], on nested fractals
(including VS) by Lindstrøm [30], and on p.c.f. fractals by Kigami [26], [27].

In fact, each of these fractals can be regarded as a limit of a sequence of approximating
graphs Γn (Fig. 8).

Figure 8: Approximating graphs Γ1, Γ2, Γ3 for SG

Define on each Γn a Dirichlet form En by

En (f, f) =
∑

x∼y

(f(x) − f(y))2

where x ∼ y means that the vertices x and y are neighbors, and then consider a scaled
limit

E (f, f) = lim
n→∞

RnEn (f, f) (4)

with an appropriately chosen renormalizing sequence {Rn} . The main difficulty is to ensure
the existence of {Rn} such that this limit exists and is nontrivial for a dense family of f .
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For p.c.f. fractals one chooses Rn = ρn where, for example, ρ = 5
3 for SG and ρ = 3 for

VS, and the limit exists due to monotonicity (Kigami [27]).
For SC the situation is much harder. Initially a strongly local Dirichlet form on SC was

constructed by Barlow and Bass [3] in a different way by using a probabilistic approach.
After a groundbreaking work of Barlow, Bass, Kumagai and Teplyaev [6] proving the
uniqueness of a canonical Dirichlet form on SC, it became possible to claim that the limit
(4) exists for a certain sequence {Rn} such that Rn ' ρn, where the exact value of ρ is
still unknown. Numerical computation in [7] indicates that ρ ≈ 1.25. It is also an open
question whether the limit limn→∞ ρ−nRn exists (see [4, Section 5, Problem 1]). Other
ways of constructing a strongly local Dirichlet form on SC can be found in [29] and [23].

5 Walk dimension

In all the above examples, the heat semigroup e−tL of the Dirichlet form (E ,F) is an
integral operator:

e−tLf(x) =
∫

M
pt (x, y) f(y)dμ(y),

whose integral kernel pt (x, y) is called the heat kernel of (E ,F) or of L. Moreover, in all
the above examples of strongly local Dirichlet forms the heat kernel satisfies the following
estimates

pt (x, y) �
C

tα/β
exp

(

−c

(
dβ(x, y)

t

) 1
β−1

)

, (5)

for all x, y ∈ M and t ∈ (0, t0) for some t0 > 0 (Barlow–Perkins [8], Barlow–Bass [5]). The
sign � means that the both inequalities ≤ and ≥ take place but possibly with different
values of the positive constants c, C.

Here α is necessarily the Hausdorff dimension, while β is a new parameter that is called
the walk dimension of the heat kernel (or that of the Dirichlet form). It can be regarded
as a numerical characteristic of the differential calculus on M .

We say that a metric space (M,d) satisfies the chain condition (CC) if there exists a
constant C such that for all x, y ∈ M and for all n ∈ N there exists a sequence {xk}

n
k=0 of

points in M such that x0 = x, xn = y, and

d(xk−1, xk) ≤ C
d(x, y)

n
, for all k = 1, ..., n.

For example, if the metric d is geodesic then this condition is satisfied with C = 1.
Assume that (5) holds with t0 = ∞. By [33], (5) implies (CC), while by [20], (CC)

together with (5) yields
α ≥ 1 and 2 ≤ β ≤ α + 1. (6)

Conversely, it was shown by Barlow [2], that any pair (α, β) satisfying (6) can be realized
in the estimate (5) on a geodesic metric space.

Hence, we obtain a large family of metric measure spaces, each of them being char-
acterized by a pair (α, β) where α is responsible for integration while β is responsible for
differentiation. The Euclidean space Rn belongs to this family with α = n and β = 2. In
the case β = 2 the estimate (5) is called Gaussian, while in the case β > 2 – sub-Gaussian.

On fractals the value of β is determined by the scaling parameter ρ. It is known that:

• on SG: β = log 5
log 2 ≈ 2.32
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• on VS: β = log 15
log 3 ≈ 2.46

• on SC: β = log(8ρ)
log 3 where the exact value of ρ is unknown; the approximation ρ ≈ 1.25

indicates that β ≈ 2.10.

The walk dimension β has the following probabilistic meaning. Denote by τΩ the first
exit time of Xt from an open set Ω ⊂ M , that is,

τΩ = inf {t > 0 : Xt /∈ Ω}

(Fig. 9). Then in the above setting, for any ball B (x, r) with r < const t
1/β
0 we have

ExτB(x,r) ' rβ .

Figure 9: Exit from a ball B (x, r)

6 Besov spaces and characterization of β

Given an α-regular metric measure space (M,d, μ) , it is possible to define a family Bσ
p,q

of Besov spaces (see [18]). However, here we need only the following special cases: for any
σ > 0 the space Bσ

2,2 consists of functions such that

‖f‖2
Bσ

2,2
:= ‖f‖2

2 +
∫ ∫

M×M

|f(x) − f(y)|2

d (x, y)α+2σ dμ(x)dμ(y) < ∞

and Bσ
2,∞ consists of functions such that

‖f‖2
Bσ

2,∞
:= ‖f‖2

2 + sup
0<r<1

1
rα+2σ

∫ ∫

{d(x,y)<r}

|f(x) − f(y)|2 dμ(x)dμ(y) < ∞.

It is easy to see that Bσ
2,2 shrinks as σ increases and that in the case σ < 1 the space Bσ

2,2

contains the space Lip0 of compactly supported Lipschitz functions. In Rn the space Bσ
2,2

becomes {0} if σ > 1, so that for σ > 1 the definition of the Besov spaces in Rn changes.
However, in our setting we are interested in the borderline value of σ at which the space
Bσ

2,2 degenerates. Hence, define the critical value of the parameter σ by

σcrit := sup
{
σ > 0 : Bσ

2,2 is dense in L2
}

. (7)

In the next theorem, (M,d, μ) is a metric measure space with relatively compact balls.
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Theorem 1 (AG–J.Hu–K.-S.Lau [20]) Let (E ,F) be a Dirichlet form on L2 (M,μ) such
that its heat kernel exists and satisfies for some α > 0, β > 1 the sub-Gaussian estimate

pt (x, y) �
C

tα/β
exp

(

−c

(
dβ(x, y)

t

) 1
β−1

)

(8)

for all t > 0 and μ-almost all x, y ∈ M . Then the following is true:

1. the space (M,d, μ) is α-regular, α = dimH M and μ ' Hα;

2. σcrit = β/2 (consequently, β ≥ 2);

3. F = B
β/2
2,∞ and E (f, f) ' ‖f‖2

.
B

β/2

2,∞

.

Partial results in this direction were previously obtained by Jonsson [25] and Pietruska-
Paluba [34].

Corollary 2 Both α and β in (8) are invariants of the metric structure (M,d) alone.

Note that the value σcrit is defined by (7) for any α-regular metric space. In the view of
Theorem 1 it makes sense to redefine the notion of the walk dimension simply as 2σcrit. In
this way, the walk dimension becomes a second important invariant of any regular metric
space, after the Hausdorff dimension.

An open question. Let (M,d, μ) be an α-regular metric measure space (even self-
similar). Assume that σcrit < ∞ and set β = 2σcrit. When and how can one construct a
strongly local Dirichlet form on L2 (M,μ) with the heat kernel satisfying (8)?

The result of [11] hints that such a Dirichlet form is not always possible.

7 Dichotomy of self-similar heat kernels

Let (M,d) be a metric space where all metric balls are relatively compact, and let μ be
a Radon measure on M with full support. A Dirichlet form (E ,F) on L2 (M,μ) is called
conservative if its heat semigroup satisfies e−tL1 ≡ 1.

Theorem 3 (AG–Kumagai [22]) Assume that (M,d) satisfies in addition the chain condi-
tion (CC) (see Section 5). Let (E ,F) be a regular conservative Dirichlet form on L2 (M,μ)
and assume that the heat kernel of (E ,F) satisfies for all t > 0 and x, y ∈ M the estimate

pt (x, y) �
C

tα/β
Φ

(

c
d (x, y)

t1/β

)

,

where α, β > 0 and Φ is a positive monotone decreasing function on [0,∞). Then (M,d, μ)
is α-regular, β ≤ α + 1, and the following dichotomy holds:

• either the Dirichlet form E is strongly local, β ≥ 2, and

Φ(s) � C exp
(
−cs

β
β−1

)
,

• or the Dirichlet form E is non-local and

Φ(s) ' (1 + s)−(α+β) .
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That is, in the first case pt (x, y) satisfies the sub-Gaussian estimate

pt (x, y) �
C

tα/β
exp

(

−c

(
dβ(x, y)

t

) 1
β−1

)

(9)

while in the second case we obtain a stable-like estimate

pt (x, y) '
1

tα/β

(

1 +
d (x, y)

t1/β

)−(α+β)

' min

(
1

tα/β
,

t

d (x, y)α+β

)

. (10)

8 Estimating heat kernels: strongly local case

Let (M,d, μ) be an α-regular metric measure space. Let (E ,F) be a strongly local regular
Dirichlet form on L2 (M,μ). For any Borel set E ⊂ M and any f ∈ F denote

EE (f, f) =
∫

E
dν〈f〉,

where ν〈f〉 is the energy measure of f (see [15, p.123]). For example, in Rn with the

classical Dirichlet form (2) we have dν〈f〉 = |∇f |2 dx.

Definition. We say that (E ,F) satisfies the Poincaré inequality with exponent β if, for
any ball B = B (x, r) on M and for any function f ∈ F ,

EB (f, f) ≥
c

rβ

∫

εB

(
f − f

)2
dμ, (PI)

where εB = B (x, εr), f = 1
μ(εB)

∫
εB fdμ, and c, ε are small positive constants independent

of B and f . For example, in Rn (PI) holds with β = 2 and ε = 1.

Let A b B be two open subsets of M . Define the capacity of the capacitor (A,B) as
follows:

cap(A,B) := inf
{
E (ϕ,ϕ) : ϕ ∈ F , ϕ|A = 1, supp ϕ b B

}
.

Here E b B means that the closure E of E is a compact set and E ⊂ B.

Definition. We say that (E ,F) satisfies the capacity condition if, for any two concentric
balls B0 := B(x,R) and B := B(x,R + r),

cap(B0, B) ≤ C
μ (B)

rβ
. (cap)

For any function u ∈ L∞ ∩ F and a real number κ ≥ 1 define the generalized capacity
cap(κ)

u (A,B) by

cap(κ)
u (A,B) = inf

{
E
(
u2ϕ,ϕ

)
: ϕ ∈ F , 0 ≤ ϕ ≤ κ, ϕ|A ≥ 1, ϕ = 0 in Bc

}
.

If u ≡ 1 then cap(κ)
u (A,B) = cap(A,B).

Definition. We say that the generalized capacity condition (Gcap) holds if there exist
κ ≥ 1 and C > 0 such that, for any u ∈ F ∩L∞ and for any two concentric balls
B0 := B(x,R) and B := B(x,R + r),

cap(κ)
u (B0, B) ≤

C

rβ

∫

B
u2dμ. (Gcap)
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Theorem 4 (AG–J.Hu–K.S.Lau [21]) The following equivalence takes place

(CC) + (PI) + (Gcap) ⇔ (9). (11)

In fact, this result was proved in [21] in a slightly weaker form: assuming the chain
condition (CC), we have the equivalence

(PI) + (Gcap) ⇔ (9).

It was later proved by Mathav Murugan [33] that

(9) ⇒ (CC) ,

whence (11) follows. Besides, the condition (Gcap) was formulated in [21] in a different,
more complicated form. The present form of (Gcap) was introduced in [19].

The main open question in this field is whether the following conjecture is true.

Conjecture. (CC) + (PI) + (cap) ⇔(9).

The implication ⇐ clearly is true by Theorem 4, so the main difficulty is in the impli-
cation ⇒ .

9 Estimating heat kernels: jump case

Let (M,d, μ) be an α-regular metric measure space. Let now (E ,F) be a regular Dirichlet
form of jump type on L2 (M,μ), that is,

E (f, f) =
∫∫

M×M

(f(x) − f(y))2 J(x, y)dμ(x)dμ(y)

for all f ∈ F ∩C0 (M) . Here J (x, y) is a symmetric non-negative function in M ×M that
is called the jump kernel of (E ,F).

We use the following condition instead of the Poincaré inequality:

J(x, y) ' d (x, y)−(α+β) . (J)

Theorem 5 (AG–E.Hu–J.Hu [19] and Z.Q.Chen–Kumagai–J.Wang [14])

(J) + (Gcap) ⇔ (10).

In the case β < 2 it is easy to show that (J)⇒ (Gcap) so that in this case we obtain
the equivalence

(J) ⇔ (10).

The latter was also shown by Chen and Kumagai [13], although under some additional
assumptions about the metric structure of (M,d).

Conjecture. (J) + (cap) ⇔ (10).
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10 Ultra-metric spaces

Let (M,d) be a metric space. The metric d is called an ultra-metric and (M,d) is called
an ultra-metric space if, for all x, y, z ∈ M,

d(x, y) ≤ max{d(x, z), d(z, y)}. (12)

A famous example of an ultra-metric space is the field Qp of p-adic numbers endowed with
the p-adic distance (here p is a prime). Also Qn

p is an ultra-metric space with an appropriate
choice of a metric. Denoting by μ the Haar measure on Qn

p , we have μ (B (x, r)) ' rn so
that Qn

p is n-regular.
Ultra-metric spaces are totally disconnected and, hence, cannot carry non-trivial strongly

local regular Dirichlet forms. However, it is easy to build jump type forms. Let (M,d) be
an ultra-metric space where all balls are relatively compact, and let μ be a Radon measure
on M with full support. Let us fix a cumulative probability distribution function φ (r) on
(0,∞) that is strictly monotone increasing and continuous, and consider on M × M the
function

J(x, y) =
∫ ∞

d(x,y)

d log φ(r)
μ (Br(x))

, (13)

where the integration is done over the interval [d (x, y) ,∞) against the Lebesgue-Stieltjes
measure associated with the function r 7→ log φ (r).

Theorem 6 (A.Bendikov, AG, Ch.Pittet, W.Woess [10]) The jump kernel (13) deter-
mines a regular Dirichlet form (E ,F) in L2 (M,μ), and its heat kernel is

pt(x, y) =
∫ ∞

d(x,y)

dφt(r)
μ (Br(x))

. (14)

See also [9] for further heat kernel bounds on ultra-metric spaces.
For example, take M = Qn

p and

φ(r) = exp

(

−
(p

r

)β
)

, (15)

where β > 0 is arbitrary. Then one obtains from (13) by an explicit computation that

J(x, y) = cp,n,β d(x, y)−(n+β) (16)

and

pt(x, y) '
1

tn/β

(

1 +
d(x, y)
t1/β

)−(n+β)

.

It follows that, for any β > 0, the space B
β/2
2,2 coincides with the domain of the Dirichlet

form with the jump kernel (16) and, hence, is dense in L2. Consequently, we obtain by (7)
σcrit = ∞ so that Qn

p has the walk dimension ∞.
On Fig. 10 we represent graphically a classification of regular metric spaces according

to the walk dimension β = 2σcrit. Clearly, the Euclidean spaces Rn and p-adic spaces Qn
p

form the boundaries of this scale, and the entire interior is filled with fractal spaces.
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Figure 10: Classification of regular metric spaces by the walk dimension β = 2σcrit
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