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Introduction

The purpose of this paper is to introduce a new emerging area of research — the theory of path
homology on digraphs, that is also known as GLMY-homology.

There exists a number of ways to define the notion of homology for graphs and digraphs, for example,
clique homology ([6], [33]) or singular homology ([3], [33], [37]). However, the path homology
has certain advantages as it enjoys adequate functorial properties with respect to graph-theoretical



operations, such as morphisms of digraphs, Cartesian products, joins, homotopy etc. The notion of
path homology has a rich mathematical content, and I hope that it will become a useful tool in various
areas of pure and applied mathematics.

Sections 1 and 3 contain a survey of the results obtained in [18], [20], [22], [26], [29], [30], while the
results of Sections 2, 4, 5 and 6 are entirely new.

For further reading on this subject and related topics I recommend [1], [2], [4], [5], [7], [8], [9], [10],
[11],[12], [13], [14], [15], [16], [17], [19], [21], [23], [24], [25], [27], [28], [31], [32], [35], [36].
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1 Spaces of J-invariant paths

The material of this section is based on [20] and [22].

1.1 Paths and the boundary operator

Let V be a finite set whose elements will be called vertices. For any p > 0, an elementary p-path
is any sequence 4o, ..., 7, of p + 1 vertices of V' (allowing repetitions). Fix a field K and denote by
A, = A, (V,K) the K-linear space that consists of all formal K-linear combinations of elementary
p-paths in V. Any element of A, is called a p-path.

An elementary p-path i, ..., 7, as an element of A, will be denoted by €iy...ip- FOr example, we have
Ao=(e;:i€V), M={(ej:i,j€V), A= (eyr:i,j,keV)

Any p-path u can be written in a form v = ) ot e i, where ufolt-ir € K.

10,11, yipeV U
Definition. Define for any p > 1 a linear boundary operator 0 : A, — A,_; by
p
Ociy..iy = ¥ (—1)? Cio o (1.1)
q=0

where ~ means omission of the index. Set A_; = {0} and define 0 : Ag — A_; by 9 = 0.

For example, Oe; = 0, Oe;j = e; —e; and Oe;ji, = eji — e + €45.
Lemma 1.1. [20], [22, Lemma 2.1] We have 0> = 0.

Proof. Indeed, for any p > 2 we have

p
8261'0”_1'17 = (_1)q 861.0
=0

q

lgeadp



q—1 p

p
:Z(_l)q Z(_l)rem...ﬁ...i}..z’ﬁ Z s Vi Cig.iqunin..ip

q:O r=0 r:qul
= (_1)q+re' ~ -~ . — (_1)q+re' o~ L,
10 .eilg.. lp z : 10...0g . lp...lp
0<r<g<p 0<g<r<p

After switching ¢ and r in the last sum we see that the two sums cancel out, whence 82610“.% =0.
This implies 9*u = 0 forallu € A,. m

Hence, we obtain a chain complex A, (V):

00— Ag & A & 0 & A Lo, &

Definition. An elementary p-path e;,. ;, is called regular if iy, # iy forall k = 0,...,p — 1, and
irregular otherwise.

Let Z,, be the subspace of A, spanned by irregular p-paths €ig...i,- We claim that 01, C I,—1. Indeed,
if e;,..4, is irregular then ¢, = i for some k. We have

0eig...ip, = €iy..iy — Cigig..iy T -
k k+1
+ (=1)" €ig..ip_yiprringonip T (1) €igoip_vininiz...ip (1.2)
o (=D ey iy g

By ix = %x41 the two terms in the middle line of (1.2) cancel out, whereas all other terms are
non-regular, whence Oe;.;, € Z)1.

Hence, 0 is well-defined on the quotient spaces R, := A,/Z,, and we obtain the chain complex
R (V):
0« Ry £ Ry & ... & ry &R, &

By setting all irregular p-paths to be equal to 0, we can identify R, with the subspace of A, spanned
by all regular paths. For example, if 7 # j then e;;; € R2 and

86@‘,‘ = €j; — € T €5 = €j; + €

because e;; = 0 in Ro.

1.2 Chain complex (2,
Definition. A digraph (directed graph) is a pair G = (V, E) of a set V of vertices and E C
{V x V '\ diag} is a set of arrows (directed edges). If (i, j) € E then we write i — j.

Definition. Let G = (V, E) be a digraph. An elementary p-path 4g...i, on V is called allowed if
i — tpy1 forany k =0, ...,p — 1, and non-allowed otherwise.

Let A, = A, (G) be K-linear subspace of A, spanned by allowed elementary p-paths:
Ap = (€ig...i, * t0-..p is allowed).

The elements of 4, are called allowed p-paths. Since any allowed path is regular, we have A, C R,,.

We would like to build a chain complex based on subspaces A, of R,,. However, the spaces A, are
in general not invariant for 0. For example, in the digraph

a b c
o — 0 — o



we have egp. € Ag but degpe = €pe — €qc + €qp ¢ A1 because e, is non-allowed.

Consider the following subspace of \A,,
0 =9Q,(G) ={uecA,:0uec Ay_1}.

We claim that 09, C Q,_1. Indeed, u € €, implies Ou € A, and 0 (Ou) = 0 € A,_», whence
ou € Qp_l.

Definition. The elements of (2, are called 0-invariant p-paths.

Thus, we obtain a chain complex Q. = Q, (G) :

0 — 9 Lo & . 2o, o .. (13)

By construction we have Qg = A and ; = A;, while in general Q, C A,,.

Proposition 1.2. [20] If dim 2, < 1 then Q,, = {0} forallp > n + 1.

We say that a pair a, b forms a double arrow if a — b and b — a.

Proposition 1.3. [20] If G contains no double arrow and dim Q,, < 2 then Q,, = {0} forallp > n+2.

1.3 Path homology

Definition. Path homologies of G are defined as the homologies of the chain complex 2, (G):

H, = H, (G) = kerd]g, / Im d|q

p+1°

For a vector space U over K we write
|U| = dimg U.

Define the Betti numbers of G by
/Bp = 6p(G) = ’Hp| .
For any N € N define the Euler characteristic of G of the order N by
(N) _ (V) -
X =xTG) = 3 (1)
p:

If the sequence {€,,} is finite in the sense that 2, = {0} for large enough p, then, for large enough N,

W == 3 110, = 3D (1,
p=0 p=0
Proposition 1.4. If X and Y are two disjoint digraphs then

Proof. Clearly, any allowed elementary p-path on X UY is contained in X or Y. It follows that the
same property is true for O-invariant paths, so that

QO (XUY)=Q,(X)®Q, (V).

Hence, the same identity holds for homology groups, whence (1.4) follows. m



Proposition 1.5. We have (3, (G) = #of connected components of G.

Proof. 1t suffices to prove that if G is connected then 5, = 1. We have 3, = |Qo| — |0€21] . Let the
set of vertices of G be {1,...,n} so that |Qg| = n. Since Q; is spanned by all arrows e;;, i — j, the
space 0€); is spanned by all differences e; — e; where ¢ — j. Since there is an edge path between
the vertex 1 and any other vertex 4, it follows that 92, contains e; — e; for any vertex 7 > 1. These
n — 1 elements of 9€); are linearly independent while any other difference e; — e; is expressed as
(ej —e1) — (e; —e1). Hence, |0 | =n—1land By =1. m

1.4 Digraph morphisms

Let X and Y be two digraphs. For simplicity of notations, we denote the sets of vertices of X and Y
by the same letters X resp. Y.

Definition. A mapping f : X — Y between the sets of vertices of X and Y called a digraph map (or
morphism) if
a—bonX = f(a) — f(b) or f(a)=f(b) onY.

In other words, any arrow of X under the mapping f either goes to an arrow of Y or collapses to a
vertex of Y.

We say that a digraph Y is a subgraph of a digraph X if the sets of vertices and arrows of Y are
subset of the sets of vertices and arrows of X, respectively. In this case we have a natural inclusion
1 : Y — X thatis clearly a digraph morphism. A subgraph Y of X is called induced if, for any two
vertices a, b of Y such that there is an arrow a — b in X, there is also an arrow @ — bin Y.

To give another example of a morphism, assume that a vertex set of a digraph X splits into a disjoint
union of n subsets A, ..., Ay, and construct a digraph Y of n vertices a1, ..., a,, that is obtained from
X by merging all the vertices from A; into a single vertex a; of Y. More precisely, we have an arrow
a; — a; in Y if and only if there are x € A; and y € A; such that x — y in X.

An example of a merging map u

We have a natural merging map p : X — Y such that p (z) = a; for any x € A;. Clearly, a merging
map is a digraph morphism that keeps any arrow x — y if « and y belong to different sets A; and
collapses an arrow x — y into a vertex if x, y belong to the same A;.

Any digraph morphism f : X — Y induces a mapping fi : A, (X) — A, (Y) as follows: first set

fe (€ig..in) = €1(i0)...f (in)>
and then extend f, by linearity to all of A,, (X).

Proposition 1.6. Let f : X — Y be a digraph morphism. Then the induced mapping f. : A, (X) —
A, (Y) extends to a chain mapping f. : Qn (X) — Q,(Y) and, hence, to homomorphism f, :
H,(X)— H,(Y).



Proof. If e;, ;, isirregular then f, (e;, ;) is also irregular. Therefore, f, maps the space Z,, (X) of
irregular paths on X into Z,, (Y"). It follows that f. maps R,, (X) = A, (X) /Z,, (X) into R,, (V).

Next, f. maps the space A, (X)) of allowed paths into A,, (Y): if e;,. ;, is allowed then i, — 541
for all k, which implies that either f (i) — f (ix+1) for all k and, hence, f. (e;,. ., ) is also allowed,
or f (ix) = f (ix+1) for some k so that f (e;,. 4, ) is irregular, thus f. (e;,.. i) = 0.

Clearly, f. commutes with 0, which implies that f, maps €, (X) into Q,, (Y) and f, is a chain
mapping. Consequently, we obtain a homomorphism of homology groups f. : H,(X) — H,(Y). =

Further examples of digraph morphisms will be given in Sections 1.8 and 2.3.

1.5 Examples of O-invariant paths

A triangle is a sequence of three distinct vertices a, b, ¢
suchthata — b — ¢, a — c.
It determines a 2-path e, € 2o because egp. € Ao

and Oegpe = €pe — €ae + €ap € Ai. a b

A square is a sequence of four distinct vertices a, b, V', ¢

b' c
such thata — b — ¢, a — b’ — c while a /4 c.
It determines a 2-path u = egpc — €qpre € (2o because
u € Ay and
ou = (ebc — €qc t+ 6ab) - (eb’c —€qc t+ eab’) “ N
= €gp + €hec — €qly — €p/c € -/41~
. o s . a
An m-square is a sequence of m + 3 distinct vertices
a, b07 b17 cony bm7 c
by b

such that a — by — ¢ Vk =0,...,m, while a / c.

P

An m-square determines O-invariant 2-paths
Uij = €abe — €abje € o forall i, j =0,...,m,
and among them the following m paths are linearly independent:
U0j = €aboe — Cabjey J = 1, ..y
Clearly, an 1-square is a square in the above sense. Any m-square with m > 2 is called a multisquare.

A p-simplex (or p-clique) is a configuration of p + 1

distinct vertices, say, 0, 1, ..., p, such that: — j Vi < j. 5
It determines a p-path eq1.., € €,,.
Here is a 3-simplex:

I

3
A p-snake is a configuration of p + 1 a2
1 1

0
i
distinct vertices, say 0,1, ..., p, with
the following arrows:
W.,'_l v ‘

t—1+1foralli =0,....,p—1, +3
1t —1+2 foralli =0,....,p— 2.




In particular, any triple i (¢ + 1) (¢ + 2) forms a triangle fori = 0,...,p — 2.

A p-snake determines a O-invariant p-path eq;.. . Indeed, this path is obviously allowed, and its

boundary
P

deot..p = ZO(—l)q60..-(q—1)(q+1)---p
q:

is also allowed because ¢ — 1 — ¢ + 1. Hence, €;,. i, € Qp.

A toy snake

Clearly, a p-simplex contains a p-snake.

A 3-cube is a sequence of 8 vertices 0,1,2,3,4,5,6,7,
connected by arrows as shown here:

A 3-cube determines a J-invariant 3-path
u = eg237 — €0137 + €0157 — €o457 + €o467 — €o267 € (23
because u € Az and
Ou = (ep13 — €023) + (€157 — €e137) + (€237 — €267)
— (€046 — €026) — (€457 — es67) — (€015 — €oas) € As.

A trapezohedron of order m > 2 is
a configuration of 2m + 2 distinct

vertices

im—l

a, b,io, ce ,’im_l,jo, . 7jm—1
with 4m arrows:
a—ig, Jjp—b Jm
and
U = Jks Uk = Jk+1
forallk =0,...,m — 1, where k is
understood mod m.
The trapezohedron gives rise to the following O-invariant 3-path:

m—1
Tm= ). (eaikjkb - eaikjk+1b) :
k=0
Indeed, 7, is clearly allowed, and its boundary is also allowed because

1

3
[

OTm = 9 (eaikjkb - eaik]'kﬂb)
k=0
m=1 m—1
= (eikjkb - eikjkﬂb) - Z (eaikjk - eaikij)

k=0 k=0
m=1 m—1

- (eajkb - eajk+1b) + Z (eaikb - eaikb) s
k=0 k=0

i+l

_ik+|

(1.5)

(1.6)

a7



where the both sums in (1.6) are allowed, while both sums in (1.7) vanish.

a

A trapezohedron of order m = 2 is shown here:

In this case we have
T2 = €aigjob — €aigj1b T €ai1j1b — €aitjob-

b

A trapezohedron of order m > 3 can be realized as a convex polyhedron in R? with flat faces. For
example, a trapezohedron of order m = 3 coincides with a 3-cube:

In this case we have

T3 = ea’iojob - eaiojlb + eailjlb - eailjzb
+e(li2j2b - 6ai2j0b7
and 73 coincides (up to a sign)

with the aforementioned 3-path
determined by a 3-cube.

A trapezohedron of order m = 4
is a tetragonal trapezohedron:

In this case we have

iO i2
T4 = eaiojob - eaiojlb + eailjlb - eailjzb )
i J3
FCaizjzb — €aizjab + €aisjab ~ Caizjob- Ji
b
1.6 Examples of spaces (1, and I,
Here is a triangle as a digraph:
2

We have 1 = (eg1, €02, €12), Q22 = (€012)-
Since ker 0|, = (ep1 — ep2 + e12) and

eo1 — ep2 + e12 = deq1a,
it follows that H; = {0}. 0 1
Q, = {0} for p > 3 and H, = {0} forp > 2.

Here is a square as a digraph:

We have €1 = (eo1, €02, €13, €23), 22 = (€013 — €023)-
Since ker 0|, = (eo1 — eg2 + €13 — e23) and

eo1 — €02 + €13 — e23 = 0 (€013 — €023)
it follows that H; = {0}. 0 |
Q, = {0} for p > 3 and H, = {0} forp > 2.




Here is a 4-cycle that is called a diamond: 3 :
We have 21 = (eg2, €03, €12, €13),

Hy = ker d|q, = (eo2 — €03 — €12 + €13)
Q, = {0} and H, = {0} forall p > 2.

(=
1)

Consider a hexagon with two diagonals:

Here (2 = (e013 — €023, €014 — €024)»

Hy = (e13 — e53 + €51 — €14),

Q, = {0} for p > 3 and H, = {0} forp > 2.

8]

Consider an octahedron based on a diamond:

Space €25 is spanned by 8 triangles: 0

Qo = (eo24, €034, €025, €035, €124, €134, €125, €135)
Hy = <€024 — €034 — €025 1+ €035 — €124 + €134 + €125 — 6135)
Q, ={0} forp >3 and H, = {0} forp=1andp > 3. d

Consider an octahedron based on a square:
Qy = <€0247 €025, €014, €015, €234, €235, €134, €135, €013 — 6023> 4
Q3 = (e0234 — €0134, €0235 — €0135), 2p = {0} Vp >4
We have ker 0|, = (u,v) where

u = €p24 + €234 — €014 — €134 + (€013 — €023)

v = egas + €235 — €015 — €135 + (€013 — €023)
but Hy = {0} because

u = 0 (€ep234 — €0134) and v = 0 (ep235 — €0135) -

In fact, H, = {0} forall p > 1.

Consider a 3-cube:

Space €5 is spanned by 6 squares:

Qo = (eo13 — €023, €015 — €045, €026 — €046, 2 £

€137 — €157, €237 — €267, €457 — e467>

Space €23 is spanned by one 3-cube:

Q3 = (eg237 — €o137 + €0157 — €04s7 + €0467 — €0267) 0 |
Q, = {0} forall p > 4 and H, = {0} forall p > 1.

1.7 An example of computation of (), and H,

Consider a square with a diagonal:
We have Qo = .A(] == <60, €1, €2, 63>, |Qo| = 4,

O = A1 = (eo1, €02, €13, €23, €30), || =5, 0 l

10



and Ay = <6013,6023,6130,6230,6301,6302>, ’AQ‘ = 6. To determine ()5, let us first compute
0| 4, mod Aj:

Jep13 = €13 — ep3 + €o1 = —ep3 mod A
Jega3 = €23 — €p3 + €p2 = —ep3 mod A
Je13p = e3p — €10 + €13 = —e1p mod Ay
Jeazn = €30 — €20 + €23 = —ezp mod Ay
Oezo1 = eg1 — e31 + e3p = —e3; mod A;
desna = ep2 — e32 + e3p = —e3z mod A;
We have
€013 €023 €130 €230 €301 €302
€03 -1 -1 0
. e —1
D := matrix of 9| 4, mod A; = 10
€20 —1
€31 -1
€32 0 -1
and

QQ = ker a|_,42 mod .Al = nullspace D= (6013 — 6023>.

One can show that {Qp} = 0 for all p > 3 (which also follows from Proposition 1.2) and, hence,
{Hp} = 0forall p > 3.

Let us compute H; and Hs. We have for the basis in €)y:

degr = —eg + €1
8602 = —eg + €2
8613 = —e1 t+ €3
8623 = —eg t+ €3

6630 — €p — €3

Therefore,
€01 €02 €13 €23 €30
eg —1 =1 0 0 1
D :=matrixof d|g, = | e1 1 0O -1 0 o0
e 0 1 0 -1 0
es 0 0 1 1 -1
and

ker 8|91 = nullspace D = <601 + e13 — eg2 — €23, €g1 + €13 + 630>.
Similarly, for the basis in {22 we have
0 (e013 — eo23) = (e13 — €03 + eo1) — (e23 — €03 + €n2) = €01 + €13 — €p2 — €23

whence
Im d|q, = (ep1 + €13 — eg2 — e23) and ker d|q, = {0} .

It follows that Hy = {0} and
H; = ker 6|Ql/1m8\92 = <601 +e13 + 6’30).

As we have seen, computation of the spaces 2, (G) and H), (G) amounts to computing ranks and
null-spaces of matrices. We currently use for numerical computation of H), (G,F3) a C++ program
written by Chao Chen in 2012.

11



Problem 1.7. Devise an efficient algorithm/software for computation of the spaces €, for arbitrary
digraphs, possibly avoiding null-spaces of large matrices. Such algorithms exist for Qo and Q3. Are
there simpler ways of computing directly dim Q,, without computing the bases of €),,?

1.8 Structure of (),

As we know, Qy = (e;) consists of all vertices and €y = (e;; : i — j) consists of all arrows.

Definition. Let us call a semi-arrow any pairs (x,y) of distinct vertices x,y such that = /4 y but
x — z — y for some vertex z. We write in this case x — y

Theorem 1.8. [21, Proposition 2.9], [20].

(a) We have |Q| = |As| — s where s is the number of semi-arrows.

(b) The space Qg is spanned by all triangles e g, squares eqpe — €qiy . and double arrows e gy, .
Proof. (a) Recall that
Ay = span {egp. : abe is allowed }

and

Q={vedy:0ve A1} ={vedy:0v=0mod A }.

If abc is allowed then ab and bc are arrows, whence
OCabe = €pe — €ac + €ap = —€qc mod Aj.
If a = cor a — cthen e,. = 0mod A;. Otherwise ac is a semi-arrow, and in this case
eqec 7 0 mod Aj.

For any v € As, we have

v= Y 0™

{a—b—c}
from which it follows that

ov = — Z v™e,. mod Aj.

{a—b—c,a—c}
The condition 0v = O mod .A; is equivalent to
Z v®e,. = 0mod Aj,
{a—b—c, a—c}
which in turn is equivalent to
Z v®™¢ =0 for any semi-arrow ac. (1.8)
beV

The number of the equations in (1.8) is exactly s, and they all are linearly independent for different
semi-arrows, because a triple abc determines at most one semi-arrow. Hence, {2 is obtained from A5
by imposing s linearly independent conditions, which implies |Q3] = | A2| — s.

(b) Any allowed 2-path w can be represented as a sum of elementary 2-paths e;;;, with i — j — k
multiplied with a scalar ¢ # 0. If k = i then e, is a double arrow. If i # k and ¢ — k then e;;;, is a
triangle. Subtracting from w all double arrows and triangles, we can assume that w has no such terms
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any more. Then, for any term e;;;, in w we have ¢ # k and ¢ /* k. Fix such a pair 7, k and consider
any vertex j with i — j — k. Assume that e;;;, enters w with a coefficient ¢; # 0. Set

Wik — Z Cj€ijk (19)
J
so that w = ) ., wj. It suffices to verify that each wj, is a linear combination of squares. The 1-path
Ow is the sum of 1-paths of the form

0 (cjeijk) = Cj€j — Cj€ik + Cj€jk-

Since Jw is allowed but e;;, is not allowed, the term c;e;;, should cancel out after we sum up all such
terms over all possible j, that is,
> ¢ =0 (1.10)

J

Denote by {jo, j1, ---, jm } the sequence of all possible vertices j with i — j — k so that we obtain an
m-square:

.jO _//n

k
An m-square {4, {j;},", , k}
Then we obtain from (1.9)

m m
Wik =) cqeik = ) i (€ijik — €ijok)
=0 =1

because by (1.10)
l

Cjo = — Z Cjy -
=1
We conclude that w;y, is a linear combination of squares. m

Example 1.9. Let the digraph GG be an m-square shown on the above picture. It has one semi-arrow
i — k so that s = 1. Since |Az| = m + 1, we conclude that |Q22| = m. Indeed, the basis in Qs is
given by the sequence of m squares {e;jor — €ijk};; -

Observe that a triangle e, and a double arrow e, are images of a square eg13 — egez under merging
maps (cf. Subsection 1.4) as shown on these pictures:

L ::::‘\ 2 a
3 \“jc ‘{\ ¥10
0 !‘ A%a I b 0% i a
a merging map from a square onto a triangle a merging map from a square onto a double arrow
€013 — €023 " €abc — €acc = Cabc €013 — €023 ™ €aba — €aaa = Caba

Hence, we can rephrase Theorem 1.8 as follows: 25 is spanned by squares and their morphism images.
Or: squares are basic shapes of Q5.
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1.9 Path complex

The material of this section is based on [20], [22] and [26]. We discuss here the notion of path complex
that unifies digraphs and simplicial complexes.

Definition. A path complex on a finite set V' is a collection P of elementary paths on V such that if
10%1...tp—1%p € P then also 41...7, and 7g...2,_1 belong to P.

For example, each digraph G = (V, E) gives rise to a path complex P that consists of all allowed
elementary paths, that is, of the paths ig — 41 — ... — i,. In general, all paths in a path complex P
are also called allowed.

The above definitions of J-invariant paths, spaces 2, and H,, go through without any change to general
path complexes in place of digraphs because they are based on the notion of allowed paths only. In
fact, most of the results that are proved for path homology theory for digraphs remain true also for a
more general setting of path complexes.

Let us recall the definition of an abstract simplicial complex.

Definition. A simplicial complex with the set of vertices V' is a collection S of subsets of V' such that
if ¢ € S then any subset of ¢ is also an element of S.

Let us enumerate all elements of V' so that any subset o of V' can be regarded as a path ¢...7, with
ig < i1 < ... < ip. The above definition means that if io...i, € S then also any sub-path i, ...ix,
with 0 < kg < k1 < ... < kg < p belongs to §. Hence, a simplicial complex S is a path complex,
and the theory of path homologies applies for S.

In this case, A, consists of linear combinations of all p-dimensional simplexes in S and Q, = A,

because 8e,~0._,ip is always allowed if €i...i, 18 allowed. Hence, the path homology theory of a path
complex S coincides with the simplicial homology theory of S.

Path complexes

&L

Schematic relation between path complexes, digraphs and simplicial complexes

Let S be a simplicial complex with the vertex set V' as above. Define a digraph Gs as follows: the
vertex set of Gs is S, and for two simplexes a,b € S we have an arrow ¢ — b provided a O b and
la| = |b| + 1, that is, when b is a face of a of codim = 1. The digraph G is called the Hasse diagram
of S.

(¢) digraph G s based on B

If § is realized geometrically as a collection of simplexes in R™ then Gs can be realized on the set of
vertices Bgs consisting of barycenters of the simplexes of S as on the picture. The relation between
simplicial homology H P! with the path homology H is given by the following theorem.

Theorem 1.10. [26, Corollary 5.4] We have

H™(S) = H, (Gs) .

14



1.10 Triangulation as a closed path

Given a closed oriented n-dimensional manifold M, let 7" be its triangulation, that is, a partition into
n-dimensional simplexes. Denote by V' = {0, 1, ...} the set of all vertices of the simplexes from 7'
and by E — the set of all edges, so that (V, E) is a graph embedded on M.

Let us introduce make each edge (i,j) € F into an arrow ¢ — j if i < j and into j — i if
7 > 7. Then each simplex from 7" becomes a digraph-simplex. Denote by T the set of all digraph
simplexes constructed in this way. That is, ig...2,, € T if 10...1n 1S @ monotone increasing sequence
that determines a simplex from 7'. Clearly, any such path ig...7, is allowed.

For any simplex from T with the vertices ig...7,, define the quantity o?0» to be equal to 1 if the
orientation of the simplex ig...7,, matches the orientation of the manifold M, and —1 otherwise. Then
consider the following allowed n-path on the digraph G = (V, E):

o= > e .. (1.11)
i0ein€T
Lemma 1.11. [20] The path o is closed, that is, 0o = 0, which, in particular, implies that o is

O-invariant.

Proof. Observe that Oo is a linear combination with coefficients &1 of the terms ej,.. ;, , where the
sequence jo, ..., jn—1 is monotone increasing and forms an (n — 1)-dimensional face of one of the
n-simplexes from 7.

In fact, every (n — 1)-face arises from two n-simplexes,
/o

say, from
A= jo..jk—10jk---jn—1 and B = jo...ji—1bji...Jn—1. - b\
That is, the n-simplexes A and B have a common " M

(n — 1)-dimensional face j...Jn—1.

We have
_ k.
aejO---jk—lajk---jn—l =..+ (_1) €jo.fk—1kefn—1 T oo

Since interchanging the order of two neighboring vertices in an n-simplex changes its orientation, we

have
gJ0 k-1 Jn—1 — (_1)k G0 Ik —1Tk--Jn—1

Multiplying the above lines, we obtain
8(0’A€A) = ..+ O’ajo"'j"_lejo._.jnil + ...,

and in the same way

6(0363) = ..+ O'bjo"'j"_lejo._.jn71 =+ ...

However, the vertices a and b are located on the opposite sides of the face jg...j,,—1, which implies that
the simplexes ajg...jn—1 and bjo...jn—1 have the opposite orientations relative to that of M. Hence,

g @J0-dn—1 4 gbiodn—1 — 0,

which means that the term e;, ;. _, cancels out in the sum 8(0‘46 A+ oBe p) and, hence, in do. This
proves that 0o = 0. m

The closed path o defined by (1.11) is called a surface path on M.

There is a number of examples when a surface path o happens to be exact, that is, 0 = Jv for some
(n + 1)-path v. In this case v is called a solid path on M because v represents a “solid” shape whose
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boundary is given by a surface path. If o is not exact then o determines a non-trivial homology class
from H,, (G) and, hence, represents a “cavity” in triangulation 7".

Example 1.12. M = S'. A triangulation of S' is a polygon, and the corresponding digraph G is
called cyclic.

On each edge (i, j) of a polygon we choose

an arrow ¢ — j arbitrary (not necessarily if ¢ < 7).

We have
g = E o i eij
where we have ¢/ = 1 if the arrow 7 — j goes

counterclockwise, and 0%/ = —1 otherwise.
For the digraph on the picture we have

0 = eqg1 — €21 + €23 + €34 — €54 + €50

If a polygon G is a triangle or a square then €, = {0} for p > 3 and H, = {0} for all p > 1.
Otherwise we have the following statement.

Proposition 1.13. [20] If a polygon G is neither a triangle nor a square then Q,, = {0} and H, = {0}
forall p > 2 while Hy = (o).

Proof. We have Q,, = {0} for all p > 2 by Theorem 1.8. Hence, dim H,, = 0 for p > 2. For the Euler
characteristic, we have
x = dim Qy — dim Q2 = 0.
Since also
x = dim Hy — dim H;
and dim Hy = 1, we obtain dim H; = 1.

It remains to see that o is a non-zero element of H;. The path o is closed by Lemma 1.11. In this case
this can also be seen directly because by construction we have o+ _ (+1)i = 1 whence, for any
vertex ¢,

(80)1‘ _ Z (Uji _ Uij) = =Dy GG gi(i=1) _ ili+1) — 1 — .
jev
Finally, o # 0 in H; because Imd|q, = {0} . =
Example 1.14. Let M/ = S™ and let a triangulation of the n-sphere S™ be given by the surface of an
(n + 1)-simplex.
Then G isa (n + 1)-simplex digraph.
On this picture n = 2 and

0 = e123 — €023 + €013 — €g12 = O€p123
so that eg123 is a solid path representing
a tetrahedron.

0

For an arbitrary n we also have o = deq_ 41 so that eg_,,+1 is a solid path representing an (n + 1)-
simplex.
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Example 1.15. Let M = S? and let a triangulation of S? be given by an octahedron (see also
Subsection 1.6). Consider two cases of numbering of vertices and, respectively, orientation of arrows.

An octahedron based on a square: 4

We have Hy = {0} ; it is easy to see that

0 = €g24 — €025 — €014 T €015 — €234

v

+e235 + €134 — €135 0
= 0 (eo134 — €0234 + €0135 — €0235)
Hence, v = ep134 — €0234 + €0135 — €0235
is a solid path and the octahedron 5

represents a solid shape.

An octahedron based on a diamond: 4

We have Hj = (o) where

0 = €024 — €034 — €025 T €035 — €124
+e134 + €125 — €135

so that this octahedron represents

a cavity.

Example 1.16. Let M/ = S? and let a triangulation of S? be given by an icosahedron:

3

Chose a numbering of vertices as shown here
and arrows ¢+ — jif i ~ jand ¢ < j.

We have |V| =12, |E|=30, H, = {0},
and Hy = (o) where

0= —ep19 t €12 —€1211 + €026 + €059
—€056 T €5610 — €139 T €1311 — €267
+e6710 —€2711 — €349 + €348 — €4810
+e3811 — €459 + €4510 + €7810 — €7811-

Hence, the icosahedron represents a cavity.

Conjecture 1.17. For icosahedron dim Hs (G) = 1 for any numbering of the vertices.

Conjecture 1.18. For a general triangulation of S™, the homology group H,, (G) is either trivial or
is generated by o. All other homology groups Hy, (G) are trivial.

1.11 Homological dimension

In this section K = .
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Definition. Define the homological dimension of a digraph G by

dimy, G = sup{k : |H; (G)| > 0}.

Let GG be a polygon (a cyclic digraph).
If G is neither triangle nor square,
then |[Hi| =1and |Hpy| =0forp > 2

whence dimy, G = 1.

Let GG be either a triangle or a square:
Then |Hpy| = 0 forp > 1 and dim;, G = 0.

Let G be an octahedron based on a diamond: A
Then |Hy| =1, |Hy| =0 forp > 3, ‘ |
whence dimjy, G = 2. "/

Let us give an example of a digraph with co homological dimension that is due to Gabor Lippner and
Paul Horn [34]. Fix some n > 5. We construct a digraph LH (n) of 2n vertices that are denoted by

1,2,....m and —1,-2,...,—n,
and the arrows between vertices x,y in LH (n) are defined as follows:
r—vy if |y|=|z|+1 orif x| =n—1and |y| =2, (1.12)

so that LH (n) has 4n edges. In fact, LH (n) is obtained from the complete multipartite digraph
—
K 2,2,...,2 by adding the last 4 arrows.

———

n

Example 1.19. Here is the digraph LH (5) .

N
It is obtained from K9 2292

by adding four arrows.

For this digraph 3, > 0

provided

p = 1mod 3.
Proposition 1.20. [34] If p = 1mod (n — 2) and p > n — 1 then the homology group Hy, (LH (n))

is non-trivial.

Hence, for the digraph LH (n), non-trivial homology groups H,, occur for arbitrarily large p. Conse-
quently, we have
dimy LH (n) = oc.

There are digraphs with non-trivial homology group H), for all value of p — see below Example 3.27.
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Proof. Letp = (n — 2) k + 1 for some k > 1. Let us construct a family of allowed paths in LH (n)
as follows. First, consider a numerical sequence of p + 1 = (n — 2) k 4+ 2 numbers:

1,2,3,....n—1,2,3,...n—1,...,2,3,....,n — 1, n, (1.13)

where the group 2, 3, ...,n — 1 is repeated k times, and then give arbitrarily the signs + and — to each
number in this sequence. Clearly, we obtain in this way an allowed elementary p-path in LH (n). For
any such a path u, denote by o (u) the number of ‘—’ in u, and consider the path

w=> (1), (1.14)

where the summation is taken over all paths u obtained in this way from the sequence (1.13).

Let us verify that w = 0 (and, hence, w € €2,). Indeed, let u = wy...u, be one of the elementary
paths in the sum (1.14). The boundary Ju is the sum of the terms

(—1)Z Ug---Uj—1Uj41---Up (115)
that are obtained from w by omitting u;. Fix some ¢ and consider a path
u = ug...Uj—1 (_Uz) Ujg1-.-Up ,

where only the sign of u; is changed. Then du contains also the term (1.15). However, v and w enter
w with opposite signs so that the term (1.15) cancels out in the sum (1.14). Hence, we obtain 0w = 0.

Let us verify that w # Ov for any allowed path v, which will imply that w determines a non-trivial
element in H,,. Assume from the contrary that w = dv for some v € A;,;1. For that, v has to contain
an allowed elementary p + 1-path that contains both a vertex 1 and a vertex n (otherwise, 1 and n
cannot appear in the same path (1.13)). Let

U= UQ....Up4+1
be such an allowed elementary p + 1-path, where
lup| =1 and |ups1| = n.
We have u; — u;41 and, hence, as it follows from the definition of arrows in (1.12),
|tir1| = |ui] + 1mod (n — 2).

Therefore,
[upt1| = [uo| +p + 1mod (n —2),

from which it follows that
n=p+ 2mod (n — 2)

and
p = 0mod (n — 2),

which contradicts the hypotheses. m
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2 Trapezohedra and structure of ()3

2.1 Spaces (), and H, for trapezohedron

For any integer m > 2, define a trapezohedron T, of order m as follows:

T, is a digraph of 2m + 2 vertices a
a, bu iO? "'aimflv j(]ajl) ~-~7jm71
and 4m arrows ;
k-2 Tk+1

a— i — Jg — b, ik — Jp41

forallk=0,...,m — 1 modm. _
j,\.,l Jhk+1

A fragment of T}, is shown here:
It is clear that all allowed paths in 7, have the length < 3,
whence Q,, (T},,) = {0} forall p > 3.
Proposition 2.1. For the trapezohedron T}, we have

2] = 2m, |Q3] =1,
and H, = {0} forall p > 1.
Proof. 1tis easy to detect all squares in T;;,:

Caig_1jx — Cairjy, and €5 — Citjry1bs (2.16)

where k = 0,...,m — 1. Hence, T,,, contains 2m squares, and they are linearly independent. Since
there are no triangles in 7,,,, we conclude by Theorem 1.8 that |Q22| = 2m.

All allowed 3-paths in 7T, are as follows:

Caiy b and Caigjrs1bs

also for all £ = 0,...,m — 1. Let us find all linear combinations of these paths that are J-invariant.
Consider such a linear combination

=

m—

W= Z (akaipjnd + Breaipjeiib)
k=0

with coefficients a, 3}, and assume that w is 0-invariant. We have

m—1
Ow = 9 (O‘keaikjkb + ﬁkeaikjk+lb)
k=0
m—1 m—1
= > (aneign + Brcinjernn) — D (@keaij + Brairjisr) (2.17)

k=0 k=0
m—1 m—1

- Z (k€ajpb + Breajpirb) + (Okeairb + Breaipd) - (2.18)
k=0 k=0

Both sums in (2.17) consist of allowed paths. In the rightmost sum in (2.18) the path e,;,; is not
allowed and, hence, must cancel out, which yields
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The leftmost sum in (2.18) is then equal to

m—1 m—1
E (akea]’kb - akeajk+1b) = (ak - Oékfl) €ajib>
k=0 k=0
and it must vanish as e, , is not allowed, whence
A = Q1.
Setting o, = « and, hence, 3;, = —«, we obtain that
m—1
w=ao (eaikjkb - eaikjk+1b) = QTm
k=0

so that Q3 = (7,,) and Q3| = 1.
It follows from (2.17)-(2.18) that

3

m

OTm = (eikjkb - eikjk+1b) - (eaikjk - eaikjk+1) # 0.
k= 0

o
£
I

This implies ker 0|o, = 0, whence H3 = {0} .
Let us show that Hy = {0} . Since dim Im 0|, = 1, it suffices to show that

dimker d|q, = 1.

Consider the following general element of €2o:

—_

m—

w="" ak (Cair_rjp — Cairii) + Bk (Ciriub — Ciriisib)
k=0

with arbitrary coefficients ay, (). We have

m—1
Ou= > ap(€ain_, + €i_ji — €ai,, — Cirg) + Br (€jab T Cirgi = €jrirb — Cirjrsr)

k=0
m—1 m—1

= (ki1 — ar) eaiy + Y (Br = Br1) b
m—1 m—1

+ (Br — ) €3y, + Z (k1 — Br) €irjg 1 -
k=0 k=0

The condition Ou = 0 is equivalent to
apy1 =op =P =P foralk=0,.....m—1

which implies (2.19).

Finally, we determine |H;| by means of the Euler characteristic
X = |Q0| — |91’ + |QQ| — |Qg| = (2m+2) —4dm+2m—-1=1.

Hence, we obtain
|Ho| — [H1| + [H2| — [H3| = 1,

which yields |H;| = 0. m
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2.2 A cluster basis in (2,

We start with the following definition.

Definition. A p-path v = v €io...i, is called an (a, b)-cluster if all the elementary paths e;,.;,
with non-zero values of v"» have iy = a and i, = b. A path v is called a cluster if it is an
(a, b)-cluster for some a, b.

Lemma 2.2. Any O-invariant p-path is a sum of O-invariant clusters.

Proof. Let v € €),. For any points a,b € V, denote by v, the sum of all terms pio---ip €ig...ip, With

to = a and 7, = b.

Then v, pis aclusterand v = ) wgy, that s, Vs ob
a,beV

v is a sum of clusters. Let us prove that each

non-zero cluster v,y is d-invariant. a

Since v is allowed, also all non-zero terms v~ €ip...i, are allowed, whence v,y is also allowed. Let
us prove that Jv, is allowed, which will yield the O-invariance of v, ;. The path v, is a linear

combination of allowed paths of the form eg;, . ; 5. We have
P
p—1
_ P, . k ~
aeail...ipflb - eil...ip,lb + (_1) eazl...zp,1 + Z (_1) eail..ik...ip_lb'
k=1

The terms €iy..ip_1b and e, .. 4,_, are clearly allowed, while among the terms €aiy
be non-allowed. In the full expansion of

b there may

Apeip

=Y gy

a,beV

all non-allowed terms must cancel out. Since all the terms e, oo ib form a (a, b)-cluster, they
genip—

cannot cancel with terms containing different values of a or b. Therefore, they have to cancel already
within Qv 3, which implies that v, j, is allowed. =

Definition. For any p-path v = S viotre; ;o define its width ||v|| as the number of non-zero
coeflicients v*0*».

Definition. A O-invariant path w is called minimal if w cannot be represented as a sum of other
O-invariant paths with smaller widths.

Example 2.3. A square w = ey — €qp has width 2 and is minimal because ey, and e,y having
width 1 are not d-invariant.

Let a, {bg, b1,b2}, c be a 2-square. The following path
W = €abye T Cabic — 2€abye
is 0-invariant, has width 3 but is not minimal because it can be represented as a sum of two squares:
w = (€abge — €abye) + (Cabie = €abye);
where each square has width 2.

Lemma 2.4. Every O-invariant cluster is a sum of minimal O-invariant clusters.
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Proof. Let w be a J-invariant cluster that is not minimal. Then we have
n
w = Zw(k), (2.20)
k=1

where each w(*) is a §-invariant path with Hw(k) H < ||w|l. By Lemma 2.2, each w®) is a sum of

(k)

o.p» and it is clear from the definition of w((lkg that

clusters w

| < Jo®].

k

gy

Hence, we can replace in (2.20) each w®) by Zmb wékg and, hence, assume without loss of generality
that all terms w(*) in (2.20) are O-invariant clusters.

If some w®) in this sum is not minimal then we replace it further with a sum of J-invariant clusters
with smaller widths. Continuing this procedure we obtain in the end a representation w as a sum of
minimal d-invariant clusters. m

Proposition 2.5. The space ), has a basis that consists of minimal O-invariant clusters.

Proof. Indeed, let M denote the set of all minimal 0-invariant clusters in §2,,. By Lemma 2.4, every
element of (), is a sum of elements of M. Choosing in M a maximal linearly independent subset,
we obtain a basis in €2,,. m

2.3 Structure of ()3

We use here the trapezohedra T},, and associated trapezohedral paths 7, defined in Sections 1.5 and
2.1 (see (1.5)), that are O-invariant 3-paths for all m > 2. We prove here in Theorem 2.10 that if G
contains no multisquare (see Subsection 1.5) then Q3 (G) has a basis that consists of trapezohedral
paths and their morphism images.

We start with some examples.

Example 2.6. Here is a merging map from 75 onto a 3-snake:

The trapezohedral path 75 is given by
T2 = €0123 — €0153 T €0453 — €0423,
and its merging image is the 3-path
U = €0123 — €0133 T €0233 — €0223 = €0123;

that is, the 3-path eg123 associated with a 3-snake.
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Example 2.7. Here is a merging morphism of 73 (=a 3-cube) onto a pyramid:

6

The cubical 3-path is given by
T3 = €0237 — €0137 T €0157 — €0457 T €0467 — €0267
and its merging image of 73 is the following O-invariant 3-path in a pyramid:

U = €0234 — €0134 T €0144 — €0444 T €0444 — €0244 = €0234 — €0134-

Example 2.8. Consider another merging morphism of 73 onto a prism:

6

)
w

o

The merging image of 73 is the following O-invariant 3-path in the prism:

U = €0233 — €0133 + €0153 — €0453 1 €0423 — €0223

= €0153 — €0453 + €0423-

Example 2.9. Here is a merging morphism p : Ty — G where the digraph G is a broken cube that is
shown in the right panel:

—_— 2 1

The path 74 in the present notation is given by

T4 = €0159 — €0169 T €0269 — €0279 + €0379 — €0389 + €0489 — €0459,

and the merging image of 74 is the following J-invariant 3-path on the broken cube:

V = €0158 — €0168 T €0268 — €0278 + €0378 — €0388 1+ €0488 — €0458

= ep158 — €0168 T €0268 — €0278 + €0378 — €0458- (2.21)
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One can show that Q3 (G) = (v) .

The next theorem describes the structure of Q3 (G) for a general digraph G but under the following
hypothesis:
G contains neither multisquares nor double arrows. (2.22)

Under the hypothesis (2.22), Q22 (G) has a basis that consists of triangles and squares. The condition
(2.22) implies that if a — b — c and a + c then there is at most one b’ # b such thata — b’ — c.

Theorem 2.10. Under the hypothesis (2.22), there is a basis in Q23 (G) that consists of trapezohedral
paths T, with m > 2 and their merging images.

Hence, trapezohedra are basic shapes for §23.

Proof. By Proposition 2.5, (23 has a basis that consists of minimal O-invariant clusters. Let a path
w € Q3 be a minimal d-invariant (a, b)-cluster. It suffices to prove that w is a merging image of one
of the trapezohedral paths 7, up to a constant factor.

Denote by P the set of all elementary terms eg;j;, of w. Clearly, the number | P| of elements in P is
equal to ||wl||. We claim that, for any ey, € P,

eithera — j or a ' j

where the notation ¢ ' 7 means that ¢ and j form a diagonal of a square.

Indeed, if a /> j then the term e,;;, appearing in a

Oeqijp is non-allowed and should be cancelled in

Ow by the boundary of another elementary 3-path

from P that can only be of the form e, with
a—1i —j

Hence, a and j form diagonal of a square a, 7,1, j. b

By hypothesis (2.22), the vertex i’ with these properties is unique. Hence, in this case we have
W = Ceuijb — Ceqi’jb + .- (2.23)
for some scalar ¢ # 0. In the same way, we have
eitheri — b or 7 " b.

and, for some e, € P and ¢ # 0,

W = Ceqijp — Clqijip + - - (2.24)
If for some path e4;;, € P we have both conditions a
a—j andi — b i
then ey is O-invariant and, by the minimality of w,
w = const €4j5p- )
Since e is in this case a 3-snake, the path w is a /
merging image of 7. b

Next, we can assume that, for any path ey, € P, we have
as/>jori/b
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which is equivalent to
a,/"j or i ,/"b. (2.25)

Define a graph structure on P with edges of two types (i) and (ii) as follows: for two distinct elements
€qijb and eq;rjrp, of P we write

(i) . ; .
€aijb "L €ai’ j'b ifa / ] andj = jl.
and B
€aijb (fl\ll) €ai’j'b if ¢ / b and i, =1.
Clearly, both relations O and ) are symmetric. We refer to the relations Q and @ as the edges in P
of the first and, respectively, second type.

()

(i)

C W d
ases €q45p ™~ €qi’j'b ANA €q45p ™~ €q4f /b

By the hypothesis (2.22), for any e,;j, € P there is at most one edge of the first type and at most one
edge of the second type. In particular, the degree of any vertex of the graph (P, ~) is at most 2.

Fix a path e,;;, € P. By the above argument, if a " j then there exists ey ;;, € P such that

€aijb o €qi'jp and w satisfies (2.23). Similarly, if ¢ b then there exists eq;;, € P such that

(i)

€aijb ~ €aijrp and w satisfies (2.24). In particular, the degree of any vertex of the graph P is at least
1.

Let us prove that the graph (P, ~) is connected. If P not connected then P is a disjoint union of its

connected components { P}, where n > 1. Denote by w®) the sum of all elementary terms of w
lying in Py, with the same coefficients as in w, so that

w = ZM). (2.26)
k=1

Let us verify that each w®) is d-invariant. Clearly, w®) is allowed, and let us prove that dw®) is
allowed. Indeed, let w*) contain a non-allowed term. The latter comes from the boundary Jeg;ji,
of some elementary term e,;jp, of w(k) and, hence, is either ey, or €4, let it be €43, which means
i /> b. The term e, cancels out in dw, which can only happen when w contains another term of the
form eg;j1p. However, then

€aijb ™~ €aij'b

so that e,;;/, belongs to the same connected component P and, hence, must be an elementary term
of w¥). This proves that 9w ®) is allowed and, hence, w®) is -invariant.

If the number n of the terms in (2.26) is greater than 1 then the number of vertices in each P is strictly
less that that in P, which implies ||wg|| < ||w]| . However, in this case the representation (2.26) is not
possible because w is minimal. Hence, n = 1 and P is connected.

Since each vertex of P has at most two adjacent edges, there are only two possibilities:
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(A) P is asimple closed polygon;
(B) P is alinear graph.

Consider first the case (A). In this case every vertex of
P has two edges: exactly one edge of each type (i), (ii).
Thus, the number of edges is even, let 2m, and P has

necessarily the following form:

(i) (i) i (i) (i)

€aigjob ™ €aigjrb ~ €airjib ™ -+ ™ €aip_1jm_1b ~ €ai_ . job ~ €aigjob (2.27)

for some vertices {zk}?:_ol and { jk}?:_ol of G. Note that necessarily m > 2 because if m = 1 then

(2.27) becomes
(i) (1)
€aigjob ™ €aiojib ™ Caigjob>
which is impossible because edges of different types between the same vertices of P do not exist.

Since all the terms in (2.27) enter w with the same coefficients ¢ (cf. (2.23) and (2.24)), we see that
w = c(€aigjob — €aiojib T Cairjib ~ €airjab + - + €aipy_1jm-_1b ~ €ai,, _, job)- (2.28)

If all vertices a, {ix}1" g » {jr 1o, bare
distinct then they form a trapezohedron 7;,,:
In this case we have by (1.5) and (2.28)

W = CT,.
If some of these vertices coincide then the
configuration (2.27) is a merging image of

T, and w is a merging image of c7,.

Consider now the case (B) . In this case the linear graph P has two end vertices of degree 1, while all
other vertices have degree 2. Depending on the type of edges at the end vertices of P, we have two
essentially different subcases:

case (B1): } ) )

the end vertices of P have edges .&QMLMO
of different types.

case (Bo): ._ ., 4_

the end vertices of P both have o) o) o @ o0 o W) 4

edges of type (ii)
(the case of type (i) is similar).

Consider first the case (B1) when the graph P must have the form
(i) (i) (i) H G (i)

€ainjob ™ C€aigjrb ~ €ai1jib ~ Cairjob ™~ -+ ™ €aip_1jmb ~ Caipjmb- (2.29)
Consequently, we have
w = ¢ (€aigjob — €ainjib + €airjib — €airjsb + - — €ain_1jmb T+ Caimjmb) - (2.30)
Since
Ow = c(—€qjob + €aqi,np) mod Az (2.31)
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and dw € A, we must have either eq;,, = €4i,,5 Or both e, and eg;,,, are allowed, that is,
a — jo and %, — b. (2.32)
In the former case we have jo = 4,, whence (2.32) follows again so that (2.32) is satisfied in both

cases.

We claim that in the case (B1) the configuration (2.29) is a merging image of T, 4.

Indeed, denote the vertices of 7}, 42
also by a, {zk}'}c”;ol , {jk}?$1 ,b, and
map all the vertices of T}, 12, except
for 4;m+1, jm+1, to the vertices of G
with the same names; then merge

tm+1 — Jo and  Jp41 — b
The arrows

a4 = bnt1,bm — Jm+1s bmtl — Jmtl

in 1T;,42 are mapped to the arrows
a_)jO) Zm_>ba ]0_>b

in G (cf. (2.32)), while the arrows é,,11 — jo and j,,+1 — b go to vertices. It follows that this
mapping of 7,1 into G is a digraph morphism. Since by (1.5)

Tm+2 = (Caigjob—Caiojib) F(€airjib—C€airjob) F T (Caim jumb—€aimjm+15) T (€aim i 1jm+1b—Caims1job)s

the image of 7,2 is the following path, where we replace i,,1 by jo and j,,,+1 by b:

U = (€aigjob — €aiojrb) + (€airjib — €airjob) + - F (Caimjmb — Caimbb) + (€ajobb — €ajojob)

= €aigjob ~ €aiojib T Cairjib ~ €airjob t - T Caim1jmb t Caipjimb-

Comparison with (2.30) shows that w = cu, that is, w is a merging image of c7;,42.

For example, in the case m = 1, this merging morphism of 73 is shown here:

Clearly, it coincides with the merging morphism of Example 2.8 mapping a 3-cube onto a prism.

Consider now the case (B2) when the graph P has the form

(i) (i) (ii) @ O (i)

€aiojob ™ Caiojrb ~ Cairjib ™ €airjob ~ <+ ™ €ipy_1jm_1b ™ €ai_ . jmbs (2.33)
so that
w = c(€aigjob — Caigjrb T Cairjib — Cairjob T -+ F €aip _1jm_1b ~ Caim_1jmb)- (2.34)

Since
Ow = ¢ (—e€qjpb + €qaj,p) mod Ay,
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it follows that either jo = j,, or
a— jo and a — Jn,. (2.35)

However, jo = j.,, is not possible because it would imply that

i
Caigjob ™ €ai,, ,job

and the line graph P would close into a polygon, which gives the case (A). Hence, (2.35) is satisfied.
We claim that the configuration (2.33) is then a merging image of 7}, 41.

Indeed, we denote the vertices of T}, 41
also by a, {ix} o {Jk }heq » b, and then
map all the vertices of 1,41, except for .
im, to the vertices of G with the same "
names; then map i,, to a.

Clearly, the following arrows i
im — Jo and i, — Jm

in T;,4+1 are mapped to the arrows

a— jo and a — jn,
in G as in (2.35), and the arrow a — i,, goes to a vertex. Hence, we obtain a merging morphism of
T4 into G. Since by (1.5)

Tm+1 = (ea’iojob _eai0j1b) + (eailjlb - eai1j2b) +...+ (eaim_ljm_ﬂ) - eaim_ljmb) + (eaimjmb - eaimj()b)7

the image of 7,,,+1 is the following path, where we replace i,, by a:

v = (€aigjob — €ainj1b) T (€airjib — €airjob) T -+ (Cainm 1jm_1b — €aim_1jmb) T (Caajmb — Caagob)
= €aigjob — €aigjrb T €ai1jib — €airjob T - T €aipy_1jm_1b — €aim_1jmb-

Comparison with (2.34) shows that w = cv so that w is a merging image of c¢7,+1 ®

For example, in the case m = 3, the above morphism is equivalent to the merging morphism of
Example 2.9 mapping 7 onto a broken cube. In the case m = 2 we obtain the following merging
image of a 3-cube:

Problem 2.11. Prove Theorem 2.10 in the general case without the hypothesis (2.22).
Problem 2.12. Devise an algorithm for computing a basis in 3 based on Theorem 2.10.

Problem 2.13. State and prove similar results for Q4. Are the basic shapes in {4 given by polyhedra
in R*? Devise an algorithm for computing a basis in Q4. The same questions for Q, withp > 4.
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3 Kiinneth formulas

The material in this section is based on [22] and [29].

3.1 Cross product of paths

Given two finite sets X, Y, consider their product
Z=XxY={(a,b):a€e XandbeY}.

Let z = zpzj...2, be aregular elementary r-path on Z, where z;, = (ag, bg) withay € X and b, € Y.
We say that z is stair-like if, for any £ = 1, ..., 7, either ay_1 = aj or by_1 = by, is satisfied. That
is, any couple zx_1 21, of consecutive vertices is either vertical (when a;_; = ay) or horizontal (when
bg—1 = by).

Given a stair-like path z on Z, define its projection 5 (3)
onto X as an elementary path = on X obtained from
z by removing Y -components in all the vertices of z
and then by collapsing in the resulting sequence any Y T
subsequence of repeated vertices to one vertex. “

In the same way define projection of z onto ¥ and 11
denote it by y. (x00) Y %
The projections x = xg...x, and y = yo...y, are regular elementary paths, and p + g = 7.

Every vertex (z;,y;) of the path z can be represented o
as a point (4, j) of Z? so that the path z is represented “—t
by a staircase S (z) in Z* connecting (0, 0) and (p, q). He

Define the elevation L (z) of z as the number of cells in Z2 below the staircase S (z).
For given elementary regular paths x on X and y on Y, denote by X, , the set of all stair-like paths z
on Z whose projections on X and Y are respectively x and y.

Definition. Define the cross product of the paths e, and e, as a path e, X e, on Z as follows:

eaxey= Y (-1, (3.36)

2€Xz.y
and extend it by linearity to all w € R, (X)andv € Ry (Y) sothat u x v € Rp4q (Z).

Example 3.1. Let us denote the vertices on X by letters a, b, c etc and the vertices on Y by integers
1,2, 3, etc so that the vertices on Z can be denoted as a1, b2 etc as the fields on a chessboard. Then
we have

€a X €12 = €aql1a2;, €ab X €1 = €41b1 a3 3 3

€ab X €12 = €41b1b2 — €ala2b2

€ab X €123 = €a1b162b63 — €ala2b2b3 T €ala2a3b3 @ b2

S
e}

€abe X €123 = €glblcl 2¢3 — €alblb2c2¢3 Tt €al bl 23 ¢3
+€a1a2b2¢2¢3 — €ala2b2b3¢3 T €ala2a3b3c3

al bl cl

Lemma 3.2. [29, Proposition 4.4] If u € Ry, (X) and v € Ry (Y') where p,q > 0, then
0 (uxv)=(0u) xv+ (=1)Pux (Ov). (3.37)
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3.2 Cartesian product of digraphs

Denote a digraph and its set of vertices by the same letters to simplify notation. Given two digraphs
X and Y, define their Cartesian product as a digraph Z = XY as follows:

* the set of vertices of Z is X x Y, that is, the vertices of Z are the couples (a, b) where a € X
andbecY;

* the edges in Z are of two types: (a,b) — (a’,b) where a — d’ (a horizontal edge) and
(a,b) — (a,b") where b — ' (a vertical edge):

(a,b’) (a’,b)

be . 'y — °
T T 7

b ... W, @Y
Y/ x .. e — e

It follows that any allowed elementary path in 7 is stair-like.

Moreover, any regular elementary path on Z is allowed if and only if it is stair-like and its projections
onto X and Y are allowed.

It follows from definition (3.36) of the cross product that
ueA,(X)andve 4, (Y) = uxvedyq,(2). (3.38)
Furthermore, the following is true.
Lemma 3.3. [29, Proposition 4.6] If u € Q, (X) and v € Qg (Y') then
uxXveQq(2).

Proof. u x v is allowed by (3.38). Since Ou and Jv are allowed, by (3.38) also du x v and u X Qv
are allowed. By (3.37), O (u x v) is also allowed. Hence, u X v € Q)44 (Z). m

Theorem 3.4. [29, Theorem 5.1] Any O-invariant path w on Z = XUY admits a representation of

the form
m
w = E Ui X U;
i=1

for some finite m, where u; and v; are O-invariant paths on X and Y, respectively.

3.3 Kiinneth formula for product

Here is the main result of this section.

Theorem 3.5. [29, Theorem 4.7] (Kiinneth formula for product)
Let X, Y be two finite digraphs. Then, for any r > 0,

Q. (X4dy) = D Q, (X)), (3.39)
{p,q>0:p+q=r}

where the isomorphism is given by
URQV = U XV
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forue Q,(X)andv e Qu(Y).
Consequently, we have
H,(XOY)= @ Hy(X)@Hy(Y)
{p.g>0:p+q=r}

and
B (XOY)= > B, (X)B,(Y).

{p,q>0:p+q=r}

Example 3.6. Let X be an interval and Y be a square:

X = % — e and Y =

(3.40)

b3=7

Then Z = X[1Y is a 3-cube: .
We have: .
O (X) = (eap), Qp(X)=0forp>2,
Q1 (Y) = (eo1, €13, €23, €02), .
Qs (V) = (eo13 — eq23), Q2 (Y) =0forg > 3.

a0

By (3.39) we obtain

Q3(2) =2 (X) @0 (Y) = (eaw X (€013 — €023))-

Let us compute the cross-products:

€ab X €013 = €a0b0b1b3 — €a0alblb3 T €a0ala3 b3 a3 b3

= e0457 — €0157 + €0137

al b1

and

€ab X €023 = €0467 — €0267 + €0237-

al b0

Hence, we obtain

Q3 (Z) = (eoas7 — €o157 + €0137 — €oa67 + €0267 — €0237)-

That is, {23 is generated by a single J-invariant 3-path that is associated with the 3-cube.

Example 3.7. Denote by 1" the following 3-cycle (=1-torus):

b 1
ENANEIAN
a < 0 2

Consider the 2-torus G = TUOT

that is shown here:

Let us compute 2, (G) and H, (G).
We have

Qo (T) = (eo, €1, €2),
Q1 (T) = (eo1, €12, €20),
Q, (T') = {0} forp > 2.
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By (3.39) we obtain 2, = {0} for r > 3 and

0 (G) = Q1 (T) ®  (T)
= <eab X €01, €aqb X €12, €qb X €20, €pc X €01, €pc X €12,

€bc X €20, €ca X €01, €cq X €12, €cq X 620)-

Using A

€ab X €ij = €qaibibj — €aiajbj

we obtain that i ai

Q2 (G) = (€a0b0b1 — €adalbl, €alblb2 — €ala2b2> €a2b2b0 — €a2a0 b0
€b0c0cl — €Eb0blels Eblelce2 — €b1b2¢25 €b2¢2c0 — €250 05

€c0alal — €c0clals €clala2 — €clc2a2; €c2a2a0 — €c2 cOa0>-

That is,

Q2 (G) = (ep34 — €014, €145 — €125, €253 — €203,
€367 — €347, €478 — €458, €586 — €536

€601 — €671, €712 — €782, €820 — €860)
so that Q9 (G) is generated by 9 squares.

This can be visualized using 4
the following embedding of G

onto a topological torus:

Let us compute the homology
groups of G. We know that

Ho (T) = (eo), Hi(T)=(eo1 +e12+e), Hy(T)=1{0} forp>2.
By (3.40) we obtain

Hy (G) = Hj (T) ® Hq (T) + H; (T) ® Hy (T) = <U1,U2>

where

V1 = eq X (€01 + €12 + €20) = €a0al + €ala2 + €a240 = €01 + €12 + €20

V2 = (€qp + €be + €ca) X €0 = €q0p0 + €400 T €c0a0 = €03 + €36 + €60-
Again by (3.40) we get

Hy (G) = Hy (T) ® Hy (T) = (u),
where
u = (eqp + €pc + €ca) X (€01 + €12 + €20) ,

Hence,

U = €q0b0b1 — €alalbl T €alb1b2 — €ala2b2 T €a2b260 — €a2 a0 b0

+ €p0cocl — €boblel T Eblclc2 — €p1b2c2 T €b2c2¢0 — €250 0
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+ €c0a0al — €c0clal t €clala2 — €clc2a2 + €c2a2a0 — €c2c0als

that is,

u = (€epza — €014) + (145 — e125) + (€253 — €203) + (€367 — €347) + (€478 — €458)
+ (es86 — e536) + (€601 — €671) + (€712 — ers2) + (€820 — €s60) - (3.42)

Finally, H, (G) = 0 for all r > 3.

3.4 An example: n-cube

Define the n-cube as follows:
n-cube = I°" = 10I0)...001,
—_—

n

where I = {0 — 1} and n € N. Hence, each vertex a of the n-cube can be identified with a binary
sequence (aj, ..., ay) . For example, 0 = (0, ...,0) and 1 = (1, ..., 1) are the corners of the n-cube.

For two vertices a, b of the n-cube, there is an arrow a — b if by, = a; + 1 for exactly one value of k
and by, = ay, for all other values of k. Denote

la| = a1 + ... + an.
We write a =< b if there is an allowed path from a to b, that is
a=b & ay<bforallk=1,...,n.

For any pair a = b consider an induced subgraph D, ; of the n-cube as follows:

the vertices of D, ;, are all vertices c
of 17" such that

a=<c¢c=<b
and an arrow c; — ¢ exists in Dy
exactly when this arrow exists in 7.
Here is a 4-cube and its subgraph D, ;:

(the arrows go from top to bottom).

The mapping ¢ — ¢ — a provides an isomorphism of D, ; onto a p-cube with
p=1[b]—lal.

Assuming that a < b, denote by P, ; the set of all elementary allowed paths going from a to b. All
paths of P, lie in D, ;, each path in P, ; has the length p = |b| — |a/, and the total number of the
paths in P, is p!.

Lemma 3.8. There is a function o : P, — {0, 1} such that the following p-path

wep= Y (-1)7We, (3.43)

IEEPayb

is O-invariant.
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For example, in a 3-cube as shown here, we have 6 5

wo,1 = €01,

wp,3 = €013 — €023,
and

wo,7 = €0137 — €0237 — €0157 + €0457 + €0267 — €0467
(cf. Example 3.6). 0 !

Proof. Without loss of generality, we can assume that a = 0, b = 1, and prove the claim by induction
in n = p. The induction basis for n = 1 is obvious. For the induction step from n to n + 1 we use
Lemma 3.3 that says that the cross product of d-invariant paths is d-invariant. Denote by 0’ = (0, 0)
and 1’ = (1, 1) the corners of the (n + 1)-cube.

Taking the cross product of the n-path "

wp,1 on 17" and the 1-path y = egy on I,

and using (3.36), we obtain the following

d-invariant (n + 1)-path on 700 +1) y

worxeor= S (~1)7We, xey £
z€Po,1 ox
= Z Z (_1)0—($) (_1)L(Z) €z, A path wGPO’l and ZEEz,y

r€Pp,1 2€Xz2,y
where z is any stair-like path on (n + 1)-cube that projects onto x and y, respectively.

Clearly, z runs over all paths Py 1/. Setting
0(z) =0 (x)+ L(2)mod?2

and
Wo',17 = Wo,1 X €01,

we obtain

wor = Y (-1)7Pe.,
ZEPO/J/

which concludes the proof. m
Proposition 3.9. For any p > 0, we have

), (n-cube) = (wgyp : @ X band |b| — |a|] = p).
Moreover, {w,} is a basis of Q, (n- cube) .

Proof. The proof is again by induction in n. The induction basis for n = 1 is obvious. For the
induction step from n to n 4+ 1 we use the Kiinneth formula (3.39). By this formula and by the
induction hypothesis, we obtain that the basis in €2, ((n + 1)- cube) consists of the following p-paths:

{wap X €01 1 wap € Q1 (n-cube)} U{wap X €t waep € Qp (n-cube),i=0,1}
As above, the products w, , X eo1 give us all the p-paths w4 0y, (s,1), While wq p X €; give us all the p-paths

W(a,0),(5,0) Ad w(q 1y (5,1)- Clearly, we obtain in this way all p-paths w,p with a’,b" € (n + 1)-cube,
which concludes the proof. m
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3.5 Augmented chain complex

In this section we use the augmented chain complexes

0— K & a0 & 0 & A &, 2 (3.44)

0 K & R & ... & g,y &R, & (3.45)
and (

0— kK £ 09 & ... & g, & & .., (3.46)

with the added space A_1 = R_1 = 2_1 = K. The operator 0 : Ay — A_; is define by
Oe; = e = the unity of K

which matches the definition (1.1) for p = 0.

The homology groups of (3.46) are called the reduced homology groups of G and are denoted by
H,(G). We have

H,(G) = H,(G) forp > 1and Hy(G) = Ho(G)/K.
Define the reduced Betti numbers: ﬁp(G) = dim I;Tp(G). We have

B,(G) = B,(G) forp > Land G,y(G) = B,(G) — 1.

For a disjoint union X LI'Y of two digraphs we have by (1.4)

B (X UY) =B, (X)+ B, (V) + Lj—y- (3.47)

The augmented chain complex (3.46) as opposed to (1.3) will also be used in Subsection 6.9. In all
other places we continue using the chain complex (1.3).

3.6 A join of two digraphs

Let X, Y be two digraphs.

Definition. The join X =Y of the digraphs X, Y is a digraph whose set of vertices is a disjoint union
of the sets of vertices of X and Y, and the set of arrows consists of all arrows of X and Y as well as
from all arrows x — y where x € X andy € Y.

Example 3.10. For example, for the digraphs {-, -} of two vertices and no arrows, we have

{0,1} % {2,3} =

a diamond

and

0f

x{4,5} =

S

an octahedron
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Definition. Let p,q > —1. For a p-path v on X and a g-path v on Y, define the join uv as a
(p+ q+ 1)-path on X = Y as follows: first define it for elementary paths by

€ig...ip€J0...7q = Cig...ipjo---Jg>

and then extend this definition by linearity to all « and v.

If w and v are allowed on X, resp. Y, then uv is clearly allowed on Z = X * Y.

Lemma 3.11. [20], [29, Lemma 2.4] (Product rule for join) For all p,q > —1 and u € A, v € A,
we have

A (w) = (Bu) v+ (=1 udv. (3.48)

If u € Q,(X)and v € Q, (Y) then Ju and Jv are allowed, which implies by (3.48) that 0 (uv) is
also allowed, that is, uv € 0,4 4+1 (Z) . The product rule implies also that the join uv is well defined
for the reduced homology classes: if u € Hy, (X)and v € Hy (Y) then uv € Hypig41(Z2) .

3.7 Kiinneth formula for join

Let X, Y be two digraphs.

Theorem 3.12. [29, Theorem 3.3] (Kiinneth formula for join) We have the following isomorphism:
forany r > —1,
QX+Y)E @ (X)) 8Q) (3.49)
{p.g=—-1:p+q=r—1}
that is given by the map u @ v — wv withu € Q, (X) and v € Q4 (Y'), and, for any r > 0,

H, (X %Y) = ®  H,(X)oH(Y) (3.50)
{p,q>0:p+q=r—1}
B (X xY) = Y B (X)B,(Y). (3.51)

{p,q>0:p+q=r—1}

The identity (3.49) means that any path in €2, (Z) can be obtained as linear combination of joins uv
where u € Q, (X) and v € Q, (Y') with p+ ¢ + 1 = r, and (3.50) means the same for homology
classes.

Example 3.13. Let Y consist of a single vertex. In this case the join X Y is called a cone over X.
Since all homology groups H., (Y) are trivial, the cone X * Y is also homologically trivial by (3.50).
For example, the following digraphs are cones and, hence, they are homologically trivial.

7 A 1
3 4
2 0
0 0 3 4
N 6
0 1 ] ’ 3 4 ) g
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Example 3.14. Let Y consist of m vertices without arrows. Then the join X * Y is called the
m-suspension of X and is denoted by sus,,, X.

Here is an example of sus,,, X with m = 3:
Since 50 (Y)=m—1and Ep (Y)=0
for p > 1, we obtain from (3.51) that

Br (susm X) = (m - 1) ﬂr—l (X) :
For example, on this picture X = susy {-, -}
whence 3, (X) = 1 and Bp (X)=0forp # 1.
For G = suss X we have (3, (G) = 2 and 3, (G) = 0 for r # 2.

Observe that the operation * of digraphs is associative. For a sequence X1, ..., X; of [ digraphs we
obtain by induction from (3.49), (3.50) and (3.51) that

1

Qp (X1 * Xo % ... % X)) (X)) ® ... ©Qp (X)) (3.52)

{pi>—1: p1+po+..4+p=r—I+1}

H, (X1 % Xg % ... % X)) = s Hy, (X1)®...® Hy, (X)) (3.53)
{pi>0: p1+pa+...+p=r—I+1}
ﬁr (Xl *Xg**Xl) = E /Bpl (Xl)'“/sz (Xl> (354)

{pi>0: p1+pot..+pi=r—I+1}

Example 3.15. Consider an octahedron Z = X7 x X5 * X3 where
X, ={0,1}, Xo=1{2,3}, X3=1{4,5}.
(see Example 3.10). Then we have
Qs (Z) = @ Qm (Xl) ® ng (X2) ® sz (X3)
{pi>—1: p1+pa+p3=2—3+1}
= Qo (X1) ® Qo (X2) @ Qo (X3)
= <€07€1> ® <€2a 63> ® <64a 65>

= (€024, €025, €034, €035, €124, €125, €134, €135)

and

Hy(Z)=H2(Z) = &) H,, (X1) ® Hy, (X3) ® Hy, (X3)
{pi>0: p1+pa+p3=2—3+1}

= Hy (X1) ® Hy (X2) ® Ho (X3)
= (eo — 1) ® (e — e3) ® (e4 — e5)

= (€024 — €025 — €034 + €035 — €124 + €125 + €134 — €135).

3.8 Linear join

The material in this section is based on [30]. Given a digraph G of [ vertices {1,2,...,/} and a
sequence X1, ..., X; of [ digraphs, define their generalized join (Xl...Xl)G = X as follows: X is
obtained from the disjoint union | |; X; of digraphs X; by keeping all the arrows in each X; and by
adding arrows x — y whenever x € X;,y € X; andi — jin G.

The digraph X is also referred to as a G-join of X1, ..., X;, and G is called the base of Xg.
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X, X X
H = % G

The main problem to be discussed here is
how to compute the homology groups and Betti numbers of Xq.

Denote by K; a complete digraph with vertices {1, ...,1} and arrows
1—=je1<y,
that is, Kj is an (I — 1)-simplex. For example, K = {1 — 2} and K3 = {1 -2 — 3,1 — 3} isa
triangle.
The digraph X, is called a complete join of X1, ..., X;. It is easy to see that
X, = X1 x Xox ... x X

It follows from (3.54) that, for any > 0,

8, (Xg,) = 3 By (X1) .8, (X7). (3.55)

{pi>0: p1+pa+...tp=r—I+1}
Denote by I; the monotone linear digraph with the vertices {1, ..., 1} and arrows ¢ — i + 1:
L ={1-2—..—1}. (3.56)
If G = I; then we use the following simplified notation:
(X1 X2.. X)), = X1 Xo.. X,

and refer to this digraph as a monotone linear join of X1, ..., X;.

Clearly, X7 X5...X,, can be constructed as follows: first take a disjoint union |_|§:1 X; and then add
arrows from any vertex of X; to any vertex of X;,; (see Example 4.13).

In the case [ = 2 we obviously have X; Xo = X7 * X5 but in general X; X5...X is a subgraph of
X1 % Xg * ... ¥ X;. For example, we have

{0} {1,2} {3} = while {0} * {1,2} {3} =

Theorem 3.16. [30] We have

H’r‘ (XlXQXl) = @ ﬁpl (Xl) R... R ﬁpl (Xl) (3.57)
{pi>0: p1+pa+...+p=r—I+1}

and

e 2 By (X1) .8, (X)) (3.58)
{pi20: pr+p2+...4+p=r—i+1}

Moreover, if dim,, X; < oo for all i, then also dim,, (X1...X)) < o0

39



It follows from comparison of (3.53) and (3.57), that the linear join X; X5...X; and the complete join
X1 * Xg * ... ¥ X are homologically equivalent.

Example 3.17. Assume that one of the digraphs X; is homologically trivial, that is, Ep (X;) =0 for
all p and some 7. Then by (3.58) the digraph X; Xs... X is also homologically trivial.

Example 3.18. Assume that all digraphs X; have no arrows. In this case the only non-trivial Betti
numbers are (3, (X;), and we obtain from (3.58) that the only non-trivial Betti number of X X5...X]
is

Bro1 (X1 X2...X7) = By (X1) .00 (X)) . (3.59)
This particular case of Theorem 3.16 was proved in [7].
Here is an example of a monotone linear join: ! 3
X = X1X9X3
where each X; = {-,-}. : ¥ i

Since 30 (Xi) = 1, it follows from (3.59) that the only non-trivial Betti number of X is 3, (X) = 1.

Example 3.19. Let the base G be a square:
We have 3 >
G ={1}3{2,3} {4}

which implies that

S

Xa=X4 (Xgl_ng)X4. 1 —,
By Theorem 3.16 and (3.47) we obtain that
/57‘ (XG) = Z ﬁpl (Xl) Bp2 (X2 I_l XS) Epg; (X4)
{pi>0: p1+p2+ps=r—2}
- > By (X0) (B (X2) + By (X) + Lipumo) ) By (Xa)
{pi>0: p1+p2+p3=r—2}
=6, (X1XoXy) + B, (X1X3X4) + 5,1 (X1 X4) . (3.60)

For a general base G, if i1...i, is an arbitrary sequence of vertices in GG then denote

Xy = Xiy Xipoo X

1eeg

Note that by (3.58)

By (Xiy.if,) = > By (Xiy) By, (Xi,) -

p1+...+pp=r—(k—1)
P1ye-,Pk >0

Using this notation, we can rewrite (3.60) as follows: if G is a square then
B, (Xa) = B, (X124) + By (X134) + B,y (X14).
Example 3.20. Let GG be an octahedron based on the diamond:

‘We have
G=1{1,2} x{3,4} « {5,6}

whence !

XG:(X1|_|X2)*(X3L|X4)*(X5|_|X6). 2
By (3.55) we obtain
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8, (Xg) = > By, (X1 U X2)B,, (X5 U X4)B,, (X5 U X)
{pi>0: p1+p2+p3=r—2}

_ )> (B, (X1) + By, (Xa) + Lipi—oy) By (X5) + By (Xa) + Lipy_oy)
{pi>0: p1+pa+p3=r—2}

X (Bpa (X5) U Bps (Xe) + 1{103:0})
= 3,(X135) + B, (X145) + B,(Xazs) + B (Xoas) + B, (X136) + 5, (X146)

+ 3, (Xa36) + B (Xaus)
+ By (X13) + B,y (Xa3) + By_y (X14) + By (X2a) + B,y (X15) + By_q (Xa5)

+ By (X35) + By_1(Xus) + By_y (X16) + Br_1(Xa6) + B,_1(X36) + By_y (Xa6)
+ 5r72(X1) + 5r72(X2) + BT72(X3) + Eer(Xﬁl) + Br72(X5) + 51"72(X6) + 1{7’=2}‘

3.9 Subgraphs and Mayer-Vietoris exact sequence

The material of this section is based on [18].

A digraph Y is called a subgraph of a digraph X if both sets of vertices and arrows of Y are subsets
of those sets of X. Any allowed path in Y is therefore also allowed in X. Since the natural inclusion
map i : Y — X commutes with 0, we obtain that every O-invariant path in Y is also 0-invariant in X.

A converse is not always true: even if eq, 4, is an allowed path in X and all the vertices ao, ..., ay
lie in Y, this path is not necessarily allowed in Y because some of its arrows may not be in Y.

A subgraph Y is called induced if together with two vertices a, b € Y it contains also the arrow a — b
if this arrow is present in X. For an induced subgraph Y, if e4,.. 4, is an allowed path in X and all
the vertices ag, . .. ,ap liein Y then ey, 4, is also allowed in Y. Consequently, if w is a O-invariant
path in X and if all the vertices of w are contained in Y then w is also O-invariant in Y.

If Y7 and Y5 are two subgraphs of X then their union Y; UY5 is a subgraph of X whose sets of vertices
and arrows are unions of those of Y; and Y5, respectively. In the same way one defines the intersection
Y1 NYs. If Y7 and Y5 are induced then Y7 N Y5 is also induced.

Assume that a digraph X is a union of two subgraphs Y] and Y5, that is,
X=Y1UY,.

In particular, every arrow of X lies in Y7 or Y5. Denote
Z=Y1NY,.

Then we have the following commutative diagram of the natural inclusions of the digraphs:

1

z vy
? kA (3.61)
)
v, - X

For any p > —1 the commutative diagram (3.61) induces a commutative diagram

* =

Ryp(Z) == Ry(1)

[k e (3.62)
R,(Ya) L5 R, (X),



where all homomorphisms are injective. Observe that all homomorphisms ¢, and j, commute with
the boundary operator 0 and map allowed paths to the allowed ones.

Consider the following homomorphisms:
0 — Ry(2) = Ry(Y1) ® Ry(Ya) — Ry(X) — 0, (3.63)
where

0 (2) = (iy (2) % (2)) and Y(y1,92) = Jy (1) — 57 (2) (3.64)
for all z € Z and y; € Y;. The map ¢ is evidently injective.

Lemma 3.21. [18, Lemma 3.23] In the sequence (3.63) we have Im 6 = ker ~.

Proof. For any z € Z we have
Y (0(2) = jr oy (2) =g ol (2) =0,
so that v o § = 0 and, hence, Im § C ker ~y. To prove the opposite inclusion, observe that
kery = {(y1,92) € Rp(Y1) ® Rp(Y2) : i (y1) = j2(y2) }

that is, y; and y9 coincide as paths in X. Since y; is a path in Y7 and y5 is a path in Y5, it follows that
y1 and y2 can be identified with the same path z in Z = Y] N Y5. It follows that 0 (z) = (y1,y2) and,
hence, (y1,y2) € Im §, which finishes the proof of Im§ = ker~. m

For all (y1,y2) € Rp(Y1) & Rp(Y2) set
9 (y1,92) := (Oy1,0y2) € Rp—1(Y1) & Rp-1(Y2).

Also, we say that (y1,y2) is allowed if both y;, y2 are allowed.

Since i, and j, commute with the boundary operator 0, it follows that § and v also commute with 0,
that is, the following diagram is commutative:

0 0
l - l -

0 ... — Rn_1(2) & Ra(2) -
10 10

0 .. « Rusi(V1)®Rua(¥a) & Ra(V1) @ Ra(Ya) <
17 17

0 ... « Ron—1(X) e R (X) e
! !
0 0

Indeed, for z € R, (Z) we have
500(2) = (iL(92),2 (92)) = (9iL ()02 (=) = Do 6(2)
and for (y1,y2) € Rn(Y1) ® R, (Y2) we have
700 (y1,92) = Gu (Oy1) — 3 (9y2) = 0js (y1) — 955 (y2) = Doy (y1,92) -

Observe also that § and v map allowed paths to allowed ones, which follows from the same properties
of i, and j.. Since ¢ and v commute with 0, it follows that § and v map J-invariant paths to J-invariant
ones. Hence, we obtain the following sequence of homomorphisms

0 — Q,(Z) -5 Q, (Y1) B Qp(Va) - Q,(X) — 0, (3.65)

where ¢ is injective as above.
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Lemma 3.22. [18, Lemma 3.24] In (3.65) we have Im § = ker . If in addition
Vo € Q, (X) we have x =y + ya for some y; € Q, (Y1) and y2 € Q, (Y2) , (3.66)

then 7y in (3.65) is surjective and (3.65) is a short exact sequence.

Proof. Since v o0 d = 0, we have Im§ C ker~y. Let us prove the opposite inclusion. Let y; €
Q,(Y1) and y2 € Q,(Y2) be such that (y1,y2) € kerw, that is, jl(y1) = j2(y2). By Lemma
3.21, y1 and y» can be identified with a path z € A, (Z). Then 0z = 0y1 € Ap—1(Y1) and
0z = 0yp € A,_1(Y2), thatis 0z € A,_1(Z) and, hence, z € Q,(Z). Therefore, (y1,y2) = d (2),
which was to be proved.

Let us prove that the map + in (3.65) is surjective. For any z € €2, (X) we have by hypothesis that
x = y1 + y2 where y; € Q, (Y1) and y2 € , (Y2). Then we have v (y1, —y2) = « so that  is
surjective. ®m

The condition (3.66) can be equivalently stated as follows: there is a basis in {2, (X') such that any
element of this basis is a sum of elements of {2, (Y1) and ©,, (Y2) .

Theorem 3.23. [18, Theorem 3.25] (Mayer-Vietoris exact sequence) Let
X=Y1UYy, Z=Y1NY,

and assume that the hypothesis (3.66) is satisfied for any p > 2. Then we have a long exact sequence
of homology groups:

s Ho(2) S Ha (V) @ Ha(Ya) 2 Ho(X) 2 Hyi(2) S Hoyi (Y1) @ Hyoy(Ya) — - -

(3.67)
where § = (i},12), v(y1,y2) = jL(y1) — §2(y2), and f3 is a connecting homomorphism.
Proof. Note that (3.60) is trivially satisfied for p < 1. Hence, this condition is satisfied for all p. By
the above construction, we have the following commutative diagram

0 0
! , ! [

0 .. — Q_1(2) 2 0, (2) &
10 10

0 v = QY1) @Wa(¥a) £ QM) o) < ... (3.68)
17 17

0 .. Q1 (X) & Q0 (X) &
! !
0 0

where each column is a short exact sequence by Lemma 3.22. The claim follows from the zig-zag
lemma and from B N N
H, (2.(Y1) ® Qu(Y2)) = H.(Y1) & Ha(Y2).

n
Any p-path u € R, (X) has the form

_ 0. lp,.
u= Y u"e i,
i0..ip

with the coefficients w7 € K. We say that e;,. ;, (or u'*~"re;, ;) is an elementary term of u if
uio...ip ?é O

The next lemma provides sufficient conditions for the hypothesis (3.66).
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Lemma 3.24. Assume that the following two conditions are satisfied:

(i) Forany p > 2 and for any x € Qy, (X), any elementary term of x lies in one of the subgraphs
Y1, Y5 and is allowed in this subgraph.

(ii) For any square eqp. — €qpc in X, if a,b, ¢ € Yy, for some k = 1,2 then also b € Y.
Then the condition (3.606) is satisfied.

Proof. Fix x € Q, for some p > 2. Denote by y; the sum of all elementary terms of x that lie in Y;
and are allowed in Y]. Set yo = x — y;. By (i), y2 is a sum of some elementary terms of x that lie in
Y5 and are allowed in Y5. Since x = y; + yo, it suffices to verify that both y; and y» are O-invariant,
that is, Oy; and Oy, are allowed. Assume that Jy; is not allowed. Then Jy; contains a non-allowed
elementary term, say

conste, = (3.69)

1Q...lg.enlp
(where 1 < g < p — 1) that comes from the boundary of a term e;,. ;, of y1. This term must cancel
out in Jz, which means that = must contain another elementary term e;,. . j, With

~

§0-iq1 g iqi1ip = J0--Jq—1Ja Ja+1---Jp-

Consequently, i, = ji for all k£ # ¢. Hence, we obtain the following square in X:
Cig—rigigt1 — Cig-1jqigs1- (3.70)

Since i4—1, iq and igy1 belong to Y; then by (ii) also j, € Y7. Hence, ej,..j, lies in Y7 and the
non-allowed term (3.69) cancels also in Jy;. Therefore, Oy, is allowed and y; is O-invariant. In the
same way also y» is J-invariant. m

In this picture we show a situation when
each of the paths ig...75, jo...j, belongs
to one of the digraphs Y7, Y5, while the
condition (ii) is not satisfied: the square
(3.70) has the vertices i4_1,iq,1g+1 in Y7
while j, ¢ Y.

Corollary 3.25. Assume that the hypothesis (3.60) is satisfied.

(a) If, for some n, the homology groups H,(Z) and H,_1(Z) are trivial, then

Hy(X) = Hy (Y1) & Hy(Y2). (3.71)

(b) If; for some n, the homology groups ﬁ[n(}ﬁ), f[n(Yg), ITIn,l(Yl), ﬁn,l(Yg) are trivial, then

H,(X) = H,_1(2). (3.72)

(¢) If. for some n, the homology groups H,,_1 (Y1), H,_1(Y2) and H,(Z) are trivial, then

dim H,, (X) = dim H, (Y1) + dim H,, (Y) + dim H,_; (Z) . (3.73)
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Proof. (a) We have the following fragment of (3.67):
0= Hn(Z) — Hy(Y1) ® H,(Y2) — Hp(X) — Hp 1(Z) =0,

whence (3.71) follows.
(b) We have the following fragment of (3.67):

0=H,(Y1) ® H,(Y2) = Hy(X) — Hyp1(Z) — Hy1(Y1) ® H,—1(Y2) =0,

whence (3.72) follows.
(c) We have the following fragment of (3.67):

0= Ho(Z) — Hy(Y1) @ Ho(Ya) 2 Ho(X) 2 Hy1(Z2) — Ho1(Y1) @ Hy_1(Ys) = 0.
Hence, + is injective and (3 is surjective, and Im v = ker 3. By the rank-nullity theorem we have

dim H,, (X) = dimker 8 + dim Im 3
=dimIm~y + dimIm g
= dim H, (Y1) + dim H, (Y2) + dim H,,_, (Z),

which was to be proved. m

Example 3.26. Assume that Z consists of a single vertex v. In this case Y7 and Y5 are necessarily
induced subgraphs. Alternatively, one can say that X is obtained by merging digraphs Y; and Y3
at one vertex v. Let us verify that the hypotheses (i) and (ii) of Lemma 3.24 are satisfied. For any
x € Q, (X) with p > 2 consider an elementary term ceiy...i, of x and show that e;, ;, lies in Y7 or
in Y. Assume that this is not the case, that is, one of the vertices i1, ..., 4,1 is v, say v = 1,4, while
tg—1 and i441 belong to different Y7, Y5.

The path de;,..;, contains the term U .
Ci...ig—11q41--ip . Y, N i Y, \
. . . ; =y \
that is not allowed because iq—1 7 ig41. L ./‘7\. ___________________ I,'
This term must be cancelled in 0z using lg-1 S e

another elementary term of . T

However if another elementary term e, _;, of x contains €;,_;,_,i,,,...i, in its boundary then

§0-iq1igi1ip = Jo-r-Jg1dg+1---p

which implies j, = v because this is the only choice of j, to make jo...j, allowed. Hence, €;,.;, =
€jo...j, and the above cancellation is not possible, which proves ().

The condition (ii) is obvious: if egpe — €qprc is a square in X and a, b, ¢ € Y7 while & ¢ Y7 then both
a and ¢ must coincide with v, which is not possible.

Since H, (Z) = {0}, Corollary 3.25(a) applies in this case and yields (3.71) for all n. Consequently,
we have

Bn(X) = F(V1) + B, (Ya)- (3.74)
Example 3.27. Denote by Y] the digraph LH (5) from Example 1.19. For this digraph

B, (Y1) >0 forall p=1mod3.
More precisely, 3, (Y1) = 1 and 3, (Y1) = 4if p=1mod 3 and p > 1. Set

Yo =susy Y7 and Y3 = susy Yo.
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Using the formula 3, (sus; G) = 3,_; (G) from Example 3.14, we obtain that
B, (Y2) > 0 forall p = 2mod 3
and
B, (Y3) > 0 for all p = 0 mod 3.
Let X be a digraph that is obtained from disjoint digraphs Y7, Y5 and Y3 by merging them at one
vertex. By (3.74) we obtain forall p > 1

Bp(X) = Bp(Y1) + B,(Y2) + 5, (Y3).

Since 3, (Y;) > 0 for p = imod 3, it follows that
B, (X) > 0 for all p.

Hence, we obtain an example of a digraph with non-trivial homology groups H,, for all p.
Example 3.28. Let X be an octahedron as here:
Let Y7 and Y5 be induced subgraphs consisting
of the upper and lower pyramids. Then Z is the
diamond in the middle section of X.
The space 29 (X)) is spanned by 8 triangles:

€024, €034, €025, €035, €124, €134, €125, €135,
each of them lying in Y; or Y5, and Q,(X) = {0}
forall p > 3.

Hence, the hypothesis of Theorem 3.23 is satisfied.
Note that all H, (Y1) and H, (Y) are trivial, while the only nontrivial group ﬁp (Z) is

Hi (Z) = (eo2 — €12 + €13 — €03) -

By Corollary 3.25(b) we conclude that Ho(X) = H;(Z). Indeed, we have seen in Example 3.15 that
H, (X)) is one-dimensional.

Example 3.29. Let Y, be an induced connected subgraph of X such that X \ Y5 has a single vertex b
and two arrows @ — b and b — ¢ where a, ¢ are distinct vertices of Yo. We assume further that a 4 ¢
in Y5 (while in X we have either a — c or a — ¢). Let us related H,, (X) to H, (Y2) .

Denote by Y7 an induced subgraph of X with the vertices a, b, c, and set Z = Y7 N Ys.
Then Z is an induced subgraph with two
vertices a and c.

Here is an example of this configuration:

Let us verify that the conditions (i), (ii)
of Lemma 3.24 are satisfied.

Let ae;,..;, be an elementary term of x € 0, (X) where p > 2. Let us show that the path 4g...7,
lies in Y7 or Y5. If 4g...7,, does not contain b then it lies in Y5. Let b be one of the vertices i...7,, say
b = iy.
If

p=2and k=1, (3.75)

then e;;...;, = €qpe and the path abc is contained in Y7.

46



Assume that (3.75) is not satisfied, so that either £ > 2 or k < p — 2.

If £ > 2 then ey, = €., _,ab... and De;,._;, contains the term e_;, ,p... that is non-allowed and
cannot be cancelled by other terms of x.

Similarly, if £ < p — 2 then €ig...ip = €...bcij ... and aeio_,_ip contains a non-allowed term e_ p;, ...
that cannot be cancelled by other terms of z. Hence, the condition (i) is satisfied.

The condition (ii) is obvious: if s is a square in X that does not lie in Y5 then s must contain the
vertex b and, hence,

S = €qbc — Cab'c
where b’ € Y,. However, since ac is not a semi-arrow in Y5, the path ab’c cannot be allowed.

Since
H,(Z)={0} Vn>1 and H, (Y1) ={0} V¥n>2,

we obtain by Corollary 3.25(a) that
H,(X) = Hy(Y) forall n > 2.

In order to determine H; (X ), observe that Hy (Y1), Ho(Y2) and Hy(Z) are trivial, and we conclude
by Corollary 3.25(c) that

dim H, (X) = dim Hy (Y1) + dim H, (Y2) + dim Hy (Z) .

Next, consider three cases.
Case 1. Let a — c¢. Then Hy (Y1) = {0} and Hy (Z) = {0} whence

Case 2. Let a » ¢ and ¢ — a. Then Hy (Z) = {0} and
Hl (Yl) - <eab + epe + eca) )

whence
dim H; (X) = dim H; (Y3) + 1. (3.76)

Case 3. Leta > cand ¢ /> a. Then Hy (Y1) = {0}, dim Hy (Z) = 1, and we obtain again (3.76).
Example 3.30. Let Y7, Y5 be induced subgraphs of X as shown here:

The digraph X contains a 0-invariant snake eg1 2 .. 19 that does not lie in any of the subgraphs Y7, Ya.
Hence, the hypothesis (3.66) of Theorem 3.23 is not satisfied, and the condition (i) of Lemma 3.24
fails as well.

Example 3.31. Consider the following digraph X of 10 vertices and induced subgraphs Y7 and Y5 as
follows:

- Y] contains the vertices {1,2,4,6,8,9},
- Y5 contains all the vertices except for 6.
Hence, Z contains the vertices {1, 2,4, 8,9}.

Digraphs Y1, Y5, Z are homologically trivial,
while dim Hy (X) = 1.
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In fact, we have

Hjy (X) = (eo12 — (eo14 — €034) + (025 — €035) — (€126 — €146) — (€259 — €269)
— (e3a8 — e378) + (€359 — €379) — (€469 — €489) — €789)- (3.77)

Therefore, (3.71) fails for n = 2. The condition (3.66) fails as well because the square

€259 — €269 (3.78)

is O-invariant on X but it not a sum of J-invariant paths on Y7 and Y5.

For the same reason also the hypothesis (ii) of Lemma 3.24 fails: in the square (3.78) the vertices
2,6,9 belong to Y7 while 5 does not. Note that the hypothesis (i) of Lemma 3.24 is satisfied in this
case. Indeed, one can show that

Q= <€012 » €789 , €014 — €034, €025 — €035, €126 — €146,

€259 — €269, €348 — €378 , €359 — €379 , €469 — €489 ), (3.79)

and €2, = {0} for p > 2 so that (i) follows from the observation that every elementary term in (3.79)
lies in Y7 or Y5.

Example 3.32. Consider the following modification of the previous example with an added vertex 10
and arrows 2 — 10 — 9.

The digraphs Y7, Y5 are still homologically

trivial, while Z is a polygon so that h 6

dim Hy (Z) =1, H,(Z) = {0} forp > 2. 5
Condition (3.66) is satisfied, in particular,

because the square (3.78) is a sum of two 8
squares . Y

(e2109 — €269) + (€250 — €2109)
lying in Y7 and Y5, respectively,
By Corollary 3.25(b) we conclude that dim Hy (X)) = dim H; (Z) = 1. Indeed, in this case Hy (X)
is also given by (3.77).

Note that the condition (ii) of Lemma 3.24 fails in this case for the same reason as in the previous
example.

4 Fixed point theorems for digraph maps

4.1 Lefschetz number and a fixed point theorem

Everywhere here K = R (or K = Q). Let f, : ©, — (2, be a sequence of linear mappings that
commutes with 0, that is,
90 fur1 = fnod (4.80)

for any n > 0. In other words, the following diagram is commutative:

0 1o}
Qni 1 — Qn — Qn+1

lfn—l lfn lfn+1 (4.81)

0 0
Qp1 — Q, «— Qn—‘rl

48



Denote
Zy =kerdlq,, B, =1Imd|q, ,,
so that
H, = Z,/B,.
It follows from (4.80) that f,, acts on Z,,, B,, and H,,.

Definition. Denote shortly by f the sequence { f,,} of the mappings as above. For any non-negative
integer IV, define the Lefschetz number of f of order N by

LY (f) = 5 (~1)" trace fulo,. 452)
n=0

For example, if each f,, = id then

LN ()= (=1)"dimQ,, = V.

N
1=

Proposition 4.1. The following identity holds:

LN (f) = % (—1)"trace fu|m, + (—1)" trace fx|py - (4.83)
n=0

Proof. Using the following identity (that will be proved in Subsection 4.2)
trace fp|m, = trace fplq, — trace fn_1|p, , — trace fu|B, , (4.84)

we obtain

N
> (—=1)" trace fnlm,

n=0
N N N

= 2 (=1)"trace fola, — > (=1)" trace fu-1|p,_, — > (—1)" trace fu|s,
n=0 n=1 n=0
N N—1 N

= 3 (=1)"trace fula, + > (=1)"trace fi|p, — 3 (—=1)" trace fn|p,
n=0 k=0 n=0
N

= 5 (=1)"trace fulo, — (—1)" trace f |y
n=0

= LW (f) = (=) trace fsy,

whence (4.82) follows. =
Letnow f : G — G be a digraph map, that is,

i—j=f@) = fG)orf@)=[().

In Subsection 1.4 we have defined an induced mapping f, : A,, — A, as follows: first set

fi (€igoosin) = €f(i0)...f(in)>

and then extend f to A,, by linearity. By Proposition 1.6, f, extends to linear mappings €2, — 2,
and H,, — H,.

In this section we denote f, for simplicity also by f. Hence, we obtain the diagram (4.81) where all
fn = f. In particular, LY) (f) is defined.
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Theorem 4.2. Let f : G — G be a digraph map. If, for some N > 0, we have L) (f) # 0 then f
has a fixed point, that is, a vertex a such that f (a) = a.

We use the definition of a cluster from Subsection 2.2. For example, eqp. — eqpc is an (a, ¢)-cluster
whereas e + €40 is not a cluster.

Lemma 4.3. In each Q,, there is an orthogonal basis (with respect to the natural inner product (-, -))
that consists of clusters.

Proof. LetC be the set of all 0-invariant clusters in €2,,. By Lemma 2.2, 2, is spanned by C. Choosing
in C a maximal linearly independent subset, we obtain a basis 3 in 2, that consists of clusters. Let us
show how to make an orthogonal basis of clusters. Let u, v be two elements from B.

Let u be an (a, b)-cluster and v be an (a’, &')-cluster. u * 5 "
If (a,b) # (a’,b) then clearly u_Lv.

If B has more than one (a, b)-cluster, then among all (a, b)-clusters in B, we run a Gram-Schmidt
orthogonalization process and obtain an orthogonal set of (a, b)-clusters in . Note that during this
process all newly arising elements are again (a, b)-clusters. Doing that for all pairs (a,b) , we obtain
an orthogonal basis in €2, that consists of clusters. m

Proof of Theorem 4.2. Assume that f has no fixed point. We will prove that
trace f|q, = 0 forany n > 0, (4.85)

which gives by (4.82) that L") (f) = 0 thus contradicting the hypothesis that L") (f) # 0.

By Lemma 4.3, there is an orthogonal basis w1, ..., U, in €, where all uy are clusters. Denote by
(cij) the matrix of the operator f : €, — €, in this basis, that is,

(f (ug) wi)

m
flu;) = cijui,  whence cij = 3
i=1 [Jwill

Consequently, we have
< o~ (f (ug) , up)
trace flq, = chk = 2—72
k=1 k=1 k]|

It remains to show that f (uy) Lug, which will imply (4.85). Indeed, let uy be an (a, b)-cluster, that
is, uy is a linear combination of elementary n-paths of the form

€aiq...in_1b> (486)

where a, b are fixed while i1, ..., 7,1 are variable. Then f (uy) is a linear combination of the n-paths

€f(a)f(Gr)--f (Gn-1)F(b)> (4.87)

where j1, ..., jn—1 are variable. Since a # f (a), we see that the paths (4.86) and (4.87) are orthogonal,
which implies that f (u) and uy are orthogonal, too, which was to be proved. m

4.2 Rank-nullity formulas for trace

The purpose of this section is to prove the identity (4.84) — see Lemma 4.6 below. Recall that we have

a commutative diagram

0 1o}
Q1 — Qp «— Qpp

lfn—l ifn lfn+1

0 0
Q1 «— Q, «— Qn—‘rl
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and

Zn =kerdlq,, Bn=1Imdlq,.,, Hy= Zn/Bn.

n+1?

Lemma 4.4. We have
trace fn|g, = trace f,|z, — trace f,|B, - (4.88)

Proof. Let uy,...,u; be a basis of B,,. Choose in Z, elements vy, ...,v; so that the sequence
U, ..., U, V1, ..., Vg is a basis of Z,,. Then

l
fr (i) =) aiju
j=1

and

k
fn (05) = Z b;jvj + terms with u;.
j=1

For the homology classes we have

It follows that

! k
trace fn|z, = Z aii + Z bi; = trace fi|p, + trace f,|m,,
=1 =1

which is equivalent to (4.88). m

Lemma 4.5. We have the identity
trace fp|z, + trace fn—1|p, , = trace fu|q, -

For example, if f,, and f,,_1 are the identity operators then this becomes the rank-nullity theorem for

the operator 0:
dim Z,, + dim B,,_1 = dim (Q,,. (4.89)

Proof. Letuvy,...v; beabasisin Z, and u], ..., u) be abasisin B,,_1. Choose any vector u; € 9~ (u}),

that is, u; = u]. Let us show that the sequence vy, ..., Vg, u1, ..., u; is linearly independent in €2,,.

1e|

"Bi=<uh,... > N/ Z=<vn. 0

Indeed, if there is a vanishing linear combination

l k
Zaiui + Zﬁjvj =0,
i=1 j=1
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then it follows that l i l
0=0) amui+0Y Bjvj=Y ouj+0,
i=1 j=1 i=1

whence it follows that all a; = 0. Consequently, 25:1 Bjv; = 0 and, hence, also all 5; = 0.
Since by (4.89) k + [ = dim §2,,, it follows that the sequence v, ..., Vg, U1, ..., u; is a basis in €2,,.

Hence, for some coefficients a;; and b;;,

l
fu (wi) = agju; + terms with v; (4.90)
j=1

and
k
fo (i) =Y bijuj.
j=1

The latter expansion contains no u; because f,, (Z,) C Z,. Hence,

! k
trace fn|q, = Z ai; + Z bi;.
i=1 i=1
On the other hand, we have

k
trace f,|z, = Z bi;.

i=1
It remains to prove that

!
trace fn—1lB, , = Zaii-
i=1

Since f,_1 maps B,,_1 into itself, there are coefficients ag j such that

o1 (uf) = ajjul. 4.91)
j=1
It follows from (4.90) that
! l
Ofn (ul) = Z a,-jauj +0= Z aiju;. 4.92)
j=1 J=1

On the other hand, using (4.80) and (4.91), we obtain that

8fn (Uz) = fn—l (aul) = fn—l (u;) = Z a;ju;"

Jj=1

Comparison with (4.92) shows that a;j = a;; and, hence,

l l
!
trace fn—1lB,_; = g ag; = g i,
i=1 i=1

which finishes the proof. m
Finally, we can prove (4.84).
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Lemma 4.6. The following identity holds
trace fp|m, = trace fnlq, — trace fn_1|p, , — trace f,|B, -
Proof. By Lemma 4.4 we have

trace f|m, = trace f|z, — trace fu|B, ,

and by Lemma 4.5
trace fp,|z, = trace f,|q, — trace fn_1|B,_,,
which yields (4.93). =

4.3 A fixed point theorem in terms of homology

Definition. Define the path dimension of a digraph G by
dim, G =sup {n : |Q,| > 0}.

Assume that dim, G' < co. Then for any NV > dim,, G we have by (4.83)

N N
LW (f) = Z (—1)" trace flq, = Z (—1)" trace f|m,-
n=0 n=0

Recall the definition of the homological dimension:

dimy, G =sup{n: |H,| > 0}.

(4.93)

(4.94)

Theorem 4.7. Let G be a connected digraph. Let dim, G < oo and dimy, G = 0. Then any digraph

map f : G — G has a fixed point.

Proof. The condition dim;, G = 0 means that H,, = {0} for all n > 1, and the connectedness means
that | Hy| = 1. The space H) is spanned by a single homology class [e,] where a is one of the vertices.
Then f (e4) = €f(q) ~ €q s0that f ([eq]) = [eq]. It follows that trace f|g, = 1 while trace f|x, =0
for all n > 1. By (4.94) we obtain L(™) (f) = 1 # 0, and by Theorem 4.2 we conclude that f has a

fixed point. m

The condition that a mapping f : G — G is a digraph map can be reformulated as follows. Define a

directed distance between vertices a, b of G by

d (a,b) =inf{n: Japatha — i; — ... = i1 — b}.

n arrows
Then f is a digraph map if and only if
d (f(a), f(b)) < d (a,b) for alla,be V.
Let us relax this condition.
Problem 4.8. Devise a fixed point theorem for maps f : G — G with
d (f(a), f(b) < cd (a,b) for alla,b eV,

where C > 1 is a constant.

Alternatively, one can strengthen conditions on f, assuming that f is a digraph isomorphism, which

is equivalent to
— —
d (f(a), f(b)) = d (a,b) for alla,be V.

Problem 4.9. Devise a fixed point theorem for a digraph isomorphism f : G — G.
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4.4 Examples

Example 4.10. First consider some simple examples of digraphs satisfying the hypotheses of Theorem

4.7.
4 4
2 >3
A A
0
0 ! 0 Tl 1 g
triangle square pyramid octahedron based on square
3 9 :
7 4
2
s i
P s 4
0 1 o 0 1 [
3-simplex 3-cube broken cube prism

The triviality of H, (that is, dimy G = 0) for each of these digraphs was mentioned in the previous
sections. The finiteness of the path dimension follows from the fact that all arrows go in the direction
of increase of numbering of the vertices so that the length of allowed paths is bounded.

Note that in all digraphs of Example 4.10, a fixed point theorem can be obtained much simpler from
the following elementary result.

Proposition 4.11. Assume that a digraph G = (V, E) satisfies the following two conditions:

(i) there is no closed elementary allowed p-path with p > 2, that is, for any allowed p-path e;...;,, we
have ig # ip;

(ii) there exists a vertex a such that there is an elementary allowed path from a to any other vertex x.

Then any digraph map f : G — G has a fixed point.
Proof. Consider the sequence of sets V,, C V defined by
VW=V, Viy1=7f(V,) forn > 0.

By induction we have V41 C V. Since all sets V,, are finite, we obtain that V,,,1 = V,, for large
enough n. Fix such n so that we have V1 = V},.

For each 2 € V set x;, = f* (). Then there is an elementary allowed path from ay, to x, for any
k> 0.

In particular, there is an allowed path from a,,
to any other vertex of V,,, and that from a4
to any other vertex of V11 = V.

p+1

Hence, if a,, # a1 then there are allowed a V=V
paths from a,, to a,,+1 and from a1 to ay,.

Therefore, there is a closed allowed path starting and ending at a,, which is not possible. Hence,
Qn = Gna1, thatis, a, is a fixed point of f. ®

Next, we give an example of a digraph that satisfies the hypotheses of Theorem 4.7 but not those of
Proposition 4.11.

Example 4.12. Consider the following digraph G with 7 vertices and 16 arrows.
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There are closed allowed paths
0—-2—1—-0,5—-0—6—5 !

etc. Hence, there are arbitrarily long

allowed paths. Nevertheless, one can L —70

show that 4
dim, G' < 6,

and that GG is homologically trivial.

5

Hence, G satisfies the hypotheses of Theorem 4.7, and we conclude that any digraph map f : G — G
has a fixed point.

The next example provides a large family of digraphs satisfying the hypotheses of Theorem 4.7.

Example 4.13. Given n digraphs X1, ..., X,,, define their monotone linear join X1 Xs...X,, as follows:
take first a disjoint union | | ; X; and then add arrows from any vertex = of X; to any vertex y of
Xit1-

A monotone linear join X1 X5...X,

Proposition 4.14. Assume that the following two conditions are satisfied:
(i) for all i, dim, X; < oo;
(ii) there exists i such that X; is connected and dimy, X; = 0.

Then any digraph map f in X = X4...X,, has a fixed point.

Proof. 1t follows from Theorem 3.16 that the digraph X is homologically trivial and dim, X < oo
(see also Example 3.17). Hence, the claim follows from Theorem 4.7. m

Let us now consider some examples when the hypotheses of Theorem 4.7 are not satisfied.

Example 4.15. Assume that G contains a double arrow {a = b}. Then
dim, G = o0
because each €2, contains p-paths egpapap... and epgpaba...- Define amap f : G — G by
f(a) =band f(z) = a forall z # a.

Clearly, f is a digraph map without fixed points. Hence, the hypotheses dim, G < oo is essential for
Theorem 4.7.
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Example 4.16. Here are some examples of digraphs that admit digraph maps f without fixed points.
All they have dim, G < oo but dimy, G > 0.

1-torus diamond octahedron based on diamond
2 3p—e 1 1
A
1
0 1 0 2 ;
f =rotation f =central symmetry f =central symmetry

|Hi| =1 |Hy| =1 |Ha| =1

—
2-torus K33
3 4 5

0 1 2

f = rotation f0,1—2—0,3—4—5—3
[Hi| =2, |[Ha| =1 |Hy| =2

Problem 4.17. Suppose that H (G) contains a non-trivial class eg1 + e12 + eag (like for 1-torus). Is
it true that there exists a digraph map f : G — G without a fixed point?

Example 4.18. Consider the following digraph G with 7 vertices and 14 arrows:

G has the following arrows: >
it—1+landi — 7+ 2

where addition is considered mod 7.

Let us first show that 0

|,| =14 forallp > 1
and

|Hp| =0 forall p > 2. 6

This digraph can also be shown as a periodic snake:

1 3 3 0 2 4 o 1

where the vertices with the same numbers are merged (like a M&bius band).
Each elementary p-path
Wi = €(i4+1)(i+2)...(i+p) (4.95)

is snake-like and, hence, is O-invariant. Let us refer to any path (4.95) as a p-snake. Hence, we obtain
in €, already 7 linearly independent p-snakes {wi}fzo. Another group of 7 linearly independent
p-paths in €, is given by the boundaries dw; of (p + 1)-snakes

Wi = €i(i41)(i42)...i+p) (i+p+1)-

Hence, we obtain that
6
Qp = (wiy 8wi>i:0
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and dim 2, = 14. Since 0 (0w;) = 0, while Ow; are linearly independent for p > 2, we obtain that
dimker d|q, = 7.
By the rank-nullity theorem we have
dimImdlg,,, =14-7=7,
whence H,, = {0} for all p > 2. For the case p = 1 we have, in fact,
Hy = (eo1 + €12 + €23 + €34 + €45 + €56 + €60) -

Hence, we have dim,, G = oo and dimj, G = 0. The hypothesis dim, G' < oo of Theorem 4.7 is not
satisfied, and the conclusion of Theorem 4.7 fails as well because the digraph map f (i) = i + 1 has
no fixed point.

Problem 4.19. Devise a fixed point theorem that would work with digraphs containing double arrows.
For that we need to impose additional restriction on f : G — G, for example, let us assume that f is
a digraph isomorphism, that is,

a—b= f(a)— f(b).

Problem 4.20. Assume that G is connected, dimy, G = 0 and that G has no double arrow. Prove or
disprove the claim that any digraph map f : G — G has a fixed point. Of course, the main interest
here lies in the case when

dim, G = 0.

Example 4.21. Here is a candidate for a positive example with dim, G = oo.
This is the above snake with

an additional vertex 7 such that
7 — i forall i € {0,...,6}.

For this digraph
dimy, G =0 and dim, G = co.

Problem 4.22. Prove that any digraph map f : G — G for the above digraph has a fixed point.
Example 4.23. Here is a candidate for a counterexample.

For this digraph we have
dimy, G = 0 and dim,, G’ = oo. ’

All spaces €2, are non-trivial
because G contains a periodic
snake

[
N

€01234560123456...

Problem 4.24. Construct for this digraph a digraph map f without fixed points (or prove a fixed point
theorem for this digraph). Simple rotations f (i) = i + amod8 are not digraph maps here. For
example, for f (i) =i+ 4 the arrow 0 — 3 goes to 4 /7, for f (i) = i + 5 the arrow 5 — 0 goes to
2 4 5.

Problem 4.25. Devise convenient sufficient conditions for dim, G < oo.
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5 Combinatorial curvature of digraphs

5.1 Motivation

Let I" be a finite planar graph. There is the following old notion of a combinatorial curvature K, at

any vertex x of I':
deg

(z) 1
K,=1-— . 5.96
5 fzax deg (f) (590

where the sum is taken over all faces f containing  and deg (f) denotes the number of vertices of f.
For example, if all faces are triangles then we obtain

deg (z)  dega (v)

Ky=1-
X 2 3 b))

(5.97)

where deg s () is the number of triangles having x as a vertex.

In general, denoting by V', E' and F' the number of vertices, edges and faces of I' and observing that
1 1
PORTIEEEITID 3) P g
. T 5o deg(f) i deg(f)

we obtain
Y K,=V-E+F=x.
X

We try to realize this idea on digraph: to “distribute” the Euler characteristic over all vertices and,
hence, to obtain an analog of the Gauss curvature that satisfies the Gauss-Bonnet theorem.
5.2 Curvature operator

Let G = (V,E) be a finite digraph and K = R. We would like to generalize (5.96) to arbitrary
digraphs, so that the faces in (5.96) should be replaced by the elements of a basis in €2,,. However, the
result should be independent of the choice of a basis.

Fix p > 0. Any function f : V' — R on the vertices induces an linear operator
Tf : Rp - Rp

by
Tyeig..i, = (f (i0) + - + [ (ip)) €ig...i-

For example, for a constant function f = 1 on V, we have T3 Cig...ip = (p+1) €io...i, and, hence,
Thw=(p+1)w forany w € R,. (5.98)
If f =1, where x € V, then

Ty, €ig...i, = Mme4q...i,, Where m is the number of occurrences of x in ig, ..., ip. (5.99)

Fix in R, an inner product (-,-). For example, this can be a natural inner product when all regular
elementary paths e;,.;, form an orthonormal basis in R .

58



LetII, : R, — €, be the orthogonal o R

projection onto £2,,. A

Considering Ty as an operator from €2, ' yd

to R, we obtain the following operator i 7 v Q,
in o Tio

T]’c =1, 0T Q) — Q.

Definition. Define the incidence of f and ), by

[f, Q] := trace T}.

Definition. For any w = Y w''re;, ; € ), define the incidence of f and w by

If,w] == (Tjw,w)

Lemma 5.1. For any orthogonal basis {wy,} in Sy, we have

1,0 =5 L

23
i wgll

(5.100)

Proof. 1t suffices to prove (5.100) for orthonormal basis when ||wg|| = 1 for all k. By the definition

of the trace, we have
trace T],c = Z <T}wk, wk> .
k

Moreover, for every w € €, we have
<T}w,w> = (I,Tw,w) = (Tyw,w) = (Tfw,w) = [f,w]
from which (5.100) follows. m

Definition. For any N € N define the curvature operator KV) : RV — R of order N by

hS]

N
-2

[fv QP] .

p=0

If Q, = {0} for all p > N, then write KJ(CN) = Ky.

5.3 The Gauss-Bonnet formula
For f =1, with x € V, we write
[z, Q) == [15,9p] and [z,w]:= [1;,w],

If {wy} is an orthogonal basis of 2, then by (5.100)

[z, Q) = ZM (5.101)

>
el
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If the inner product is natural so that {eion_i p} is orthonormal then by (5.99)
[m, 61'0...ip] = m, where m is the number of occurrences of x in i, ..., 7).

For example,
[(I, eabca] =2, [b, eabca] = 1a [d> eabca] =0.
In this case, forw = ) wio'"ipeiomip we have

[xaw] = Z ((")io'“i]p)2 [x’ei(%"ip] :

i0...ipEV

Definition. For any N € N define the curvature of order N at a vertex x by

[z, 8] .

Set also

Recall that the Euler characteristic is given by

N
Z 1)? dim Q,,.

p=0
Proposition 5.2. (Gauss-Bonnet) For any choice of the inner product in R, and for any N we have

N N
Kt(ottzl = X( )

Proof. Since )y 1, = 1, we obtain that
N
[

Q
total ZK ZK(N)lﬂ?:K(N)l:Z(—l)p ;)‘7+11J]

zeV zeV p=0

On the other hand, by (5.98)
[1,0] = (Thw,w) = (p+1) [lw]*.

If {wy} is an orthogonal basis in €2, then by (5.100)

L) =3 [17“”;] = (p+1)dim

lwrl]

which implies

Remark 5.3. If 2, = {0} for all p > N then

N N
X:=> (- pdlme—Z 1)? dim H,,.
p=0 p=0
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Remark 5.4. It can happen that §2,, # {0} for all p. An example of such a digraph is given in Example
1.19. A simpler example is G = {a = b} . For this digraph we have

Qo = (ea,ep); N = (€abr€ba)s 23 = (€abarCbab), 24 = (Cababs Cbaba) » €LC,
so that |2,| = 2 for all p > 0. Indeed, eq, € A2 and
0€aba = €ba — €aa + €ab = €pa + €ap € A1
so that egp, € €. Similarly, eqpqp € A3 and
O€abab = €bab — €aab + €abb — €aba = €bab — €aba € A2

so that egpqp € 23, etc.

If ©, # {0} for all p, then one can always truncate the chain complex to make it finite by setting
Q41 = {0} for some NV :

00— 9 < o & ... 2 oy, & ay <0

and work with homology groups of this complex. This corresponds to declaring all paths of length
> N non-allowed.
5.4 Examples of computation of curvature

Let us fix in R, the natural inner product. Using the orthonormal basis {e;} in 2y we obtain

2, Q0] =) [z,e] =1

%

and, using the orthonormal basis {e;;} with i — j in 1, we obtain

[z, 0] =) [z,e;] = deg ().

i—J
Therefore,
KW —q1_ deg ()
z 2
and, forany N > 1,
N
d —1)?
K =1 2B 5 (p+)1 0. (5.102)
p=2

By Theorem 1.8, in the absence of double arrows the space {2, has always a basis of triangles and
squares (but this basis is not necessarily orthogonal).

For a triangle eg;. € 2o we have

[ 1, z€{a,b,c}
[, €abe] = { 0, otherwise (5.103)

and for a square egp. — €qpre € o

2, zef{a,c}
[, eape — €apre]l =X 1, x € {b b} (5.104)
0, otherwise
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In particular, if G has no square then (2, has a basis {wy, } that consists of all triangles in G This basis
is orthonormal and

[z, Q] = Z [z,w] = dega (z) := #triangles containing x.
k

It follows that

_deg(a) | dega (2)

K@ —1- % s (o)

which matches with (5.97).
Example 5.5. Let GG be a linear digraph, for example,
e e 0 — e, ..
Then by (5.102) we have K, = % for the endpoints, and K, = 0 for the interior points.

Example 5.6. Let GG be a cyclic digraph (polygon) different from triangle or square:

2 1
Then we have Q, = {0} forp > 1.
Hence by (5.102), for any vertex x, 3 0
Ky=1- —degz(x) = 0.
and Kyt = 0. Note also that y = [Qg] — [21] =6 —6 = 0. 4 >

Example 5.7. Consider a dodecahedron (with any orientation of edges):

We have Q] = 20, |Q] = 30, |Q2] =0,
and |H;| =11, |[Hy| =0 forp > 1.

Then, for any vertex x,
deg () 1
K,=1—-——-=——
* 2 2
and Ktotal = —10

For comparison, note that y =1 — 11 = 20 — 30 = —10.

Example 5.8. Let G be a triangle. We have Q» = (eg12) and 2, = {0} for p > 2.

Hence, for each vertex x,

deg (z) | dega (z) 1
Ky=1- _—
‘ 2 3 3
and Kiyq; = 1. For comparison, x = [Q] — [Q1] + Q2] =3-3+1=1.

Example 5.9. Let G be a square. Then 22 = (eg13 — €o23) and €2, = {0} for p > 2.
2 >

(9%}

Since ||eg13 — ega3)|* = 2, we obtain

[0,Q] = 50,6013 —ega3] =1, [3,Q] =1

[1, €] = % [1, eo13 — eo23] = %, (2, Q] = %
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It follows that

deg(0) 1 1 deg(1) 1 1
Kei=Ky=1— 274+ - _ - K =K =1— 22
3 0 9 +3 37 2 1 9 +6 6,

and Kiptqr =1 = x.
Example 5.10. Let G be a 3-simplex:
We have

Qo = (eo12, €013, €023, €123), 23 = (€p123)

Q, = {0} forp > 3. 0 |
It follows that, for any vertex x,
[z, Q2] = dega () =3 and [z,Q3] =1

whenee dog(e) [0, [0.98] 1
1 _ eglr x, 2_.’13, 3:_
K,=1 > + 3 1 1

and Ktotal =1= X-

Example 5.11. Let G be an n-simplex, that is, a digraph with a set of vertices {0, 1, ..., n} and edges
¢t — j whenever 7 < j. Then, forany p =0,1,...,n

Qp =A, = <8io...ip . io < il <. < ip>

so that dim 2, = ("*1). It follows that, for any vertex x,
P p+1

[z, Q] = # {e4y...i, such that = € {io, ..., ip} } = (;;)7

and

S )
szpzzg(—l) —r

Change 7 = p + 1 gives

ntl - (n+1) (.f ) ntl ,
) Ky = 3y S S ) -
j=1 J j=1
whence .
K, = n4+1 and Kiopa = 1.

Example 5.12. Let G be a bipyramid:
We have [Qo| =5, |1] =9, 3

Qo = (€013, €123, €023, €014, €124, €024, €012) \ ,

Q3 = (eo123, €0124)
and |Q,| =0 forp > 4. 0
Hence, ‘

X =1Q] — || +[Q —[Q]=5-9+7—-2=1. 4
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Let us compute the curvature:

v | [a, Q) [ 2, Q) [ 1 - %) 4 logR] B [ - g,
3,3 1 — 1
3,4 3 1 1- ?1 + g -7 = %
0,1,2 5 2 1-5+3—7 5
Consequently, K;ptq1 = % + % =1.
Example 5.13. Let G be a 3-cube. We have
6,
Qo = (€013 — €023, €015 — €045, €026 — €046,
€137 — €157, €237 — €267, €457 — €467) 2 3
(note that this basis in {2, is orthogonal),
Q3 = (eo237 — €o137 + €o157 — €057 + €0467 — €0267); y S
X = [Qo| =[] + Q2 — Q3] =8-12+6-1=1, 0 1
Let us compute the curvature:
K9) K9) deg(z) | [zQ2]  [#.9s] [ _
u 6[x : 6[96 - 17323+1327 . _{{z
%7 e e 4
Consequently, K;ptq1 = % + % =1=yx.
Example 5.14. Consider on octahedron based on a diamond:
We have \
Qo = (€024, €034, €025, €035, €124, €134, €125, €135)
and Q, = {0} forallp > 3.
1
For any vertex x we obtain 0
[z, Qo] = degp (z) =4
whence
d d 4 1
o _q . des(e)  dega(@) 4 4 1
2 3 2 3 3

and Kyoqr = g =2=x.

Example 5.15. Here is yet another octahedron, based on a square, but with the opposite orientation
of the edges 2 ~ 5 and 3 ~ 5. In this case we have to orthogonalize the bases:

Q= <60147 €015, €024, €052, €134, €153, €234, €523, 4
€013 — €023, €013 — €053, €524 — 6534>
= <60147 €015, €024, €052, €134, €153, €234, €523,
€013 — €023, €013 1+ €023 — 2€053, €524 — e534>

Q3 = (eo153, €0523, €5234, €0134 — €0234,
€0534 — €0134 — €0524)
= (eo153, €0523, €5234, €0134 — €0234,
€134 + €0234 — 2€0534 + 2€0524)
Q4 = <€05234>, Qp = {O} fOI‘p 2 5. 5

In fact, {24 is generated by a 4-snake 05234.
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Here is computation of the curvature:

T [xvﬂQ] [va3] [I,Q4] 1 _ deg2($) + [CC’;ZQ} _ [w7?3] _|_ [xé)‘l] — KCC
0[4+3+5=6 2+24+8=4 [ 1 1-2+8-97+1 =i
1,1 _ 14 1, 1 _ 8 4, 14/3 8/5 7
1 4+§+g—§ 1+§+1—0—3 0 1—§+E—T 5
1,1, 1 _ 31 1, 5 _ 4 3 , 1 31
2 4+§+g+§ & 2+§+1—0—3 1 1—5—*—@—%3"25 180
2,6, 1 _ 13 2 , 6 _ 23 4 1 _ 13 _ 13
3 4+g+g+§—7 3+g+'—0—g 1 1—Z+T—Tl+g—@ —@
4[4+2=5 1+2+8=3 | 1 |[1-2+2-3+1] = &
4 2 _ 17 8 _ 19 4 173 " 19/5 1 _ 5
blatgto=7F St =7% 1 Jl-s5+7 -7 +53 =35
We have
X:|Qo|—|91|+‘92|—|Q3|—|—|Q4‘26—12+11—5+1:1
and

K= b+ o+ By + B+ =1=x
Example 5.16. Consider the following digraph G that is given by an m-square:

a

[)0 b m

The space 2 consists of squares eqp,. — €abjc and their linear combinations, while 2, = {0} for all
p > 2. Itis easy to see that {25 has the following basis:

Q2 = (€abge — abje)je1 (5.105)
so that [Q2s| = m and
Kiotar = X = |Qo] — ||+ Q2] =(m+3)—2(m+1)+m=1.
Orthogonalization of (5.105) gives the following orthogonal basis for {2:
W1 = €abge — Cabic
W2 = €Egbgc + €abic — 26abgc
Wi = €gbge + -+ + €ab;_1c — Z.eabic
Wm = €aboec + -+ T €aby_1c — MEaby,c
We have
[a,wi] = [e;wi] = [lwill® =i (i +1)
while
0, j7>1
[bj,wi] = 1, j <1 R
R EY
which implies
- [a,wi]
[0, Q] => i ’ HZZ =m (5.106)
. Wi




and

[b5, €22] ;z(erl) i +1) i§12(1+1) mrl  mal
It follows that
Kot —1_de@ [e®_ m+tl m_1 m
2 3 2 3 2 6
and
K, :1_deg(bj)+[bj792] _m
bj 2 3 3(m+1)

Example 5.17. Consider a rhombicuboctahedron:

It has 24 vertices, 48 edges, and 26 faces,
among them 8 triangular and 18 rectangular.

Let us make it into a digraph GG by choosing
direction i — j on an edge (4, 7) if i < j.
Then each face becomes a triangle or square.

For this digraph |Hz| = 1 and H,, = {0} for
p=1landp > 2.

We have (2| = 26 and 2, = {0} forp > 3.
(9 is generated by 8 triangles and 18 squares:

Qo = (€23, €178, €456, €91011, €12141

€018 — €038, €0113 — €01213, €0214 — €01214, €1719 — €11319, €236 — €246,

(5.107)

5, €131920, €161718, €212223,

€2416 — €21416, €3611 — €3811, €4517 — €41617, €51011 — €5611, €51022 — €51722;

€7811 — €7911, €7921 — €71921, €91022 — €92122, €121320 — €121520,

€141518 — €1416 18, €151823 — €152023, €172223 — €171823, €192023 — €1921 23>7

while the generator of Hs is a signed sum of all these 2-paths.

This basis in (25 is orthogonal. Hence, we compute the curvature:

= 0,11,23 1,3,4,6,8,9,12,13,15,16,18,20,21 | 2,5,7,14,17,19,22 | 10
[z.Q2]= 6 _ 4 _ 5 _ 71 3 _5
deg(@) | [25%] k- Akl E L Ak 1+27722 1+27522
_ deglz) z, 2] _ _ 4,4 _ 4,3 _ 4, 1= _ 4, 9/2
1 2 -t 3 = 112+3 l-5+3 112+3 1 21+3
It follows that
3,7 1
Kt =5+ —5=2

For comparison

X = Qo] — || + Q2] =24 — 48 +26 =2
= |Ho| — |H1| + [H2].

Example 5.18. Consider the following pyramid:
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Let us make it into a digraph G by choosing

direction ¢ — j onanedge ¢ ~ j if i < j.
We have ] =8, || = 18,

Qy = <€017, €027, €037, €047, €057, €067, €012, €023,
€034, €045, €056, €127, €237, €347, €457, 6567)

Q, = {0} forp > 4.

0
Q3 = (eo127, €0237, €0347, €0457, €0567) 6
Let us compute the curvature:
T ["EvQZ} [2?,93] 1 _ degé(x) + [‘/'U?:?Q] [x7i23] K{L‘
7 L 1T 5 — 1
0,7 11 9 1—g+3§—11 —1—5
1,6 3 1 1-—- Z + g — 5 = %
2,3,4,5 5 2 1—§+§—— s

It follows that K;utq; = —1—22 + % + % = 1. For comparison y =8 — 18 4+ 16 — 5 = 1.

Example 5.19. Let us compute the curvature of icosahedron (cf. Example 1.16):

Here we choose arrow ¢ — jif ¢ ~ j and ¢ < j.

We have

|Hi| =0, |Ha| =1, |Hp| = 0forp > 2
Q| =12, || =30, [Qf =25, |Q3] =6,
|| =1 and Q, = {0} forp > 5.

Hence,

X = [Ho| — |Hi| + |Hz|
= Qo] — || + [Q2] — [Q3] + [Q4] = 2.

Here are the orthogonal bases in 29, (23, 4:

Qo = (6019, €012, €1211, €026, €059, €056, €5610, €139, €1311, €267,

€6710, €2711, €349, €348, €4810, €3811, €459, €4510, €7810, €7811,

€0111 —€0211, €0510 — €0610, €2610 — €2710, €3410 — €3810, €027 —6067>

Q3 = <6012117 €05610, €34810, €0267, €26710, —€06710 + €02710 _602610>

Q4 = (e026710)

VAVAN

7

since the path

€026710 18

“snake like” and, hence,

0

Computation of the curvature:

6

10 is O-invariant.

- 0 1 2 3,11
78s]= 3+3=4 1 342=1 1
3 3 3
[z,Q4]= 1 0 1 0
4 [x,2] 5,8 4,1 5, 11/2 1 5,7 11/3 1 5,6 1
2pmo VPR [ 15450+ | 1o+ —3 | I-3+5——f+5 | 1-3+5—1
T 30 12 60 4
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4,5, 8 6 7 9 10
5+i=1 5+3="1 5+5=21 5 5+8=138
2_ 11 2_8 3__
1 3+3 T 2—|—§ 3 0 3—|—§— 4
0 1 1 0 1
5, 11/2 1 5, 13/2 11/3 | 1 5, 13/2 8/3 1 5,5 5,8 4,1
L R I R S i R S S S I L I R S

Note that K¢ = _% < 0.
The total curvature:
Koo = 52+ 5 A+ g5+ 5 2= g +§+§=2

Example 5.20. Letus compute the curvature of the 2-torus G = 70T, where T = {0 — 1 — 2 — 0}.
Here is the 2-torus GG embedded onto

a topological torus:

In Example 3.7 we have computed the
basis in Q9 (G) as follows (see (3.41)):

D2 (G) = (ep34 — €014, €145 — €125, €253 — €203,
€367 — €347, €478 — €458, €586 — €536

€601 — €671, €712 — €782, €820 — e860>-

This basis in Q (G) is orthogonal and ||w||* = 2 for any element w of the basis. Besides, for any
vertex x, we have [z,w] = 2 for two of w, [z,w] = 1 for two of w, and [z,w] = 0 for the rest of w.

Hence,
[z,w] 2-2+2-1

[113792] = Z - 3
5 wll? 2
and, for any = € G,
B deg(z) [z,9] 4 3
K,=1 5 + T 1 5 + 3= 0.

Example 5.21. Consider the digraph G from Example 4.18. This digraph has 7 vertices {0, ..., 6}
and 14 arrows as follows: ,

i—1+1landi — 7+ 2 I

where addition is considered mod 7. 3

Fix p > 1 and consider for any ¢ = 0, ..., 6
the following O-invariant p-path 4

Wi = €i(i+1)(i42)...(i+p) 6
and (p + 1)-path

Wi = €i(i41)(i+2)...(i+p) (i+p+1)-

It was shown in Example 4.18 that dim 2, = 14 and that the space 2,, has a basis (w;, ;)" .
)

Let us now compute the curvature K. §3N . The sequence {w; } is orthonormal, but {Ow;,} is not, which

is clear from

p
1
Owi = wit1 + Z (=1)* € it itpr1) T (=17 wi.
q=1
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Let us replace each Jw; with

P
1
vi = 0w — (1) wi — wig1 = Z (=1)* € g (i4pt1)
q=1
Then we obtain that €, has an orthogonal basis {w;, v;}5_,.

By symmetry, [z, w;] is the same for all vertices = and . Since

Z[x7wi] :7(p+1)7

1

and ||w;|| = 1, we obtain
T, wj
S e
7 Ml
For v; we have

vl =7(@+1)p

T,

and ||v;]|> = p whence

s U +1
2[9“12]:(1) )p:p+1'
7 lvill p
Hence,

[x>Qp]:2(p+1)a

which implies that

N
EM =1+ (-1P2=(-D)".
p=1

Hence, {K O )} is a periodic sequence in V.

Problem 5.22. Describe classes of strongly regular digraphs having a non-trivial periodic sequence
(KON
N=1

5.5 Computation of [z, (2]

Recall that 2 has always a basis that consists of triangles, double arrows and squares. All different
triangles and double arrows in G are always linearly independent and mutually orthogonal. Moreover,
they are orthogonal to all squares. However, squares may be not mutually orthogonal in general.

In a special case when G contains no multisquares, are all squares orthogonal (and, hence, linearly
independent). Indeed, if two squares are not orthogonal then they must have the same elementary
term, say, €qpe — €ap/c and €gpe — €qprre, Which yields a 2-square a, {b,b',b"} , ¢ (cf. Subsection 1.5).

Let us introduce the following notation:

degy(x) = # {double arrows a = b: x € {a,b}},
dega () = #{triangles ey : = € {a, b, c},
degp, (z) = # {squares eqpc — €apre : © € {b,0'}},

degp, () = # {squares eupc — €qpe : T € {a,c}}.
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Lemma 5.23. Assume that G contains no multisquares. Then, for any vertex x € G,
1
[z, Qo] = 3degy(x) + dega (z) + B degp, (x) + degp, (). (5.108)

Proof. Let {w,} be the sequence of all double arrows, triangles and squares in §2o. By hypothesis,
the sequence {w,, } forms an orthogonal basis in (2.

Any double arrow a = b induces two independent elements e, and epqp of 22. Clearly, we have

3, z€{a,b}

[, eabal + [T, €bad] = { 0, otherwise.

Hence,

3 2y wn] = 3deg;(2). (5.109)

wn, 18 a double arrow H H

For a triangle eg;. € 29 we have

B 1, x € {(I, b? C}
[, €abe] = { 0, otherwise

and, hence,

3 S (5.110)

|2
wn, is a triangle Hw‘

For a square egp. — eqpe € {22 we have

2, ze€{a,c}
[:L‘, €abc — eab/c] = 1, ze {b’ b/}
0, otherwise

Hence, [ |
T, Wn 1
Z T T degq, (z) + degp, ().

. w||
Wwn 1S a square H

Since {w, } is an orthogonal basis that consists of all double arrows, triangles and squares, we obtain

T,Wn 1
[z, Qo] = Z [||wn||2] = 3degy(z) + dega(z) + 3 degn, (z) + degp, ().

Example 5.24. For the prism as shown here we have:
degp () =1 for all z;

degp, (0) =0, degp, (1) =2

degp, (1) =1, degp, (1) =1 1 —¥
degn, (2) =2, degn, (2) =0

degp, (3) =2, degn, (3) =0 \
deg, (4) = 1, deg, (4) =1 R
degn, (5) =0, degp, (5) = 2. ‘

Consequently, we obtain by (5.108)

{ZL’, QQ] =

DO rojot QO
8 8 8
Il
N = O
W = Ot



Since Q3 = <€0125 — €145 + 60345> y Q4 = {O} and

3, x=0,5
[LL‘,Qg]—— 27 $:134 )
1, z=2,3
it follows that
1 r=20,5
deg(x) [HT, QQ] [x’ 93] Ll“ ’
Lo r=23

[y
[\

Example 5.25. Consider a rhombic dodecahedron:

The arrows along the edges point in
direction of the higher vertex number.

The faces give rise to 12 squares
forming a basis in space €23, and
Q, = {0} forall p > 3.

For = € {0, 13} we have deg(x) = 3,
degp, (z) = 0, deg, (z) = 3,

whence [z, (3] = 3 and

Ky=1-3+

\S][SV)
wlw
N

For z € {3,5,6,7,9,10} we have deg (x) = 3, degn, (v) = 2, deg,(x) = 1, whence [z, Q3] = 2
and

K=1-3+3=}
Finally, for z € {1,2,4,8,11,12} we have deg (z) = 4, degp, () = 2, degp,(z) = 2, whence
[z, Q] = 3 and

K,=1-3+2=0.

Example 5.26. Consider a trapezohedron 7T, as in Subsection 2.1. By Proposition 2.1, the space 2o

is spanned by 2m squares as follows:
m—1
Q= <€aik71jk ~ Caigjp Ciggrb — eikjk+1b>m:0’

also, Q3 = (74,,) , where

m—1

Tm = kz::O (eaikjkb - eaikjkﬂb)’ '
and Q, = {0} forall p > 4. lo i>
For all vertices we have degp (z) =0 Ji /3
For 2 € {a,b} we have deg, (z) = 0,
degp, (z) = m, whence [z, Qo] = m. A

Since deg (z) = m and

[x’Q3] [x’TmQ] m 17
[Tl ™
we obtain
Ko=Ky=1-3+%-1-1-7%

For all other vertices = € {iy, ji} we have

deggl(az) =2, degD2 () =1,
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whence [z, Q9| = 2. Since deg (z) = 3 and

we obtain

The total curvature

matches the Euler characteristic y = 1.

Example 5.27. Consider a broken cube from Example 2.9. Then we have:
Qs is spanned by 6 squares and 2 triangles,

2 > 6
Q3 = (eo158 — €0168 + €0268 — €0278 + €0378 — €0458)
A
and 0, = {0} for p > 4. T > & [
3
For z = 0 we have deg, (0) = 0, degp, (0) =4, TR
dega (0) = 0 whence [0, 2] = 4. N

Since deg (0) = 4 and [0, Q3] = 1, it follows that

For z € {1,2,6} we have degn (z) = 2, degg, (0
deg (z) = 3 and [z, Q3] = 1, it follows that

2
For » € {3,4} we have degp, (z) = 2, degp, (z) = 0, degn (z) = 1 whence [z, ] = 2. Since
deg (z) = 3 and [z, Q3] = ¢, it follows that

2
For x € {5,7} we have degy, () = 1, degp, (z) = 1, dega (z) = 1 whence [z, Qs] = 5/2. Since
deg (z) = 3 and [z, Q3] = 1, it follows that

Finally, for z = 8 we have degp, (8) = 0, degp, (8) = 3, dega (8) = 2 whence [8, (23] = 5. Since
deg (8) = 5 and [8, 23] = 1, it follows that

Kg=1-3+5-1=-4.

Example 5.28. Consider again a rhombicuboctahedron (see Example 5.17). We have for all vertices
deg(x) = 4 and degx () = 1.

All squares are linearly independent and
Q3 = {0} (cf. Example 5.17).

For 2 = 11: degp, (z) = 0, degp, (z) =
[2,Q) =4, K,=1-3+3=1

For z = 19: deg, (v) = 1, degp, (=
[z, Qo] = I, Kz—1—2+7/2—

For z = 13: degp, () = 2, degp, (z
[2,Q] =3, K,=1-3+3=0.

) =
1
6"
) =
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For z = 10 we have degp (z) = 3, deg, (z) = 0, whence [z, Q5] = 2 and

Consider now a general case when GG may contain multisquares. Fix a semi-arrow a — ¢ and denote
by {bz-}?;o the sequence of all vertices b; such that a — b; — c. Letm > 1. Then we have an m-square

o={a,{bi}%,,c} (5.111)
that gives rise the following to the following family of squares
{€abe — €abye : 0 <i < j<m} (5.112)

(cf. Subsection 1.5 and Example 5.16).

a

bo ( bu

S

An m—csquare
The family (5.112) contains m linearly independent squares, for example, they are

{eaboc - eabic};’ll . (5113)

As in Example 5.16, let {w;}." | be an orthogonalization of the sequence (5.113). Using the compu-
tations (5.106) and (5.107) of Example 5.16 we obtain

l m, € {a,c}

m

T,Ww;
Z[ 5 =4 mir * € {hik (5.114)
i=1 il 0, otherwise.

For any m-square o as in (5.111), denote

m, z € {a,c}

[z, 0] = i TE {b:i}, (5.115)
0, otherwise,
so that
- [, wil
[z, 0] => 5. (5.116)
i=1 HwZH

Proposition 5.29. For any vertex © € G, we have

[z, Qo] = 3degy(x) + dega (z) + Z [x,0]. (5.117)

o is an m-square
m>1

Proof. Indeed, each m-square contributes m linearly independent elements to 29, and different
multiple squares give rise to mutually orthogonal elements. Hence, using in each multiple square an
orthogonal basis and adding to them all double arrows and triangles, we obtain an orthogonal basis in
5. Hence, combining (5.101), (5.109), (5.110) and (5.116), we obtain (5.117). m

Let us prove the following identity for [z, o] that may be useful for computer assisted computations.
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Lemma 5.30. Let s;; = eqp,c — €ab;c be all squares in an m-square o as in (5.112). Then we have,
for all x,
1
ol =—— Y [ws]. (5.118)

m+1
T 0<i<j<m

m(m+1)
2 2

Proof. Indeed, if x € {a, c} then [z, s;;] = 2 and the number of terms in the above sum is
so that the right hand side of (5.118) equals to m as well as the left hand side. If x = b then

(@, 5:1] = 1, i=korj=k,
7TWIT 10, otherwise

and the number of 1’s in the sum (5.118) is m, so that the right hand side of (5.118) equals to miﬂ
as well as the left hand side. Finally, if = does not belong to {a, ¢, by} then the both sides of (5.118)
vanish. m

For any vertex x denote

deg,,,0, (z) = # {m-squares {a,{b;},c}:x € {bj}}
and
deg,,0, (z) = # {m-squares {a,{b;},c}:z € {a,c}}.
Corollary 5.31. For any x € G we have

2, 0] = 3degy(z) +dega(a) + Y (=" degyo, (2) + mdego, (@), (5.119)
m>1

Proof. Indeed, this follows from (5.115) and (5.117). m

Clearly, the identity (5.108) is a particular case of (5.119) in the case when all m-squares are 1-squares.
Example 5.32. Consider a randomly generated digraph:
We have || = 15, || = 39,

Q| =28, |Q3| =4, Q, ={0}forp >4,

|Hi| =2, |Hs| =1, H,={0}forp > 3.

In particular,
X = |Ho| — [Hy| + |H2|
= Q0] =[] + [Q2] — [Q3] = 0.

Here are the bases in 29, Q3:

Qo = (e13214 — €131214, €13214 — €13914, €0214 — €0914, €143 — €163,
€1413 —€1613, €506 — €516, €7214 — €7914, €914 — €9124,
€1014 — €10124, €1072 — €10112, €10113 — €10143, €1109 — €1179,
€1151 — €1171, €1243 — €12143, €1271 — €12141,
€791, €91214, €9141, €1071, €10117, €10127, €101214, €10141,

€1102, €1135, €1150, €1172; 613912>

Q3 = <61011727 €1391214, €101271 — €1012141, €110214 — €110914 T €117914 — 6117214>-

Note that the above basis in {25 is not orthogonal: it contains a 2-square

o= {13 > {2,9,12} — 14}
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that corresponds to two squares

e13214 — €131214 and e13214 — €13914,

while all other squares in the above basis of {25 are 1-squares.

For the vertex x = 13 we have then
deg2D1 (l.) = 07 degQDQ (‘T) =1
as well as
dega (z) =1, degp, (z) =0, degp, (z) =1,
whence by (5.119)

1 2
[13,Q2] = dega(z) + 5 degp, () + degp, (2) + 5 degyn, (2) + 2 degp, (2)
- 14+1+2=4
Since also deg (13) = 6 and [13, 23] = 1, we obtain
6 4 11

Since the vertex x = 2 we have

degon, (z) =1, degym, (z) =0
and
degp (2) =2, degp, (z) =2, degp, (z) =1,
whence
14

2 2
2, =2+-+1+-=—.

Since also deg (2) = 5 and [2, Q3] = 2, we obtain

y_1 D M3 32 23
2 3 4 72

Computation of the curvature at all other vertices yields

(R}t ={-F -1 -2 111 11013211 113
TSx=0 — 24> 120 727 676267 3767727223767 187 12°24J "

5.6 Curvature of n-cube

We use the notation of Subsection 3.4 where n-cube was defined. The purpose of this section is to
prove the following statement.

Theorem 5.33. For any vertex x in n-cube we have
1

K, (n-cube) = m

For example, in a 4-cube that is shown here,

for the marked vertex x we have |z| = 2 and

Let us first prove some lemmas about binomial coefficients.
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Lemma 5.34. We have forall M >1> 0
l
M ; M—-1
Z( ,)(—1)3 :(—1)l< | ) (5.120)
=0 N
Proof. Induction in M. For M = [ we have
L : -1
> (0) v =a-v=o=cu ("))
§=0
Induction step from M to M + 1. We have
() w3 ((

j=0 Jj=0

wi
N————
_|_

l

(-
()
l<M ) ZZO(AO
(M)
()

i

l
l

l

~ 5
~—

Lemma 5.35. We have forall N > 0and M > 1

N I
N) (1) 1
= (5.121)
z; <l LM M (YY)

Proof. We start with the identity

S (V) car=a-2"

=0

for all z € R, whence

i() JEML_ ()Mo (g _ N e
=

Integrating this identity from O to 1, we obtain

)l-i—M1
-5 (NG~ oy
0

m—1 TN+ 1T (M)

=(=1) T(N+M+1)
_ g M (M — 1)
(N + M)!
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while the left hand side is equal to

() s ()i

which proves the claim. m

Lemma 5.36. We have

W [ reves B et

k=0 1 m+1
Proof. Set
B m m ( 1)k+l
St = kzzo <k> Y (k+141)
B m (_1)k+l
_“kzo(k)(k:+1)...(k+l)(k:+l+1)

Mlmm—1)...(m—k+1)

(5 -
=13 (k+1+1)!

_ B i (=D 4+ L 1) e (m D)m(m— 1) (m— ke + 1)
(m+1+1)..(m+1) & (k+1+1)!

ey S (o) e

= _WE? (m +jl+ 1> (~1)’

= m; (m +jl " 1) (~1)’

By (5.120) with M = m + [ + 1 we obtain

> <m +it 1) (-1 = (-1 <ml+ l>

=\ J

.

whence

B (-1 m+1
Sl = (I+1) (m+l+1) < I >

+1
(=D (m )
S (m+l+ D) Im!
(-1’
m+l+1
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Therefore, by (5.121) with N =n —mand M = m + 1,

Km;g(n_lm)sm’l:f(n_lm)m(;ll)jrl - (m+11)(”“)'

=0 m—+41

]
Proof of Theorem 5.33. Fix a vertex x of the n-cube and non-negative integers k, [, p such that
k+1=np.
Let a and b be two vertices in the n-cube such
a=x=b, |r|—la|=Fk, and |b|—|z|=1L (5.122)

The cube D, 4 has dimension |b] — |a| = p, and for any J-invariant p-path way between @ and b (cf.
(3.43)), we have
wapl|® = p! and [z, wap] = k1.

Indeed, wy, p is an alternating sum of all the elementary allowed paths from a to b, and the number of
the elementary allowed paths from a to b going through x is k!,

because the number of such paths X
from a to x is equal to k! and that
from x to b is equal to [!. \(i)”{
Hence, we have for such w, j, u 1)
[z, wap] KN 1
2 = 1 T (RN
lwasll® 2t (%)

Set m = |z| and observe that the number of vertices a =< z with |z| — |a| = k is equal to (7).
Indeed, in the binary representations a = (ay,...ay, ) and z = (z1,...z,, ), we have a; < x; and
>; (x; — a;) = k which is only possible if a; = 0 at k£ out of m positions where x; = 1.

Similarly, the number of the vertices b =  with [b| — x| = [ is equal to ("7,""). Hence, the number
of pairs a, b satisfying (5.122) is equal to

m\ (n—m

k ! '

By Proposition 3.9, all p-paths wg, with @ < b form an orthogonal basis in €2, (n- cube) . If 2 does
not satisfy the condition a < x < b then we have

[z, wqp] = 0.

Hence, we obtain

oy = Y et

a<z=b deb|
|b|—lal=p
B Z [T, wap] Z (m) (n — m> 1
= = N
kot l—p lvay peiep \F L))
a=<x=b

|z|—lal=k, Tb|—|z|=l
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which implies by Lemma 5.36 that

X (0 ma

|
Note that the number of vertices = with |z| = m is equal to (:1) whence
n n
1 n 1
K = T - = 17
rotet mzo (n+1)(7) (m) mzo n+1

as expected because y = 1.

5.7 Curvature of a join

The main result of this section is Proposition 5.39 below. Recall that a join Z = X %Y of two digraphs
was defined in Subsection 3.6.

Let us first prove two lemmas. Everywhere (-, -) denotes the natural inner product in all spaces A, (X),
Ay (Y)and Ay (Z2).

Lemma 5.37. [29, Lemma 3.10] If u,u’ € A, (X) and v,v" € A (Y) then
<uv, u’v'>Z = <u, u’>X <v, U,>Y . (5.123)

Proof. Indeed, due to bilinearity it suffices to prove (5.123) if u,u’, v, v’ are elementary paths, say

— . . I . . — . . [ . .
U = €y...ipy U = ezé...z;}/v UV=2¢€j..jg V = eJémJ;/'

Then
il dl gl g
AN —§
<UU,U v >Z = <ezo...2pj0‘..jqaeiau.i;’y/j(')“.j;) — Yig...ipJo...Jq
-/ ! /! -/
20t s Jod 1 ’ /
_ P L e, ) =
=05 0o gn = (€ig..ips 616...1;/><630-~~3q’ €J6~~J;/> (u,u) ¢ (0,07)y -
|

Lemma 5.38. Let Z = X x Y be the join of two digraphs X and Y. Then, for all x € X andr > 0
we have
2, (2)] = [z, (X)]+ > [2,9 (X)]dinQ,(Y). (5.124)

p+g=r—1,
p,9>0
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Proof. Let B, (X)) be an orthonormal basis in §2,, (X') and B, (Y") be an orthonormal basis in 2, (Y"),
for all p, ¢ > 0. By Theorem 3.12, we obtain the following basis in §2,. (Z): it consists of all elements
of B, (X), B, (Y) as well as of the elements of the form

{uww:ue B, (X),veB,(Y).,p+qg=r—1, p,g>0}. (5.125)

Note that the set (5.125) is empty if 7 = 0, so it makes sense to consider it only if » > 1. This basis
in also orthonormal due to the identity (5.123). Therefore, we obtain, for any x € X and any > 0

(2,9 (2)] = Z (Tyu,u) + Z (Tyv,v)

u€Br(X) veBr(Y)

+ Z Z (Ty (uv) ,uw) .

p+g=r—1,ueB,(X)
Pa20  weB,(Y)

Since Tpv = 0 and T, (uv) = (Tpu) v, we obtain
(T (wv) ,uv) = ((Tpu) v,uwv) = (Tyu,u) (v,v) = (Tyu, u)
and
> (T (wv) ,wv) = [2,9, (X)) dim Q, (Y),

ueBy(X)
vEB(Y)

whence (5.124) follows. =

Proposition 5.39. Let Z = X x Y be the join of two digraphs X and Y. Assume that Qpy (X) and
Qn (Y) vanish for large enough N. Then, for any x € X, we have
Ko (2) = Ko (X) = 32 (<1 Gy (V) [, 2, (X)) (5.126)
p=0

where

(V) = ; pg:Tl)jQ dim Q, (V).

A similar formula holds for K, (Z) fory € Y:

Ky (2) =K, (Y) = > (=1)"Cq (X) [y, 2 ()],

q>0
where 1)
C = — dim Q, (X
WX =3 s I ()
Proof. 1t follows from (5.124) that
r (2, (Z)]
K = _ et A s §
r>0
Z (_1)p+Q+1
= K (X)+ 5 [z, 2 (X)]dim Q, (V)
p,q>0 p+a+2

_1)¢
= 0= [ X aimo, v ] e, ().
which was to be proven. ®
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Example 5.40. Consider on octahedron Z based on a square:
We have \
Z=Xx*xY

where X is the following square:
X={0—-1—-30—-2—3}
and Y = {4,5}.

Since €2, (Y') is non-trivial only for ¢ = 0 and dim 2 (Y) = 2, we obtain

As we have computed in Example 5.9,
1
[07 95 (X)] = [37 Qo (X)] =1, [17 92 (X)] = [27 Qs (X)] = 9

and
Ko(X)=Ks(X)= 1, Ki(X) = K> (X) = &

Hence, we obtain by (5.126), for x = 0 or 3,

1 2 1 2 1
K. (Z)=—-— —1)? QX)) ===1+=--2—--1=—
e L e RS R S 3
and for x = 1 or 2,
1 2 1 2 1 1
K, (Z)=-— —1)? QX)) ==-14+=--2—-.=-==
Next, we have
(=P 4 4 1
C, (X :E ——dimQ, (X) = — + .
v(X) Sapta+?2 p(X) ¢+2 q+3 q+4

Since [y, Qo (V)] =1, Q4 (Y) = {0} for ¢ > 1, and K, (Y') = 1, we obtain, for y = 4 or 5,
4 4 1 1
Ky(Z2)=1-Co(X)[y, Q0 (V)] =1~ <§_§+Z> =13
5.8 Strongly regular digraphs
Recall that a graph is called regular if deg (z) is constant.

Definition. We say that a digraph G is strongly regular if the function z — [z, (,] is constant for any
p (in particular, G is regular because deg (z) = [z, Q4] is constant).

For a strongly regular digraph G the function x — K is constant, and we set

_x(G)
v
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Recall the definition of m-suspension sus,,, G:

it is obtained by adding to GG new m vertices
{y1, .., ym } and all arrows = — y; Vo € G.

In other words, sus,,, G = G * Y where
Y ={y1, - Ym}-

Theorem 5.41. Let G be a strongly regular digraph, such that for some k,m € N and any p > 0

k
dim Q,(G) = (p N 1) mPtt, (binom(k, m))
Then sus,, G is strongly regular, and for all p > 0
k+1
dim Qy,(sus,, G) = (pi 1) mPTL, (binom(k + 1,m))

Proof. We have
k
| X| = dimQp (X) = (1>n = kn.
Since for any z € X

> (2,92 (X)) = [1,2, (X)] = (p+ 1) dim Qp (X)) ,

it follows that
1) dimQ, (X 1 k -1
R L () L (e 2
b p

| X| kn +1
Since dim Q (Y) = n and , (Y') = {0} for all ¢ > 1, we obtain from (5.124) that, for r > 1,
[z, (2)] = [2,Q (X)] +nfz, Q1 (X)]

r r—1 r

In the same way, forany y € Y and r > 1,

v, 0 (2)] = WYM+ D> 12 ((V)]dinQ, (X)
pt+g=r—1,

p,q>0

. k
= dimQ,_; (X) = ( )nr.

T

It follows that, for all z € Z,

[z, (2)] = <I;> n".

Consequently, we have

dim 2 (Z)_‘Z‘ 24 (2)) _ X+ Y]k nr——kn+n & n’ — k+1 nrH
T - r—+1 Cor+1 r T or+1 \r “\ra1 .

Finally, for r = 0 we obtain

1
dimQy(Z) =kn+n=(k+1)n= <§11>n0+1.
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5.9 Digraphs of constant curvature

For the digraph G as in Theorem 5.41 we have

k-1
X(G) = Z (-1)Pdim Q, = Z (—1)? ( k >mp+1

—0 p+1

(—1) <’;>mﬂ =1-(1-m)*.

)
v
=}
3

k

7j=1

It follows that .
_XO)_ MO _1-(-m)

\4 dim Qg km ’
Of course, the same formula is true for K (sus,, G) with k replaced by k + 1:

B 1 (1 o m)k—l—l
K(sus,, G) = “hiDm

Example 5.42. We have seen that a triangle (= 2-simplex) is strongly regular and

dimQp =3, dim{y =3, dimQy =1, dim, =0 forp > 3

K(G)

that is, the sequence {dim {2, } >0 18 the sequence (pil) that satisfies (binom(3, 1)). The 1-suspension
of an n-simplex is an (n + 1)-simplex. Hence, we obtain by induction that the n-simplex is strongly
regular and satisfies (binom(n + 1, 1)). In particular,

1
K (n-simplex) = g
n

For any m € N denote by D,,, a digraph with m vertices and no arrows. Then

1
dim Qo (D,,) = m = P forp =0
im Q (D) = m (p+1)m orp =0,

p+1
so that (binom(1,m)) is satisfied. Clearly, D,, is strongly regular.

dime(Dm)—0—< L )mpH forp > 1,

For any k € N define digraph D** as

the k-th join power of D,,, that is,
Dl =D,
and
DY = Dk« D, = sus,, Dk,

D3

Here are digraphs D!, D2, D*3 D4

In fact, D;",.’f is a digraph version of a complete k-partite graph Ky, ,, .. » Where the index m repeats
—

k times, that can also be denoted by K, ... .im-

Using Theorem 5.41, by obtain by induction that D¥ is strongly regular and satisfies (binom(k, m)).

Hence, D;¥ has a constant curvature

1—(1—m)"

Ko - 1=

(5.127)

One can show that the only non-trivial Betti number of D** is 3, _; = (m — 1)]’C (see [7]).

83



Example 5.43. For m = 1 we have by (5.127)
1

K(Di*F) = —.

(D1F) = 4

Clearly, Di* is a (k — 1)-simplex:

D}=D,

0, keven

*ky __ ) ’

K(D3") = { £, kodd

For example, D3? is a diamond: ! 3 ; !
that is an analogue of 1-sphere. =

We have K (D3?) = 0. 0 0 2

(k+1) (k+1)

We can regard D; as a digraph analogue of a k-sphere S* because D; is obtained from
D;k by 2-suspension, similarly to how S* is obtained from S*~!. Besides, the only non-trivial Betti

number of D;wﬂ) is 3, = 1 like the Betti numbers for S*.
Here is D33, that is an octahedron, based on a diamond:

1

It is an analogue of 2-sphere; it has constant curvature 3.

D3* is an analogue of 3-sphere; it has constant curvature 0.

Example 5.45. For m = 3 we have by (5.127)

1— (=2 1 [ 1-2% keven
*k _ _ ) ’
KD = =5 3k{1+2k, k odd.
3 4 5
Here is D§2 that is a directed version of K33 :
1
We have K (D3?) = -3
and K(Dz3) =1.
(D37) : : s

5.10 Cartesian product and curvature

Recall that a Cartesian product XY of two digraphs was defined in Subsection 3.2.
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Theorem 5.46. Let X be any digraph with a finite chain sequence {§,} and Y be a cyclic digraph
{0 = 1—2— ... = 0} of at least 3 vertices. Then, with respect to the natural inner product (-, -),

we have
K. (XOY) =0 forany z € XOOY.

In particular, we have K (T™") = 0. Recall that in Example 5.20 we have computed directly that
K(T?) =o.

Proof. LetY = (V| E). Then
QY)=(eg:acV), L (Y)={ew:abe E}, Q,()={0} forp>2.

We have

p=>0

Denote by B, (X') an orthogonal basis in €2, (X) so that

We have by Theorem 3.5
B, (Z) ={uxeq vXewp :ucBy,(X),veB,_1(X),acV,abe E}.

This basis is orthogonal due to the identity

<u X w,u X w'>Z = (p—;j—q) <u, u’>X <w,w'>y, (5.128)

where u € Q, (X), v’ € Qy (X),w € Qy (Y),w € Qy (V) (see [29, Lemma 4.13]).

Hence, we have

e, (z)= Y Euxe g vxen]

5 -
veBp—1(X) HU X eabH
a€eV abelE
Letu=>" uio"'ipeio,__ip so that
U X e, = E uzo'“’PeiomiP X €q.
10...0p

We have for z = (z,y)

(2, €ig...ip, X €a] = [(T,Y) s €(iga)(ira) ... (ipa)) = [T €io...ip] [ al,

whence

Z [Zueio...ip X ea] = [xueio...ip]~

acV
It follows that

Z [z,u X e4] = Z Z (u'")?[z, €404, X €a]

acVv a€V ig...ip
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= 3 Do)z iy, X €]

io...ip acV

= 37 @)z, eqq,) = ).

10...0p

Since also ||u X e4]| = ||u||, we obtain

Yooy exal s u g ).

w€By(X) aeV [ux eal” ueB,(X) [l

Now let us handle the term [z,v X eg) . Letv =),

100ip_1,.
ig.ip U0 Cigip_1 so that

Qi
VX €qp = E '0-tp €ig...ip_1 X €ab-

i0-.ip
We have
p—1
1k
Cig..ip_1 X Cab = Z (=17 €(iga) (i1a) ..(ixa) (ixb) .(ip_10)-
k=0
Note that

[337 e’io...ik], y=a
(%, ) 5 €(iga) (i1a) ..(ixa) (ixh) (ip_1b)) = § [T:€igip1]s Y=
0, otherwise.

Considering all arrows ab € E, there is exactly one a = y and exactly one b = y. It follows that

D T 1(@,9) » (o) (1) o (i50) (4b) o ip—16)] = [T €i.ip) + [T, €3]

abeE
= [.1‘, ei0-~~ip71] + l{x:ik}
and
p—1
Z [Z, €ig...ip—1 X eab} = Z([x7ei0~--ip71] + l{x:ik}) = (p + 1) [$v eiO-“ipfl]'
abelE k=0

We obtain that

Z [2,v X eg] = Z Z (vio"'ip—l)Q[z, Cig...ip_1 X €ab)

abeE 19...ip abEE
=(+1) Z (Uio'“ip*ly[%eio...z’p_l]
10...9p

=(p+1)[z,v].

Since
2

Heio...ip,l X eab” =D

we have o
v X eap||* = Y (W12 = pv]?,
i0...ip

whence

Z [z, X €eqp) :p+1[:v,v]

2 2
abeE ”’U X eab” p ”’UH
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and

Z Z [2,0 X eqp] p+ 1 o, Q. (X)].

vEBy_1(X) abe E lo % eqs||? p

We obtain

2,92 (2)] = [, Qp (X)] +

whence it follows that

thatis, K, =0. m

5.11 Some problems
Problem 5.47. How to compute K (XUOY') for general digraphs X,Y ?

Problem 5.48. Is |Q2| = 25 true for an icosahedron (see Example 5.19) with any numbering of the
vertices?

Problem 5.49. Let a digraph G be determined by a triangulation of S? (see Subsection 1.10). Assume
that deg () < 4 forall x € G. Is it true that K, > 0 forall x € G?

We have verified above that K, > 0 for the following triangulations of S?: simplex, bipyramid,
octahedron, but with specific orientations of edges (the question remains open when the numbering
of vertices is arbitrary). All these digraphs have deg (z) < 4. We have seen that K, < 0 can occur
for icosahedron with deg (z) = 5 and for a pyramid with deg (z) = 7.

Problem 5.50. Denote D = max,cq deg (x). Is it true that \K ] < Cp for some constant Cp
depending only on D? What about upper bounds for \K | and ]K | ?

Note that K, can be take arbitrarily large positive and negative values. For example, for a strongly
regular digraph satisfying (binom(k, m)), we have

1—(1—m)"
Kp=——",
km

while D = % = (k — 1) m. In this case one can verify that |K,| < €030,
Problem 5.51. What can be said about the curvature of random digraphs?

Problem 5.52. Let S be a simplicial complex and G s be its Hasse diagram (see Subsection 1.9). Is
there any relation of K, (Gs) to properties of S? For example, we have

Kiotal (GS) =X (GS) = Xsimp (8) .

Can one give an explicit formula for computing K, (Gs) for any simplex o € S?
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6 Hodge Laplacian on digraphs

In this section K = R. Let us fix an arbitrary inner product (-, -) in each of the spaces R, so that we
have an inner product also in all €2,,. In all examples we use the natural inner product.

6.1 Definition and spectral properties of A,

For the operator 9 : 2, — €),,_1, consider the adjoint operator 0* : {2, _; — €2,. By the definition of
an adjoint operator, we have

(Ou,v) = (u,0™) forallu € Q,and v € Q),_;.

Definition. Define the Hodge-Laplace operator A, : Q, — €1, by
Apu = 0"0u + 00™u. (6.129)

The pairs 0*, 0 and 0, 0* appearing in (6.129) are the following operators:
0 0
Qp,1 = Qp and Qp = Qp+1.
o* o*

Proposition 6.1. The operator A,, is self-adjoint and non-negative definite.

Proof. We have for all u,v € €,
(Apu,v) = (0"0u + 00" u,v) = (Ou, dv) + (0" u, 0*v) = (u, Apv)
so that A, is self-adjoint, and
(Apu,u) = [|0ul* + [|0%u|* > 0, (6.130)
sothat A, > 0. m
Hence, the spectrum of A, is real, non-negative and consists of a finite sequence of eigenvalues.
Proposition 6.2. Denote D = max;cy deg (i) . If (-, ) is the natural inner product then spec Ay C

[0,2D].

Proof. By the variational principle, it suffices to prove that for all u € {2

Since du = 0, we have by (6.130)
(Do, u) = [|0%ul|*.

Since for any ¢ — j ' '

(0%, ei5) = (u, Oeij) = (u,e; — ;) = v/ —u',
it follows that

07l = 3w —u')? <237 (W) +2 3 (i) =23 deg(i)(u')? < 2D |ul?, (613D
i—j i—j i—j i

whence the claim follows. m

The bottom eigenvalue of A is always 0 because if all u* = 1 then by (6.131) 0*u = 0 and, hence,
Aopu = 00*u = 0. If G a complete bipartite graph Kp p , then G is D-regular and 2D is the top
eigenvalue of Ag.

For a general p, the multiplicity of 0 as an eigenvalue of Ay, is equal to the Betti number (3, as we will
see below in Corollary 6.7.
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Problem 6.3. Find reasonable upper bounds for spec A,. The question amounts to obtaining an
upper bound for the Rayleigh quotient for non-zero u € 2, :

|I3u||2+||23*u||2
[l

<?

Problem 6.4. Find estimates of the eigenvalues of A, in terms of geometric and combinatorial
properties of G.

6.2 Harmonic paths

A path u € ), is called harmonic if Apu = 0.

Lemma 6.5. [23, Lemma 3.2] A path u € €, is harmonic if and only if Ou = 0 and 0*u = 0.

Proof. Indeed, if Ou = 0 and 0*u = 0 then by (6.129) we have A,u = 0. Conversely, if A,u = 0
then we obtain by (6.130) that

10u]]* + 110%u]|* = (Apu, u) =0,

whence [|Qu|| = [|0%u|| = 0. =

Denote by H,, the set of all harmonic paths in €2, so that ,, is a subspace of €,,.

Theorem 6.6. [23, Lemma 3.3] (Hodge decomposition) The space €, is an orthogonal sum:
Qp = 001 DIV DH,. (6.132)
Proof. Ifu € 9Qp11 and v € 9*Q,_1 then u = Ju’ and v = 9*v’, and we have
(u,v) = (O, 0") = (0%u/,v") = 0,

so that the subspaces 92,41 and 9*(2,_; are orthogonal.

(o))
2%

O, 0, O,
Denote by K the orthogonal complement of 0§21 €D 0*€2,_1 in ,. Then we have
we K& (wu) =0 Yu € 0Qpt1 and (w,v) =0Vv € 0"Qp_1,
that is,
we K< <w,8u’> =0 Vu' € Qp11 and <w,8*v’> =0 Yo' € Qp

& <8*w,u’> =0 Vu' € Qp11 and <8w,v’> =0 Yo' € Q4
< 0"w =0 and Jw =0
& w € Hp.

Hence, K = H,, which finishes the proof. m
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Corollary 6.7. [23, Corollary 3.4] There is a natural linear isomorphism
H, ="H,. (6.133)

In particular, dim 'H,;, = B3,,; that is, the multiplicity of 0 as an eigenvalue of Ay, is equal to the Betti
number [3,,.

Proof. Observe that Z, := ker 0|, is the orthogonal complement of 9*€2,_1 in €2, because, for any
u € )y,

u€EZye du=0 & (Ou,v) =0 Vv e Q,
& (u,0"0) =0 Yo € Q1 © uld* Q1.

Since by (6.132)
Qp = 00 1 DH, DB 0"

we obtain
Zy = (0"Qp 1) = 09,11 PH, (6.134)

whence H, = Z,/00)11 = H,. m

Remark 6.8. It follows from this argument that H,, is an orthogonal complement of B), in Z,, and that
any homology class w € H), has a unique harmonic representative u € H,,. In addition, u minimizes
the norm ||-|| among all representatives of w.

6.3 Matrix of A,

Let {a;} be an orthonormal basis in €2, {(3,,} be an orthonormal basis in €2, and {7, } be an

orthonormal basis in 2,41 :
o o
Qo =2 Q =2 Qi

8 d
The operator 0 : €, — €2,,_1 has in the bases {c; } and {/3,,,} the matrix representation

where m is the row index and 7 is the column index.

Similarly, the operator 0 : €2, — 2,11 has the matrix representation

C = (v 0 i) i = (Vs i) )i (6.136)

where n is the row index and i is the column index. Since A, = 9*0 + (9*)" §*, we obtain the matrix
representation of A, in the basis {; }:

matrix of A, = B’ B+ CTC. (6.137)

More explicitly, the (z, j)-entry of the matrix of A, in the basis {«;} is given by

(Apai,a5) =Y (90, By) (00, B) + Y (i, 07) (@7, 07,,) (6.138)

m

where ¢ is the row index and j is the column index.
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Example 6.9. Recall that Q_; = {0}, Qy = {e; :i € V} and Q; = (eg; : K — ). Assuming that
(-, -) is the natural inner product, we obtain by (6.138) that the matrix of A is

(Doeise5) = > (eq, Den) (e, Oen)

k—l
= leier —ex) {ej. 0 — ex)
k—l
= Z (641 — 6ar) (650 — Ojx)
k—l
= Z dij + Z%’ =l — 10
k—1i i—l

= deg(i)dij — 1gijy — Lyjiy-
If G has no double arrow then
the matrix of Ag = diag (deg (7)) — 1)y,

where 1;.;, is the adjacency matrix of GG. Hence, in this case Ag is the usual unnormalized Laplacian
(=Kirchhoff operator) on functions on V. Consequently, we have

trace Ag = Zdeg (1) =2|E|. (6.139)
i€V
6.4 Examples of computation of the matrix of A;

In this section, we denote by V' and E respectively the numbers of vertices and arrows of the digraph
in question.

Let us compute A; for the natural inner product. We use the orthonormal bases {e,,} in €y and
{eij i — j}in Q. Let {~,,} be an orthonormal basis in 2.

The matrix of A; has dimensions E x E and, by (6.138), its entries are
(Areij,epy) =D (Oeij, em) (Beijr, em) + 3 (€ij, 07,) (€irjr, 07, (6.140)
m n

for all arrows i — 7 and i’ — j'.
For the first sum in (6.140) we have

> (Oeijs em) (Deirjrem) = 2 (e — eiyem) (ej — eiryem)
= 8jjr — digr — i + diir =2 [ig,d'j'] .

The values of [ij,i’j'] are shown here:




Hence, in the case p = 1, we have
BB = ([ij,i'j']) . (6.141)

In particular, diagonal entries of B B are equal to 2.

Example 6.10. Considera 1-torus7 = {0 — 1 — 2 — 0}. In this case we have 1 = (eg1, €12, €20)
and

the matrix of A = BTB = ([ij7 i/j/])

€01 €12 €20
eo1 [01,01] [01,12] [01,20]
e12 [12,01] [12,12] [12,20]
e20 [20,01] [20,12] [20,20]
2 -1 -1
=[-1 2 -1

-1 -1 2

The eigenvalues of A; are (0,3,3).

Example 6.11. Consider a dodecahedron (as in Example 5.7):

We have V' = 20, E = 30,
Q= {0} and |H;| = 11.
In particular, CT'C' = 0 and,
hence, Ay = BTB.

The matrix of Ay is shown here: Bils o elaes

The eigenvalues of A; are:

(0115 255 345 545 (Si\/g)g)7

where the subscripts show multiplicity. s

For a general digraph G with 25 # {0}, let us compute the entry (e;;, 7,,) of the matrix C' assuming
that ~y,, = -y is a triangle or square (note that although 25 always has a basis of triangles and squares,
the squares in this basis do not have to be orthogonal).

If v = eqpc is a triangle then we have

(€ij, 07) = (€ij, ap + €be — €ac) = [id,7]

where
1, ifij € {ab,bc}
[ij, 7] :=<¢ —1 ifij=ac
0, otherwise.
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If y = %’u is a (normalized) square then

N

1 .
(€ij, 07) = —= (€ij, €ab + €bc — €aly — Ec) = 7 [i7,7],

where

1, ifij € {ab,bc}
[ij,v] = —1 ifij € {al/ b}
0, otherwise.

a

Example 6.12. Let G be a triangle {0 — 1 — 2,0 — 2} . Then Q1 = (eq1, €12, €p2) and

€01 €12 €02 9 _1 1
Tty |eon [01,01] [01,12] [01,20] | [
B B=([i,if]) = |, [12,01] [12,12] [12,20] | — 11 f ;

ez [02,01] [02,12] [02,02]

The basis {~,,} of Q2 consists of a single triangle v = ep12 so that

_ €01 €12 €02 B B
—<6012 [01,~] [12,7] [02,7]>_(1 1 -1),

1 1 -1
cle=11 1 -1
1 -1 1

9

matrix of A; = BTB+CTC =

o O W
o w O
w o O

Example 6.13. Let G be a square {0 — 1 — 3,0 — 2 — 3}. Then Q; = (eq1, €p2, €13, €23) and

€01 €02 €13 €23 1 -1 0
eo1 [01,01] [01,02] [01,13] [01,23] 1 2 0 -1
BTB = ([ij,i'j']) = | eo2 [02,01] [02,02] [02,13] [02,23] | = 1 0 9 1
e13 [12,01] [13,02] [13,13] [13,23] 0 -1 1 =2
e2s [23,01] [23,02] [23,13] [23,23]

The basis {~,,} of {25 consists of a single square v = \/Li (e013 — ep23) so that

—L €01 €02 e13 €93 B - .
\/5(7 [01,7] [02,7] [13,7] [2377]) 1 -1 1 1),

€
V2
1 -1 1 1)

11-1 1 -1 1
T —_ —
CC=311 21 1
-1 1 -1 1
Hence,
5 1 1 _1
S S
matrix of A= BB+ CTC = 2002, 2 2|
T2 T2 2 2
1 _I I 5
2 2 2 2

and the eigenvalues of A; are (23, 4) .
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Example 6.14. Consider the following digraph:
Here V =5, E =6, |Q =2and
Qo = (eo14 — €024, €014 — €034) -

However, this basis is not orthogonal.

Orthogonalization gives an orthonormal basis for {2:

@
o
w

S ©

wino

wloo I Wl
Wl Wl

D
w
=

S ©

W
W=

o |
W=

Wl

712\%(6014—6024),
72:%6(60144-6024—26034).
Since
5712\%(801%-614—602—624),
572:\%(601+€o4+602+€24—2€03—2€34),
we obtain
€1 €14 €2 €
11 1 1
C = ({e;07,) = [N ViV TV
ERIN I I N
L 1 _1 g g
S C Y
V6 V6 V6 V6 NG NG
and
2 2 _1 1 _1 _1
L2 R RN SN S ¢
. TR L G ¢
ce=1_% & 3 3§ 1 1
S GRS R T T O
S GRS RN GRS SN
3 73 T3 T3 3 3
Now we compute BT B:
2 -1 1 0 1
-1 2 0 1 0
1 0 2 -1 1
T
B'B = ([, eiyr]) = 0 1 -1 2 0
1 0 1 0 2
0 1 0 1 -1
whence
8 _1 2 _1
5, B3 B
DA T
matrix of A; = BTB+ CTC = B T S Bt
DA T L
S S P
3 3 3 3

The eigenvalues of A; are (24,3,5) .
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Example 6.15. Consider the following pyramid:

For this digraph V' =5, E = 8, |Q2| = 5, and

Qp = <60147 €024, €134, €234, €013 — 6023> .

We have then

B'B = ([ij,i'j']) =
€014
C - €024
€134
€234
:%3 (6013 - 6023)
3
21
l2
gl
cte=| 2
1
0
0

matrix of A, = BTB+CTC =

The eigenvalues of A; are (35, 53).

€01 €02 €13 €23
€01 2 1 -1 0
€02 1 2 0 —1
€13 -1 0 2 1
es;3 0 -1 1 2
€04 1 1 0 0
€14 —1 0 1 0
€24 0 -1 0 1
€34 0 0 -1 -1
€01 €02 €13 €23
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
4 1 1 1
V2 V2 V2 V2
1 1 1
Eoh T
5, 2 9, 10
TA ey
3 7z 3 00
-1 0 0 2 -1
o -1 0 -1 2
1 0 -1 -1 0
0 1 1 0 -1
7 1 1 1
r L 1 1y
A A R
2 2 2 2
B S B
2 2 2 %
111 1
2 2 2 2
0 0 0 0 4
0 0 0 0 O
0 0 0 0 O
0 0 0 0 1

o
}—t»—\r—tl\DOOr—‘»—tE

O~ k== OO o oo

Ok OO o oo

- O O = O O OO

Example 6.16. Let G be an (n — 1)-simplex, that is, the vertices are {0, 1,

Let us show that

i j i<y

A := matrix of Ay = diag (n).
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1 1
1 1
2 1
1 2
€24 €34
0 O
1 0
0 1]’
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Let ij and 7'’ be two arrows. Then the (ij,4'j’)-entry of A is

Aijiry = (B'B) ;0 + (CTO) o =[085 + X i, v [ 7] (6.142)

ij,1'j’
where {~,,} is an orthonormal basis of 25, which we may take to consist of all triangles in G.
If ij = i'j’ then [ij,4'j’] = 2. Since the arrow ij belongs to (n — 2) triangles ~,,, we obtain
Aij,ij =24 (TL — 2) =n,

that is, all the diagonal entries of A are equal to n. It remains to show that if 55 # '’ then

Ajjirjr = 0. (6.143)
If ij and 7’5’ have no common vertex then they cannot belong to the same triangle ~,, and, hence, all
the terms in (6.142) vanish.
Suppose i’ = i and j’ # j:

e .,
iI—i® — o

Then [ij,i'j'] = 1 while [ij,,,] [¢'j’,~,,] is nonzero only when ~,, is the triangle formed by 4, j, /. In
this case the arrows 4 and i’ have opposite orientations with respect to y,,, whence [ij,v,,] [{'7’,7,,] =

—1 and (6.143) follows.
Suppose j' = i and i’ # j:
o

i
o — O

=i

Then [ij,i'j'] = —1 while [ij,~,] [¢'4,~,] is nonzero only when -, is the triangle i'¢j. In this case
the arrows 4j and ’j’ have the same orientation with respect to +,,, whence [ij,~,,] [¢'j',7,] = 1 and
again (6.143) follows.

The cases 7 = i’ and j = j’ are similar.
Problem 6.17. Describe all the digraphs for which /A1 has only one eigenvalue.

Problem 6.18. Devise a program for computing the matrix and spectrum of /A1 for large digraphs.

6.5 Trace of A\,

Recall that by (6.139)
trace Ag = Zdeg (i) =2E,
1<%
where I denotes the number of arrows. Here is a similar result for the trace of Aj.

Theorem 6.19. Let T' be the number of triangles in Qa, S be the number of linearly independent
squares in o, and D be the number of double arrows a = b. Then

trace Ay = 2E + 3T+ 2S5 +4D. (6.144)

By a square here we mean an allowed 2-path egp. — eqp Such that a # c and a 4 c.

For example, for the pyramid from Example 6.15 we have £ = 8,7 =4, S =1 and D = 0, whence
traceA; =2-843-4+2-1 =230,

which matches the sum of the eigenvalues as well as the sum of the diagonal values of the matrix of
A1 as determined there.
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Proof. Let {~,,} be an orthogonal basis for {22. Let us first prove that

2
10mlI”
lall?

trace A; = 2F + Z (6.145)

By (6.137), trace A1 = trace BT B + trace CTC. As we have seen above (see (6.141)), all the
diagonal entries of B” B are equal to 2 so that

trace BT B = 2F.

Let us compute trace CTC. Without loss of generality assume that the basis {v,,} is orthonormal
basis. Let {«;} be the sequence of all arrows. Since {«;} is an orthonormal basis for {2;, we have by
(6.136)

C= (<87n7 ai>)n,z
and, hence,

(CTC)Z‘J‘ = ; (07, i) (OVns O‘j> .

It follows that
trace CTC = Z > {0, az> => Z (07n; Oéi>2 =2 Ha’YnH2 )

whence (6.145) follows.

As we know, 2, has a basis {v,,} that consists of triangles, squares and double arrows. The only
non-orthogonal pairs in this basis are pairs of squares containing the same elementary 2-path, like
Cabe — €ap'c and eqpe — €qpre. Assume first that the entire basis {+,, } is orthogonal (which is equivalent
to absence of multisquares).

A double arrow a = b gives two elements of the basis {7,,}: €apq and epgp. If v,, = €4pq then

2 2
H’ynH =1, 8’)/n:€ba+€ab, ||a’>/n|| =

and )
107l
=
7l
The same is true for y,, = epqp s0 that each double arrow contributes 4 to the sum

Tl

If ~,, is a triangle egp. then

||’7n||2 =1, 8771, = €pc — €ac T Eab; ‘|a’7n||2 =

whence
107l _
lI?

so that each triangle contributes 3 to the sum (6.146).

If ~y,, is a square eqp. — €qprc then

7ull> =2, 07, = €ab + €be — ay — €ver  |07nll> =
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so that )
10vl?
- =
75l

so that each square contributes 2 to the sum (6.146). Hence, we obtain that the sum (6.146) is equal
to 37 + 2S5 + 4D, which proves (6.144) in this case.

In the general case G may contain multisquares. Assume that GG contains the following m-square

a, {bk};n:O’ c

)

which gives rise to m linearly independent squares:
€aboc — €abics €abe — €abacs --+> Cabe — Eabpc - (6.147)
The sequence (6.147) is not orthogonal, and its orthogonalization gives the following sequence:
W1 = €abge ~ €abyc
W2 = €abye T €abyc — 2€abye

Wk = €abgc + ...+ €aby,_1c — keabkc

Wm = €gbge + ...+ €aby,_1c — MEqb,,c
(cf. Example 5.16). We have
Owg, = (€aby + €boe) + - + (€ay 1 + €ty 1) — k (€aby, + €bye)

0wy = 2k + 2K2, ||w]® = k + &2,

whence )
Owg|”

L=
i

Hence, each wy, contributes 2 to the sum (6.146), which completes the proof. m

Since the sum of all eigenvalues is trace A; and the eigenvalue 0 has the multiplicity 3, we obtain
that the average of the positive eigenvalues is

\ _ trace Aq
average E _ 61 .
6.6 An upper bound on A, (A;)

Denote by Apax (A) the maximal eigenvalue of a symmetric operator A. Recall that, by Proposition
6.2,
Amax (Ao) < 2max deg (i) .
(2

For any arrow ¢ — j in G denote by degx (ij) the number of triangles containing the arrow i — 7,
and by deg (i) the number of squares containing ¢ — j.

Theorem 6.20. Assume that there is an orthogonal basis {~,} for Qs that consists of triangles and
squares. Then

Amax (A1) < 2maxdeg (i) + 3maxdega (2j) + 2max degp (ij) - (6.148)
7 1—] 1—]
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Proof. Recall that

oull>  |0*ul?
Ao (Ar) = s1p <H ul? | 1o )
ue\{0} \ |lull [||

Since the operators 0 : 01 — Qg and 0* : Qg — € are dual, they have the same norm. The norm
of the latter was estimated in the proof of Proposition 6.2 (cf. (6.131)), whence we obtain the same
estimate for the norm of the former, that is, for any non-zero v € €2y,

2
H8u||2 < 2maxdeg (7)
] eV
Let us prove that
E » y
M < 3maxdega (ij) + 2 maxdegp (ij) - (6.149)
u 1—] 1—)]

Letu =}, . u"e;; and, hence,

lul® = (u¥)?

i—7J
Using the basis {~,,} in {2, we obtain
. (0%, ) (u, 07,)°
Jorulp = 32 0 Tnl g (B
zn: 17l zn: [[7nll

If ,, is a triangle eqp then ||, || = 1,
<u7 67n> = <u7 €bc — €ac T+ eab> = ube — ¢ + uab’
(1,07, < 3 () 4 (™) + (u)?) |

Summing up over all triangles ~,, and using that any arrow ¢ — j occurs in degx (ij) triangles, we
obtain

v )2 .

S O g w2 ey (i) < 3 ul” maxdega (i) (6.150)
n:y,, is a triangle ”7” H 1—j Y

Let now ~,, be a square eqpe — €qpye (such that a # ¢). Then ||v,,[|* = 2,

/ /
(u,07,) = (U, €ap + €pe — eap + epe) = u® 4+ ub® — u® — b

<’LL, 5%)2 <4 ((uab)Q + (ubc)Q + (uab’)Q + (ub’c)2) )

Summing up over all squares +,, and using that any arrow ¢ — j occurs in degq (ij) squares, we
obtain

2
Z {u, 07,)” < 2Z(uij)2degm(ij)

2
n:y,, is a square “771 H i—j
< 2||ul|® max deg (ij) - (6.151)
1—]
Adding up (6.150) and (6.151), we obtain (6.149). m

Problem 6.21. How sharp is the upper bound on Apax (A1) in (6.148)? Is it attained on some
digraphs? Extend (6.148) to the general case when a basis of triangles and squares requires orthog-
onalization.
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6.7 Examples of computations of spec A,

Example 6.22. Consider an octahedron based on a diamond:

For this digraph V' =6, E =12, |Q9| =38.
The space ()5 is generated by 8 triangles:
Qo = (€024 , €025 , €034 , €035 , €124 , €125 , €134  €135) -
Hence, T'= 8, S =0, and we obtain
trace A1 = 2F + 3T = 48.

Since 3, = 0, it follows that
trace A7 48

Aaverage = rﬁl BT
The eigenvalues of A; are
(237 467 63)7

where the subscript denotes the multiplicity.

Example 6.23. Consider a prism as in Example 5.24:
Since E =9, T =2, S = 3, we have
trace Ay = 2E + 37T + 25 =30

and
trace Ay 30

Aaverage = rﬁl = 9"
The eigenvalues of A are

(2, (5)2, 33, 4, 52).

Example 6.24. Consider a 3-cube:
Wehave V =8, E =12, Q] =6,
H, ={0}forp > 1.
Space {29 is generated by 6 squares,
so that

S=6and T =0.
Hence, we obtain by (6.144)

trace A1 =2E+25=2-12+2-6 = 36.

Since 3, = 0, we obtain

trace Aq
A =——=23.
average E _ /81

In fact, the eigenvalues of A; on a 3-cube are
(267 327 437 6)
Example 6.25. Let G be the n-cube, that is,

G=1""=10/0..01
N—_—

n times
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where I = {0 — 1} (see Subsection 3.4). Then
V=2" E=n2""' S=|0=2"3n(n-1)
and 7' = 0. Hence,
trace A; = 2E 4 28 = 2" %n (n + 3)

and
trace Ay 2" ?n(n+3) n+3

)\average = F— ﬂl = non—1 = )
For example, for the 4-cube we obtain

trace A; =22 .4.7=112.

The eigenvalues of A; on the 4-cube are
(210, 33, 49, 64, 8).
For the 5-cube we obtain
trace A = 23 -5 -8 = 320.
The eigenvalues of A; on the 5-cube are
(215, 320, 425, 54, 610, 85, 10).
Problem 6.26. Determine the full spectrum of A1 on the n-cube. In particular, prove that

Amax = 21 and Apin = 2nm41) -

2
Prove that spec Ay consists of all even integers from 2 to 2n and of all odd integers from 3 to n.

The difficulty here is that the method of separation of variables does not work for A; on Cartesian
products.

Example 6.27. Consider the 2-torus G = TOT where ' = {0 — 1 — 2 — 0}.
Here V =9, E =18, [Q| =09, |Hi| =2.
Space €25 is generated by 9 squares, whence
trace A1 =2-18+2-9 = 54.
The eigenvalues of Ay on the 2-torus are
(02, (3)4, 3, 64).
For the 3-torus G = T3 we have

E =81, S=|Q] =81, |H|=3,

7. ‘3

whence
trace A1 =2-81+2-81 = 324.

The eigenvalues of Ay on the 3-torus are

(03, (2)12, 330, (3)16, 612, 9s).
For the n-torus G = T we have
n—1)

E—n3n, §= |0y ="n=b

3", |Hi| =
8", [Hi| = n,

whence
trace Ay =2E +2S =n(n+1)3"

and
n

3 -1

)\average = (n + 1)
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Problem 6.28. Compute the full spectrum of Ay for the n-torus. In particular, prove that
Amax = (31)gn .
In fact, Amin = Oy, which is a consequence of 31 = n.

Example 6.29. Consider a trapezohedron 7,,, (see Subsection 2.1 and Proposition 2.1).
For example, T} is shown here:
We have V = 2m + 2, E = 4m, while
Q9 is generated by S = 2m squares.
It follows that on T3,

trace A1 = 2F + 25 = 12m.
Since 3, = 0, we obtain

trace Ay 12m

)\average: E_ﬁl = am = 3.

In the case m = 2 the eigenvalues of A; are as follows:
(2, 35, 3 £3V17),

where
Amin = £ — 3V/17=1.438... and Apax = £ + 1V17 =5.561... .

In the case m = 3 the trapezohedron 73 coincides with a 3-cube, and as was already shown above,
the eigenvalues of A are:
(26) 327 437 6)

In the case m = 4 the characteristic polynomial of A is
(2—2)(2—3)" (2 =5) (22— 92+ 16) (2% — 4z + D2(z* =62+ 1),
and the eigenvalues of A; are
{27 34, 9, % + % V17, (2 + %\/5)27 (3 + \/5)2}>

with
Amin =2 — 32 =1.292... and Apax = 3+ 3V17 =6.561... .

In the case m = 5 the characteristic polynomial of A is
(z—2)(z— 2)4 (z—6) (2% — 102 +20)(22 — 72 + 11)%(2® — 52 + 5)*(2* — 42 + %)2,
and the eigenvalues of A; are
{27 (3)47 6,5+ \/gv (% + %\/5)21 (% + %\/5)27 (2 + %\/3)2}7

where
Amin =2 —1v5=0.881... and Amax =5+ V5 ="7.236... .

In the case m = 6 the characteristic polynomial of A is
(2=2°(z-3)" (=4 (2= 7) (2 — 8) (2 = 32 + 3)%(2* - 62 +6)*,
and the eigenvalues of A; are

(25, 37, 42, 7, 8, (3 £ 3v3)a, (3£ V3)a),
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where
Amin = 5 — $V3=0.633... and Apax = 8.

In the case m = 7 the characteristic polynomial of A; is
(z—2) (2 — 8) (22 — 122+ 28)(2* — 62° + 4z — 2)?(2% — 102 + 312 — 29)?
x (2% = T2 + 82— 2)2(2° — 827 + 192 — 13)°
It has eigenvalues 2 and 8, and all other eigenvalues are irrational.

Problem 6.30. Determine the full spectrum of Ay on the trapezohedron T, for any m. In particular,
what are \pin and Amax !

Example 6.31. Consider a rhombic dodecahedron as in Example 5.25. The arrows go along edges
from smaller numbers to larger ones.

Here V =14, E =24, 5=12, T =0.
It follows that
trace A1 = 2K + 25 =72,

\ _ traceA; 72
average E _ ﬁl 24

The characteristic polynomial of A7 is

(z—1P2 (-2 (z-3)"(z-4)%(z-7) (22 =72 +8)3,

and the eigenvalues of A; are
(13, 23, 39, 4, 7, (£ £ ¥HT)3).

Example 6.32. Consider a rhombicuboctahedron (see also Examples 5.17 and 5.28).

Here V =24, E =48, Q3| = 26.
Q29 is generated by 8 triangles and
18 squares so that 7' =8, S = 18.

Hence, we obtain

trace Ay = 2E + 3T + 2S5 = 156.

Since 3, = 0, we have

trace Aq 156

)\avera e — H/= 5 = 5 — 3.25.
g E - p, 48

A computation of the eigenvalues of Ay gives
Amin = 0.518... and Apax = 72.

There are many multiple eigenvalues: 13, 23, 33, 44, b, etc. The full spectrum of A; is shown here:

0.0 0.5 10 1.5 20 25 30 35 40 45 50 5.5 6.0 6.5 70
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Example 6.33. Consider the icosahedron as in Examples 1.16, 5.19.
We have here V' =12, E = 30, |Q| = 25.
The space (2, is generated by 20 triangles
and 5 squares (cf. Example 5.19).

Hence, T'= 20, S =5 and

trace A1 = 2FE + 3T + 25 = 130.

Since 3, = 0, we have

trace A 130
)\average == E—Bl - % - 4333
- M

Computation shows that

Amin = 0.810... and Apax = (5 + V/5)3.
Other multiple eigenvalues are 65 and (5 — v/5)3. The full spectrum of A; is shown here:

00 0.5 10 1.5 20 25 30 35 40 4.5 50 5.5 6.0 6.5 70 75

6.8 Eigenvalues of A; on trapezohedron

Here we give a partial answer to Problem 6.30. Recall that the trapezohedra T}, were defined in

Subsection 2.1.

Proposition 6.34. For any m > 2, the operator A1 on the trapezohedron T,,, has eigenvalues \ = 2

and A = m + 1.

Proof. The vertices of T}, will be denoted as here:

Consider the following 1-paths on T7,:
V= gy T Ciggy e Tt €y

— (Cigjo + Cirjs + + F €Ciny 1) 1)
m—1
=2 (eik—ljk - eikjk)v

where the index k is regarded mod m, and
U = €qig + €aqiy T oo T €aipyyq

— (ejob + €j1b + ...+ ejm—lb)

m—1

= > (€air — €j0)-

k=0
The 1-paths u and v are obviously allowed and, hence, 0-invariant. We will prove that

Ajv=2v and Aju=(m+1)u,

which will settle the claim. We have clearly

v = (ejk —Cip_y — €t eik) =0,
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and, hence, 0*0v = 0.
In order to compute 0*v € (2o we use the following orthogonal basis in (2o that consists of all 2m
squares in T,:

Pr = Caiy_1jx — Cairj AN Vg = €iyjib = Ciyjiiiby

where k = 0,...,m — 1 (cf. Proposition 2.1). We have for any &

<a*7}790k> = <U7890k> = <v7eik—1jk + €aif_y — Cipjy — eaik> =2,

(0 0, 9p) = (v, 005) = (Vs ejgb + €irgy, — €jri1b ~ Cirjrsr) = ~2
which together with || ||* = ||¢]|* = 2 implies that
m—1
= (o — ) -
k=0

Hence, we obtain

m—1
AlU = 88*11 = (8gﬁk - ad)k)
k=0
m—1
= (eik—ljk + €aif_y — Cipgy — eaik)
k=0
m—1
— > (€ + iy = €jppad — Ciresn)
k=0
m—1
=2 (eik—1jk - eikjk) =2v.
k=0

Next, let us compute 0*u. We have for any &,
(0"u, 1) = (u, 0py) = <u7eik—1jk t €aip_y — Cipjy, — eaik> =0,

(0 u, ) = (u, 0Yy) = <uv €jib T Cigjy — Cjpyb — eikjk+1> =0,
whence 0*u = 0 and, hence, d0*u = 0. It remains to compute 9*Ju. We have

m—1 m—1

ou = (€, —€a — ey +ejy,) Z ei, +€j,) —m(eq,+ep).
k=0 k=0

For any 0-path e; and any 1-path e, 3 we have

<8*eiaea,@> = <6iaaeaﬁ> = <€i’€ﬁ - €a> = 51,6 — dia

0%e; = Z (51[3 5104 eaﬁ = Z €ai — Z €i3-

a—f( a—1 i—f

whence

It follows that

0 €ip, = Caip — Cigjr — Cigdpts

9 €j), = Cix_1jx T Cipjr — Cjgbs
m—1 m—1
*
= - E €aiy, » 0%ep = § €j1b>
k=0 k=0
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whence

m—1
Aju = 0%"0u = Z (Cair, = €ipjx — Cirgrrr T Cig_rji T Cirg, — €jyb)
k=0
m—1
+m (€ai, — €jib)
k=0
m—1
=(m+1) (€qip, — €jeb) = (M +1)u,
k=0

which finishes the proof. m

6.9 Spectrum of A, on join

In this section we use the augmented chain complex (3.46):

1%} 1%} [} [}

K «— Qp «— Q1 < ... < Q 0

2 o 2. (6.152)

p—1 D

Denote by Ep the Hodge Laplacian associated with this complex. Of course, ﬁp coincides with A,
for p > 1 but is different for p = —1 and p = 0.

For example, we have for the chain complex (6.152)

(0%e,e;) = (e,e;) = (e,e) =1

6*@,- =0 = Zek

keV

so that

whence N
A_je=00% = 0o = |V]e.

In particular, B
spec A_; = {|V]}.

In the case p = 0 we have
Age; = 0% De; + 80%e; = e + Age; = Age; + 0,

that is, B . .
(Agei)j = (Aoei)j + 1.

Therefore, the matrix of ﬁo is obtained from the matrix of Ay by adding 1 to each entry. For any

u € Qo we have
Agu = Agu + (Z uk> o.

keV
The advantage of using the chain complex (6.152) lies in the following statements.

Lemma 6.35. [23, Lemma 5.5] Let X,Y be two digraphs. Then, for u € Q, (X), v € Q4 (Y) and
r=p+q+1, we have B B N
Ay (uxv) = (Apu) * v+ u* Agu. (6.153)

Theorem 6.36. Let X, Y be two digraphs. We have for any r > 0

spec A, (X xY) = L] (spec ﬁp (X) + spec ﬁq (Y)) . (6.154)
{p,g>—1:p+g=r-1}
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Here we denote by spec A a sequence of all the eigenvalues of the operator A counted with multiplic-
ities. The sum of two such sequences consists of all pairwise sums of the elements of the sequences,
and the disjoint union of sequences means the union of all sequences, summing up the multiplicities.
In particular, if one of the sequences is empty then its sum with another sequence is also empty.

Proof of Theorem 6.36. Observe that if u € Q, (X) and v € €, (V) are eigenvectors such that
Epu = Au and ﬁqv = uv,
then we have by (6.153) forr =p+ ¢ + 1:

Ar(u*v):(Apu)*v—l—u*ﬁqv:()\—l—,u)(u*v),

that is, v * v is an eigenvector of ﬁr on X * Y with the eigenvalue A + .

In each 2, (X)) there is a basis that consists of eigenvectors of Kp; denote by {uy} the union of all
such bases of €2, (X) across all p > —1, with the corresponding eigenvalues {\;}. Let {v;} be a
similar sequence on Y with the eigenvalues {1 } . By Theorem 3.12, we have, for any r > —1,

Q (X xY) = S (2 (X) @ Q4 (Y)),
{p,q>—1:p+q=r—1}

that is, 2, (X * Y) has a basis
{ug * vy« |ug| + |v| =r—1}.

The elements of this basis are the eigenvectors of A, on X %Y with eigenvalues \;, + 1;, whence
(6.154) follows. m

In particular, for » = 0 we have
spec Ag (X #Y) = (specz,l (X) + spec Aq (Y)) N (spec Ao (X) + spec A (Y))
— (11X} + spec B (v)) U (spec Ao (X) + {Y1}) (6.155)
andforr =1
specAp (X #Y) = (specﬁ_l (X) + spec A (Y))
L (spec Ay (X) 4 spec A (Y))

L (spec Ao (X) + spec Ag (Y)) .

Since 31 = A1, we conclude that

spec A1 (X *xY) = ({|X]|} +specAq (Y))
U (spec Aq (X) +{[Y]})
U (Spec Ao (X) + spec Ag (Y)) . (6.156)

6.10 Spectrum of A; on digraph spheres
Consider a family {S™}°° , of digraphs that is defined inductively as follows: S° = {-,-} and

S = susy S™.
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For example, S' is a diamond and S? the octahedron (see also Example 3.10):

S1 is a diamond

52 is an octahedron

The digraph S™ can be regarded as an analogue of an n-sphere. In the notation of Subsection 5.9, we
have S™ = D;("H).

Proposition 6.37. We have for alln > 0
spec A; (S7) = {2 (=D + )iy 2(n+ 1)%} : (6.157)
Example 6.38. For example, we have
spec Al(Sl) = {0,29,4}

and
spec Al(SQ) = {23,46, 63}

as we have seen above. For n = 3 we obtain from (6.157)
spec A1(S%) = {46, 612, 8g}.
Proof of Proposition 6.37. Let us first prove by induction that
spec Ag(S™) = {(2n),,1. (20 +2), . }. (6.158)

For n = 0 we have _
spec Ag(S°) = {0,2}

which verifies (6.158) for n = 0. For the induction step from n — 1 to n, let us observe that
5™ = 805771 |S% =2 and |S"!| = 2n, so that we obtain by (6.155)

spec Ao(S™) = ({\50\} + spec zo(sn—l)) U (Spec Ao(S°) + {|sn—1\})
= ({2} + spec Bo(s" ™)) U ({0,2} + {2n})
- ({2} + spec Ao(sn—l)) U ({2n,2n +2}).
By the induction hypothesis we have
spec Ag(S" 1) = {(2n —2),,, (2n)n}, (6.159)
whence

spec Ag(S™) = {(2n), , (2n +2), } U {2n,2n + 2}

{
{(2n),41,(2n+2),,1},

which was to be proved.
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Let us prove (6.157). For n = 0 we have

spec A1 (S%) = 0,

which matches (6.157). For the induction step from n — 1 to n, we obtain by (6.156) and (6.159)

spec A1(S") = ({|SO‘} +spec A1 (S™71))

U (spec A1(S%) + {]|S"7})

L (spec Ao(S°) + spec KO(S”_l))
({2} +spec A1 (S" 1)) U ({0,2} + {(2n — 2),,, (2n),,})
({2} +spec A1(S" M) u{(2n —2),,, (2n),, , (2n +2),,}.

Using the induction hypothesis

spec A1 (S"71) = {2 (n—2) nn-1) 5 2(n— 1)n(n_1) , (2n) n(n2_1>}

we obtain

spec A1 (S™) = {2 (n =1 ne-1, (20)pn-1), 2(n+ 1)n(n71>}

2 2

(
U{Q(n_ 1)n7(2n)2n72(n+ 1)n7}
= {200~ D @)ngusnys 200+ Datasn }

which finishes the proof. m
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