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Abstract

We construct a cohomology theory on a category of finite digraphs (directed
graphs), which is based on the universal calculus on the algebra of functions on the
vertices of the digraph. We develop necessary algebraic technique and apply it for in-
vestigation of functorial properties of this theory. We introduce categories of digraphs
and (undirected) graphs, and using natural isomorphism between the introduced cat-
egory of graphs and the full subcategory of symmetric digraphs we transfer our co-
homology theory to the category of graphs. Then we prove homotopy invariance of
the introduced cohomology theory for undirected graphs. Thus we answer the ques-
tion of Babson, Barcelo, Longueville, and Laubenbacher about existence of homotopy
invariant homology theory for graphs. We establish connections with cohomology of
simplicial complexes that arise naturally for some special classes of digraphs. For
example, the cohomologies of posets coincide with the cohomologies of a simplicial
complex associated with the poset. However, in general the digraph cohomology the-
ory can not be reduced to simplicial cohomology. We describe the behavior of digraph
cohomology groups for several topological constructions on the digraph level and prove
that any given finite sequence of non-negative integers can be realized as the sequence
of ranks of digraph cohomology groups. We present also sufficiently many examples
that illustrate the theory.
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1 Introduction

In this paper we consider finite simple digraphs (directed graphs) and (undirected) simple
graphs. A simple digraph G is couple (V,E) where V is any set and E ⊂ {V ×V \ diag}.
Elements of V are called the vertices and the elements of E – directed edges. Sometimes,
to avoid misunderstanding, we shall use the extended notations VG and EG instead of V
and E, respectively. The fact that (a, b) ∈ E will be denoted by a → b. A (undirected)
graph G is a pair (V,E) (or more precise (VG, EG)) where V is a set of vertices and E is a
set of unordered pairs (v, w) of vertices. The elements of E are called edges. In this paper
we shall consider only simple graphs, which have no edges (v, v) (loops).

A digraph is a particular case of a quiver. A particular example of a digraph is a
poset (partially ordered set) when E is just a partial order (that is, a → b if and only if
a ≥ b). The interest to construction of some type of algebraic topology on the digraphs
and graphs is motivated by physical applications of this subject (see, for example, [6], [7],
[8]), discrete mathematics [24], [18], [4], and graph theory [1], [2], [18], and [19, Part III].

Dimakis and Müller-Hoissen suggested [7] and [8] a certain approach to construction
of cohomologies on digraphs, which is based on the notion of a differential calculus on
an abstract associative unital algebra A over a commutative unital ring K. However,
this approach remained on intuitive level without a precise definition of the corresponding
cochain complex. An explicit and direct construction of chain and cochain complexes
on arbitrary finite digraphs was given in [13] (see also [14]). The construction in [13] of
n-chains is based on the naturally defined notion of a path of length n on a digraph.

In the present paper we provide an alternative construction of the cochain complex
that is equivalent to that of [13] (see Section 4 below). We stay here on the algebraic
point of view of [3], [6] to define a functor from the category of digraphs to the category of
cochain complexes. We develop necessary algebraic background for this approach, which
makes most of the constructions functorial and enables one to use methods of homological
algebra [17], [22]. The main construction is based on the universal calculus on the algebra
of functions on the vertices of the digraph.

This constructed cohomology theory happens to be closely related to other cohomology
theories but is not covered by them. For example, the cohomology groups of a poset
coincide with the simplicial cohomology groups of a simplicial complex associated with
the poset and with the Hochschild cohomology of corresponding incidence algebra (see
[5], [12], and [15]). We would like also to point out, that the digraph cohomology theory
gives new geometric connections between the digraphs and cubic lattices of topological
spaces (see, [9], [10], and [14]) and new algebraic connections with algebras of quiver and
incidence algebras (see [11], [21], [5], [15]).
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We introduce categories of digraphs and (undirected) graphs. Using natural isomor-
phism between introduced category of graphs and full subcategory of symmetric digraphs
(see [16, Section 1.1]), we transfer the cohomology theory to the category of graphs. In
the papers [1] and [2] the homotopy theory of graphs was constructed, and the question
about natural homotopy invariant homology theory of graphs was raised. We prove ho-
motopy invariance of introduced cohomology theory for graphs and give several examples
of computations. Note, that the previously known homology theory of digraphs (see, for
example, [18, Section 3]) is not homotopy invariant.

We prove functoriality of the cohomology groups for natural maps of digraphs. In par-
ticular, for a subcategory of digraphs with the inclusion maps we obtain direct description
of relative cohomology groups. We describe behavior of introduced cohomology groups for
several transformations of digraphs that are similar to standard topological constructions.

We describe relations between the digraph cohomology and the simplicial cohomology
of various simplicial complexes which arise naturally for some special classes of digraphs.
Finally, we prove the following cohomology realization theorem:

for any finite collection of nonnegative integers k0, k1, . . . kn with k0 ≥ 1, there
exists a finite digraph G (that is not a poset) such that the cohomology groups
of its differential calculus satisfies the conditions

dim H i(ΩG) = ki for all 0 ≤ i ≤ n.

The paper is organized in the following way. In Section 2 we give a short survey of
the classical results on abstract differential calculi on associative algebras [3] in the form
that is adapted to further application to digraphs. We provide several technical theorems
which are based on the standard algebraic results (see [3], [20], and [22]) which will be
helpful in the next sections.

In Section 3, we define the differential calculus on the algebra of functions on a finite
set following [7] and [8] and describe its basic properties.

In Section 4, we define the calculus on simple finite digraphs. We use the algebraic
machinery developed in previous sections and prove that we have a functor from the
category of digraphs to the category of differential calculi with morphisms of the calculi.
We describe some cohomology properties of these calculi and prove among others the cited
above cohomology realization theorem.

In Section 5, we construct a cohomology theory on the category of undirected graphs
that is identified naturally with the full subcategory of symmetric digraphs [16] and prove
the homotopy invariance of obtained cohomology theory. Note that our homology theory
of graphs is new and its construction realizes the desire of Babson, Barcelo, Longueville,
and Laubenbacher ” for a homology theory associated to the A-theory of a graph” (see [1,
page 32]).

In Section 6 we consider a category of acyclic digraphs and transfer to this case the
results of previous sections. We describe a sufficiently wide class of acyclic digraphs
for which the cohomology theory admits a geometrical realization in terms of simplicial
complexes.

2 Differential calculus on algebras

In this section we give a short survey of classical results on abstract differential calculi on
associative algebras in the form that is adapted to further application to digraphs. Starting
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with a standard construction of a first order calculus from [3], we give two methods for
construction of higher order universal differential calculi and prove their equivalence. We
provide several technical theorems which are based on the classical algebraic results (see
[3], [20], and [22]) which will be helpful in the next sections.

Let K be a commutative unital ring and A be an associative unital algebra over K.

Definition 2.1 A first order differential calculus on the algebra A is a pair (Γ, d) where
Γ is an A-bimodule, and d : A → Γ is a K-linear map such that

(i) d(ab) = (da) ∙ b + a ∙ (db) for all a, b ∈ A (where ∙ denotes multiplication between
the elements of A and Γ).

(ii) The minimal left A-module containing dA, coincides with Γ, that is, any element
γ ∈ Γ can be written in the form

γ =
∑

i

ai ∙ dbi (2.1)

with ai, bi ∈ A, where i run over any finite set of indexes.

By [3, III, §10.2], a mapping d satisfying (i) is called a derivation of A into Γ. The
condition (i) implies

d1A = d(1A1A) = (d1A) 1A + 1A (d1A) = 2d1A

and hence d1A = 0. The K-linearity implies then that d(k1A) = 0 for any k ∈ K.

Let us describe a construction of the first order differential calculus for a general algebra
A. The algebra A can be regarded as a K-module, and the tensor product A⊗KA is also
defined as a K-module. In what follows we will always denote ⊗K simply by ⊗.

Note that A and A⊗KA have also natural structures of A-bimodules. We will denote
by ∙ the product of the elements of A by those of A⊗K A. For all a, b, c ∈ A, we have

c ∙ (a ⊗ b) = (ca) ⊗ b and (a ⊗ b) ∙ c = a ⊗ (bc) (2.2)

Define the following operator

d : A → A⊗A, da := 1A ⊗ a − a ⊗ 1A, (2.3)

and observe that it satisfies the product rule. Hence, d is a derivation from A into A⊗A.
Now we reduce the A-bimodule A⊗A to obtain a first order differential calculus.

Definition 2.2 Define Ω1
A as the minimal left A-submodule of A⊗A containing dA. In

other words, Ω1
A consists of all finite sums of the elements of A⊗A of the form a ∙ db with

a, b ∈ A (cf. (2.1)

Proposition 2.3 Ω1
A is a A-bimodule and, hence,

(
Ω1
A, d

)
is a first order differential

calculus on A.
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Proof. Let u ∈ Ω1
A and c ∈ A. We need to prove that c ∙ u and u ∙ c belong to

Ω1
A. By definition of Ω1

A, it suffices to verify this for u = a ∙ db where a, b ∈ A. Then
c ∙ u = (ca) ∙ db ∈ Ω1

A and

u ∙ c = (a ∙ db) ∙ c = a ∙ (db ∙ c) = a ∙ (d (bc) − b ∙ dc) = a ∙ d (bc) − (ab) ∙ dc ∈ Ω1
A.

Hence, Ω1
A satisfies all the requirements of Definition 2.1.

Let us give an alternative equivalent description of Ω1
A. Define a K-linear map

μ : A⊗A → A, μ

(
∑

i

ai ⊗ bi

)

=
∑

i

aibi (2.4)

where i runs over a finite index set. By (2.2) the map μ is a homomorphism of A-bimodules.
It follows from (2.2), (2.3) and (2.4) that, for all a, b ∈ A,

μ (a ∙ db) = μ (a ⊗ b) − μ (ab ⊗ 1A) = ab − ab = 0,

so that a ∙ db ∈ ker μ and, hence, Ω1
A ⊂ ker μ. In fact, the following is true.

Theorem 2.4 [3, III, §10.10]
(i) We have the identity Ω1

A = ker μ, where μ is defined by (2.4).
(ii) For every differential calculus of first order (Γ, d′) over the algebra A there exists

exactly one epimorphism p of A-bimodules p : Ω1
A → Γ such that the following diagram is

commutative
A

d
−→ Ω1

A
lid ↓p

A
d′
−→ Γ.

(2.5)

Definition 2.5 The pair
(
Ω1
A, d

)
is called the universal first order differential calculus on

A.

Example 2.6 Consider the R-algebra A = Cm (R) and the bimodule Γ = Cm−1 (R)
with the usual derivative of functions f from A that will be denoted by d′f . Let us
describe explicitly the epimorphism p : Ω1

A → Γ from Theorem 2.4(ii). Define a mapping
p : A⊗A → Γ by

p (f ⊗ g) =
1
2

(
fg′ − f ′g

)

and extend it additively to all elements of A⊗A. It is easy exercise to prove that p|Ω1
A

is

a A-bimodule epimorphism, using that f ⊗ g − g ⊗ f ∈ Ω1
A and

p (f ⊗ g − g ⊗ f) =
1
2

(
fg′ − f ′g

)
−

1
2

(
gf ′ − g′f

)
= (fg)′ . (2.6)

Finally, for any f ∈ A by (2.6) we have (p ◦ d) f = p (1 ⊗ f − f ⊗ 1) = f ′ so that p ◦ d is
the ordinary first order derivative on A.

Let us pass to construction of a higher order differential calculus on A. We start with
the following two definitions.
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Definition 2.7 A graded unital algebra Λ over a commutative unital ring K is an asso-
ciative unital K-algebra that can be written as a direct sum

Λ =
⊕

p=0,1,...

Λp

of K-modules Λp with the following conditions: the unity 1Λ of Λ belongs to Λ0 and

u ∈ Λp, v ∈ Λq ⇒ u ∗ v ∈ Λp+q,

where ∗ denotes multiplication in Λ. If u ∈ Λp then p is called the degree of u and is denoted
by deg u. The operation of multiplication in a graded algebra is called an exterior (or a
graded) multiplication. A homomorphism f : Λ′ → Λ′′ of two graded unital K-algebras Λ′

and Λ′′ is a homomorphism of K-algebras that preserves degree of elements.

Definition 2.8 A differential calculus on an associative unital K-algebra A is a couple
(Λ, d), where Λ is a graded algebra

Λ =
⊕

p=0,1,...

Λp

over K such that Λ0 = A, and d : Λ → Λ is a K-linear map, such that

(i) dΛp ⊂ Λp+1

(ii) d2 = 0

(iii) d(u ∗ v) = (du) ∗ v + (−1)pu ∗ (dv), for all u ∈ Λp, v ∈ Λq, where ∗ is the exterior
multiplication in Λ;

(iv) the minimal left A-submodule of Λp+1 containing dΛp coincides with Λp+1, that is,
any w ∈ Λp+1 can be represented as a finite sum of the form

w =
∑

k

ak ∗ dvk (2.7)

for some ak ∈ A and vk ∈ Λp.

The property (iii) in Definition 2.8 is called the Leibniz rule or the product rule.
A classical example of a differential calculus is the calculus of exterior differential

forms on a smooth manifold with the wedge product and with the exterior derivation.
This calculus is based on the algebra A of smooth functions on the manifold.

The following property of a differential calculus will be frequently used.

Lemma 2.9 Let (Λ, d) be a differential calculus on A. Then for any p ≥ 0 any element
w ∈ Λpcan be written as a finite sum

w =
∑

j

aj
0 ∗ daj

1 ∗ daj
2 ∗ ∙ ∙ ∙ ∗ daj

p, (2.8)

where aj
i ∈ A for all 0 ≤ i ≤ p and ∗ is the exterior multiplication in Λ.
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Proof. Representation (2.8) for p = 0 is true by Λ0 = A. Let us make an inductive
step from p− 1 to p. By part (iv) of Definition 2.8, it suffices to show the existence of the
representation (2.8) for w = a∗dv with a ∈ A and v ∈ Λp−1. By the inductive hypothesis,
v admits the representation in the form

v =
∑

j

aj
1 ∗ daj

2 ∗ daj
2 ∗ ∙ ∙ ∙ ∗ daj

p

where all aj
i ∈ A. Using the associative law, the Leibniz rule and d2 = 0, we obtain

dv =
∑

j

daj
1 ∗ daj

2 ∗ daj
2 ∗ ∙ ∙ ∙ ∗ daj

p,

whence (2.8) follows with ai
0 = a.

The first method of construction a differential calculus on A uses multiple tensor
products ⊗K of A by itself as in the following definition.

Definition 2.10 Given an arbitrary associative unital K-algebra A, define a graded K-
algebra T as follows:

where

T =
⊕

p=0,1,...

T p, where T p =






A, p = 0
A⊗A⊗ ∙ ∙ ∙ ⊗ A︸ ︷︷ ︸

p times ⊗

, p ≥ 1, (2.9)

and the exterior multiplication T p • T q −→ T p+q is defined by

(a0 ⊗ a1 ⊗ ∙ ∙ ∙ ⊗ ap) • (b0 ⊗ b1 ⊗ ∙ ∙ ∙ ⊗ bj) := a0 ⊗ a1 ⊗ ∙ ∙ ∙ ⊗ apb0 ⊗ b1 ⊗ ∙ ∙ ∙ ⊗ bq, (2.10)

for all ai, bj ∈ A.

It is a trivial exercise to check that the multiplication • is well-defined and that T is
indeed a graded associative unital K-algebra with the unity 1T = 1A. The multiplication
• by elements of A = T 0 endows each K-module T p by a structure of A-bimodule.

Note, that the original multiplication in the algebra A coincides with the exterior
multiplication T 0 • T 0 → T 0, and the multiplication ∙ of the elements of A = T0 and
A⊗A = T1 defined in (2.2), coincides with exterior multiplication T 0 • T 1 → T 1.

Define a K-linear map d : T p → T p+1 (p ≥ 0) by a formula

d(a0 ⊗ ∙ ∙ ∙ ⊗ ap) =
p+1∑

i=0

(−1)ia0 ⊗ ∙ ∙ ∙ ⊗ ai−1 ⊗ 1A ⊗ ai ⊗ ∙ ∙ ∙ ⊗ ap, (2.11)

for all ai ∈ A. The next result can obtained by straightforward computation.

Proposition 2.11 For the operator (2.11) we have d2 = 0. In particular, d determines
the following cochain complex of K-modules

0 −→ T 0 d
−→ T 1 d

−→ T 2 −→ . . .

Remark 2.12 The homomorphism ε : K → A defined by ε(k) = k1A evidently satisfies
the property d ◦ ε = 0. Hence we can equip the cochain complex T ∗ by the augmentation
ε. We shall denote this complex with the augmentation ε by T̃ ε.
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Proposition 2.13 The map d defined in (2.11) satisfies the following product rule:

d(u • v) = du • v + (−1)pu • dv (2.12)

for all u ∈ T p and v ∈ T q.

Proof. It suffices to prove (2.12) for u = a0⊗a1⊗∙ ∙ ∙⊗ap ∈ T p and v = b0⊗b1⊗∙ ∙ ∙⊗bq ∈
T q. We have

d(u • v) = d(a0 ⊗ a1 ⊗ ∙ ∙ ∙ ⊗ apb0 ⊗ b1 ⊗ ∙ ∙ ∙ ⊗ bq)

=
p∑

j=0

(−1)ja0 ⊗ ∙ ∙ ∙ ⊗ aj−1 ⊗ 1A ⊗ aj ⊗ ∙ ∙ ∙ ⊗ apb0 ⊗ b1 ⊗ ∙ ∙ ∙ ⊗ bq

+ (−1)p+1a0 ⊗ ∙ ∙ ∙ ⊗ ap−1 ⊗ apb0 ⊗ 1A ⊗ b1 ⊗ ∙ ∙ ∙ ⊗ bq

+
q+1∑

i=2

(−1)p+ia0 ⊗ ∙ ∙ ∙ ⊗ ⊗ap−1 ⊗ apb0 ⊗ b1 ⊗ ∙ ∙ ∙ ⊗ bi−1 ⊗ 1A ⊗ bi ∙ ∙ ∙ ⊗ bq

On the other hand, we have

du • v + (−1)pu • dv

=
p∑

j=0

(−1)ja0 ⊗ ∙ ∙ ∙ ⊗ aj−1 ⊗ 1A ⊗ aj ⊗ ∙ ∙ ∙ ⊗ ap) • (b0 ⊗ b1 ⊗ ∙ ∙ ∙ ⊗ bq)

+(−1)p+1 (a0 ⊗ ∙ ∙ ∙ ⊗ ap ⊗ 1A) • (b0 ⊗ b1 ⊗ ∙ ∙ ∙ ⊗ bq) [term with j = p + 1]

+(−1)p(a0 ⊗ ∙ ∙ ∙ ⊗ ap) • (1A ⊗ b0 ⊗ ∙ ∙ ∙ ⊗ bq) [term with i = 0]

+(−1)p(a0 ⊗ ∙ ∙ ∙ ⊗ ap) • (−1) (b0 ⊗ 1A ⊗ b1 ⊗ ∙ ∙ ∙ ⊗ bq) [term with i = 1]

+ (−1)p (a0 ⊗ ∙ ∙ ∙ ⊗ ap) •
q+1∑

i=2

(−1)ib0 ⊗ ∙ ∙ ∙ ⊗ bi−1 ⊗ 1A ⊗ bi ⊗ ∙ ∙ ∙ ⊗ bq .

Noticing that the terms with j = p + 1 and i = 0 cancel out, we obtain the required
identity.

Now we reduce the graded algebra T introduced above, to obtain a differential calculus
in the sense of Definition 2.8.

Definition 2.14 Set Ω0
A = A = T 0. For all integers p ≥ 0, define inductively Ωp+1

A as
the minimal left A-submodule of T p+1 containing dΩp

A, that is, Ωp+1
A consists of all the

elements of the form (2.7) for some ak ∈ A and vk ∈ Ωp
A.

Clearly, for p = 1 Definition 2.14 is consistent with previous Definition 2.2.

Theorem 2.15 For all p, q ≥ 0

u ∈ Ωp
A, v ∈ Ωq

A ⇒ u • v ∈ Ωp+q
A . (2.13)

Consequently, the direct sum ΩA =
⊕

p=0,1,... Ω
p
A, with the multiplication • and with dif-

ferential d is a differential calculus on A.
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Applying (2.13) with q = 0, we obtain that Ωp
A is also a right A-module, that is, Ωp

A
is an A-bimodule.

Proof. The proof is by induction on p. For p = 0 the statement is trivial, as by
definition Ωq

A is a left A-module. Let us make an inductive step from p−1 to p. It suffices
to prove that u • v ∈ Ωp+q

A for u = a • db where a ∈ A and b ∈ Ωp−1
A . We have by the

associative law and by the Leibniz rule

u • v = (a • db) • v = a • ((db) • v)

= a • [d (b • v) + (−1)p b • dv]

= a • d (b • v) + (−1)p (a • b) • dv.

By the inductive hypothesis we have b • v ∈ Ωp+q−1
A whence d (b • v) ∈ Ωp+q

A and a •
d (b • v) ∈ Ωp+q

A . Also, we have a • b ∈ Ωp−1
A and dv ∈ Ωq+1

A , whence by the inductive
hypothesis (a • b) • dv ∈ Ωp+q

A . It follows that u • v ∈ Ωp+q
A .

Finally, (ΩA, d) satisfies all the conditions of Definition 2.8 by Propositions 2.11, 2.13,
Definition 2.14 and by (2.13). Hence, (ΩA, d) is a differential calculus on A.

Now let us describe a different construction of the differential calculus on A that is
based on the first order differential calculus Ω1

A from Definition 2.2. Define for each p ≥ 0
a A-bimodule Ω̃p

A by

Ω̃0
A = A and Ω̃p

A = Ω1
A ⊗A Ω1

A ⊗A ... ⊗A Ω1
A︸ ︷︷ ︸

p factors

for p ≥ 1. (2.14)

In particular, Ω̃1
A = Ω1

A. Clearly, each Ω̃p
A is also a K-module. Define the following

multiplication ? between the elements u ∈ Ω̃p
A and v ∈ Ω̃q

A:

u ? v =

{
u ∙ v, if p = 0 or q = 0
u ⊗A v, if p, q ≥ 1,

(2.15)

where ∙ denotes the multiplication in Ω̃k
A by the elements of A that comes from the A-

bimodule structure of Ω̃k
A. Clearly, multiplication ? is associative, has a unity 1A, and

makes the direct sum
Ω̃A =

⊕

p=0,1,...

Ω̃p
A

into a graded K-algebra. It turns out that the graded algebras Ω̃A and ΩA (cf. Definition
2.14) are isomorphic as is stated below.

Theorem 2.16 (i) There exists a unique isomorphism f : Ω̃A → ΩA of graded K-algebras
given by A-bimodule isomorphisms

fp : Ω̃p
A → Ωp

A, p ≥ 0,

where f0 : A → A and f1 : Ω1
A → Ω̃1

A are identical maps.
(ii) Define an operator d̃ : Ω̃p

A → Ω̃p+1
A to make the following diagram commutative:

Ω̃p
A

d̃
−→ Ω̃p+1

A
↓fp ↓fp+1

Ωp
A

d
−→ Ωp+1

A

(2.16)

Then (Ω̃A, d̃) is a differential calculus that is isomorphic to (ΩA, d).
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Clearly, the operators d and d̃ on A are the same. As in the proof of Lemma 2.9 we
obtain that any element of Ω̃p

A can be represented as a finite sum of the terms a0 ? d̃a1 ?

... ? d̃ap, and the following identity holds:

d̃
(
a0 ? d̃a1 ? ... ? d̃ap

)
= d̃a0 ? d̃a1 ? ... ? d̃ap.

Proof. We will use the following property of the tensor product: A⊗A A ∼= A where
∼= stands for a A-bimodule isomorphism given by the mapping [3], [20], [22]

ϕ : A → A⊗A A, ϕ (a) = a ⊗ 1A. (2.17)

In order to construct a necessary mapping f , define first a A-bimodule T̃ p by

T̃ 0 = A, T̃ p = (A⊗A) ⊗A (A⊗A) ⊗A ... ⊗A (A⊗A)
︸ ︷︷ ︸

p factors A⊗A

, p ≥ 1.

Since Ω1
A is a sub-module of A⊗A, it follows that Ω̃p

A is a sub-module of T̃ p.
Recall that Ωp

A is a sub-module of T p where T p was defined by (2.9). Let us show that,
for all p ≥ 0,

T̃ p ∼= T p. (2.18)

For p = 0 and p = 1 it is obvious as

T̃ 0 = A = T 0 and T̃ 1 = A⊗A = T 1.

If (2.18) is already proved for some p ≥ 1 then the statement follows by the associative
law of tensor product and the inductive hypothesis.

Denote by fp the mapping from T̃ p to T p that provides the isomorphism (2.18). For
p = 0, 1 the mappings fp are identity mappings. It follows from (2.17) and properties of
the tensor product that for p ≥ 2 and for

u = (a1 ⊗ b1) ⊗A (a2 ⊗ b2) ⊗A ... ⊗A (ap ⊗ bp) ∈ T̃ p (2.19)

where ai, bi ∈ A, we have

fp (u) = a1 ⊗ b1a2 ⊗ b2a3 ⊗ ... ⊗ bp−1ap ⊗ bp ∈ T p. (2.20)

Set

T̃ =
p⊕

p=0,1,...

T̃ p

and define the exterior multiplication ? in T̃ by (2.15), so that T̃ becomes a graded K-
algebra. Set f = ⊕p≥0fp and show that the mapping f : T̃ → T is an isomorphism of the
graded algebras T̃ and T (cf. Definition 2.10). It suffices to verify that

f (u ? v) = f (u) • f (v) (2.21)

for all u, v ∈ T̃ . Let u ∈ T̃ p and v ∈ T̃ q. If p = 0, that is, u ∈ A, then u ? v = u ∙ v and

f (u ? v) = f (u ∙ v) = u ∙ f (v) = f (u) • f (v) .

10



The same argument works for q = 0. For p = 1 it suffices to prove Assume now that p ≥ 1
and q ≥ 1. It suffices to verify (2.21) for u as in (2.19) and for

v = (α1 ⊗ β1) ⊗A (α2 ⊗ β2) ⊗A ∙ ∙ ∙ ⊗A
(
αq ⊗ βq

)

where αj , βj ∈ A. Then by (2.15) and (2.20)

f (u ? v) = a1 ⊗ b1a2 ⊗ ... ⊗ bp−1ap ⊗ bpα1 ⊗ β1α2 ⊗ ... ⊗ βq

whereas by (2.10)

f (u) • f (v) = (a1 ⊗ b1a2 ⊗ ... ⊗ bp−1ap ⊗ bp) •
(
α1 ⊗ β1α2 ⊗ ... ⊗ βq−1αq ⊗ βq

)

= a1 ⊗ b1a2 ⊗ ... ⊗ bp−1ap ⊗ bpα1 ⊗ β1α2 ⊗ ... ⊗ βq,

which proves (2.21).
Let us prove that the restriction of f to Ω̃A provides an isomorphism of the graded

algebras Ω̃A and ΩA, that is,
f(Ω̃p

A) = Ωp
A.

For p = 0, 1 it is clear. Assume p ≥ 2. By Lemma 2.9 any element of Ωp
A can be written

as a finite sum of the terms
w = v1 • v2 • ∙ ∙ ∙ • vp

where vi ∈ Ω1
A. For the element

v := v1 ? v2 ? ... ? vp ∈ Ω̃p
A

we have by (2.21) and f |Ω1
A

= id

f (v) = f (v1) • f (v2) • ... • f (vp) = v1 • v2 • ∙ ∙ ∙ • vp = w,

which implies the inclusion
f(Ω̃p

A) ⊃ Ωp
A.

Let us prove the opposite inclusion. By definition (2.14) of Ω̃p
A, any element of Ω̃p

A is a
finite sum of the terms v = v1 ? v2 ? ... ? vp, where vi ∈ Ω1

A. As above we have

f (v) = v1 • v2 • ... • vp (2.22)

that belongs to Ωp
A by Theorem 2.15, whence f(Ω̃p

A) ⊂ Ωp
A. The last argument proves also

the uniqueness of the isomorphism of the graded algebras Ω̃A and ΩA. Indeed, since f0

and f1 must be the identical maps, they are uniquely determined, and the uniqueness of
fp follows from (2.22).

Finally, the claim (ii) is a trivial consequence of (i) .

Theorem 2.17 The differential calculus (ΩA, d) ∼= (Ω̃A, d̃) has the following universal
property. For any other differential calculus (Λ, d′) over A, there exists one and only one
epimorphism p : ΩA → Λ of graded A-algebras given by

p =
⊕

k

pk, pk : Ωk
A → Λk

with p0 = id and such that, for all k ≥ 0, the following diagram is commutative:

Ωk
A

d
−→ Ωk+1

A
↓pk ↓pk+1

Λk d′
−→ Λk+1

11



Proof. Denote by ∗ the exterior multiplication in Λ. By Lemma 2.9 any element
w ∈ Λk with k ≥ 1 can be written as a finite sum

w =
∑

j

aj
0 ∗ daj

1 ∗ daj
2 ∗ ∙ ∙ ∙ ∗ daj

k (2.23)

where aj
l ∈ A for all 0 ≤ l ≤ k. Consider a graded algebra

Λ̃ =
⊕

k=0,1,...

Λ̃k,

where Λ̃k for k ≤ 1 is defined by

Λ̃0 = A, Λ̃1 = Λ1, Λ̃k = Λ̃1 ⊗A ∙ ∙ ∙ ⊗A Λ̃1

︸ ︷︷ ︸
k factors

for k ≥ 2.

The exterior multiplication ? in Λ̃ is defined as in (2.15). The condition (2.23) implies
that the maps p0 and p1 induce an epimorphism q : Λ̃ −→ Λ of the graded algebras, where

q =
∞⊕

k=0

qk and qk : Λ̃k −→ Λk are defined as follows: q0 and q1 are the identity mappings,

while for k ≥ 2 the mapping qk is defined by

qk(w1 ? w2 ? ∙ ∙ ∙ ? wk) = q1(w1) ∗ q1(w2) ∗ ∙ ∙ ∙ ∗ q1(wk) ∈ Λk

for all wi ∈ Λ̃1. Let f0 = Id. By Theorems 2.4 and 2.16 we have a unique epimorphism
f1 = p of A-bimodules making the following diagram commutative:

A
d̃

−→ Ω̃1
A

↓f0 ↓f1

A
d′
−→ Λ̃1

(2.24)

The diagram (2.24) induces an epimorphism f : Ω̃A → Λ̃ of graded algebras given by

f =
∞⊕

k=0

fk, where for k ≥ 2 the mapping

fk : Ω̃1
A ? ∙ ∙ ∙ ? Ω̃1

A︸ ︷︷ ︸
k factors

−→ Λ̃1 ? ∙ ∙ ∙ ? Λ̃1
︸ ︷︷ ︸

k factors

is defined by
fk(w1 ? ∙ ∙ ∙ ? wk) = f1(w1) ? ∙ ∙ ∙ ? f1(wk) ∈ Λ̃k

for all wi ∈ Ω̃1
A.Thus, we obtain an epimorphism p : Ω̃A −→ Λ of graded algebras defined

by
p =

⊕

k=0,1,...

pk =
⊕

k=0,1,...

qk ◦ fk :

such that p0 = Id and p1 = p.
To finish the proof of the theorem we must check the commutativity of the diagram

Ωk
A

d
−→ Ωk+1

A
↓pk ↓pk+1

Λk d′
−→ Λk+1

(2.25)

12



for all k ≥ 0. By Theorem 2.16 we can identify in the first line of (2.25) the graded
algebra ΩA with Ω̃A and d with d̃. Let us prove by induction in k that this diagram is
commutative. For k = 0 this is true by Theorem 2.4. Inductive step from k − 1 to k
assuming k ≥ 1. It suffices to check the commutativity of (2.25) only on the elements
w ∈ Ωk

A of the form w = a • dv, where a ∈ A and v ∈ Ωk−1
A . Since p is a homomorphism

of graded algebras, the inductive hypothesis and d′2 = 0, we obtain

d′pk(a • dv) = d′(a ? pk(dv)) = d′(a ? d′pk−1(v)) = d′a ? d′pk−1(v).

On the other side, using the Leibniz rule and the inductive hypothesis, we obtain

pk+1d(a • dv) = pk+1 (da • dv) = p1 (da) ? pk (dv) = d′a ? d′pk−1(v).

The comparison of the above two lines proves that the diagram (2.25) is commutative.

Corollary 2.18 Under the hypotheses of Theorem 2.17, there exists a two-sided graded
ideal

J =
⊕

l=1,2,...

J l, Jl ⊂ ΩA

of the graded algebra ΩA such that

Λk = Ωk
A

/
J k , ΩAJΩA ⊆ J , dJ k ⊂ J k+1 for all k ≥ 0, and J 0 = {0}. (2.26)

Furthermore, the following diagram is commutative:

0 −→ 0 −→ 0 −→ 0 −→ . . .
↓ ↓ ↓

0 −→ 0 −→ J 1 d
−→ J 2 d

−→ . . .
↓ ↓ ↓

0 −→ Ω0
A

d
−→ Ω1

A
d

−→ Ω2
A

d
−→ . . .

↓p0 ↓p1 ↓p2

0 −→ Λ0 d′
−→ Λ1 d′

−→ Λ2 d′
−→ . . .

↓ ↓ ↓
0 −→ 0 −→ 0 −→ 0 −→ . . .

(2.27)

where the mappings J k → Ωk
A are the identical inclusions. In diagram (2.27) the rows are

chain complexes of K-modules, and the columns are exact sequences of K-modules.

Proof. Indeed, define J k = Ker{pk : Ωk
A → Λk}.

Definition 2.19 The differential calculus (ΩA, d) is called the universal differential cal-
culus on the algebra A.

Proposition 2.20 Let (ΩA, d) be the universal differential calculus on the algebra A and
J ⊂ ΩA be a graded ideal, that satisfies the property dJ ⊂ J . Denote by dJ the map
of degree one ΩA/J → ΩA/J that is induced by d. Then (ΩA/J , dJ ) is a differential
calculus on the algebra A.

Proof. It is easy to check that d2
J = 0 and dJ satisfies the Leibniz rule.

13



Corollary 2.21 Under assumptions of Corollary 2.18, we have the following cohomology
long exact sequence:

0 −→ H0(ΩA) −→ H0(Λ) −→ H1(J ) −→ H1(ΩA) −→ H1(Λ) −→ . . .

Proof. This follows from the commutative diagram (2.27) by means of the standard
homology algebra [22].

Now we describe properties of quotient calculi that we need for constructing the func-
torial homology theory of digraphs.

Theorem 2.22 Let Ep ⊂ Ωp
A be a K-linear subspace for all p ≥ 1, such that E =

∞⊕

k=0

Ep is

a graded ideal of the exterior algebra ΩA. Consider a subspace

J =
⊕

p≥1

J p ⊂ ΩA =
⊕

p≥0

Ωp
A, where J p =

{
Ep, for p = 1
Ep + dEp−1, for p ≥ 2.

Then J ⊂ ΩA is a graded ideal of algebra ΩA such that dJ ⊂ J . In particular, the
inclusion J −→ ΩA is a morphism of cochain complexes.

Proof. Any element w ∈ J p can be represented in the form

w = w1 + w2 (2.28)

where w1 ∈ Ep and w2 = d(v), v ∈ Ep−1. For x ∈ Ωi
A, y ∈ Ωj

A we have

xwy = xw1y + xw2y = xw1y + x (dv) y.

The element xw1y lies in E , since by our assumption E is an ideal. Now, using the Leibniz
rule, we have

d(xvy) = (dx) vy + (−1)ixd(vy) = (dx) vy + (−1)ix (dv) y + (−1)i(−1)p−1xv (dy) ,

and hence

x(dv)y = (−1)i[d(xvy) − (dx)vy + (−1)i+pxv(dy)]

= (−1)id(xvy) + (−1)i+1(dx)vy + (−1)pxv(dy).

In the last sum (−1)id(xvy) ∈ dΩi+j+p−1 and two others element lie in Ωi+j+p, since E is
an ideal. Thus we proved that J is an ideal. For an element w with decomposition (2.28)
we have

dw = dw1 + dw2 = dw1 + d (dv) = dw1 ∈ dEp ∈ J p+1,

which finishes the proof.
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Corollary 2.23 Under assumptions of Theorem 2.22 we have a commutative diagram of
cochain complexes

0 −→ 0 −→ 0 −→ 0 −→ . . .
↓ ↓ ↓

0 −→ 0 −→ J 1 d
−→ J 2 d

−→ . . .
↓ ↓ ↓

0 −→ Ω0
A

d
−→ Ω1

A
d

−→ Ω2
A

d
−→ . . .

↓ ↓ ↓

0 −→ Ω0
A

d′
−→ Ω1

A/J 1 d′
−→ Ω2

A/J 2 d′
−→ . . .

↓ ↓ ↓
0 −→ 0 −→ 0 −→ 0 −→ . . .

(2.29)

where the columns are exact sequences of K-modules and the differentials d′ are induced
by d. Commutative diagram (2.29) induces a cohomology long exact sequence

0 −→ H0(ΩA) −→ H0(ΩA/J ) −→ H1(J ) −→ H1(ΩA) −→ H1(ΩA/J ) −→ . . .

Corollary 2.24 Let for any p ≥ 1, Ep ⊂ Fp be K-linear subspaces of Ωp
A such that

E =
∞
⊕

p=1
Ep and F =

∞
⊕

p=1
Fp are graded ideals of the exterior algebra ΩA. Define J p and Ip

by

J p =

{
Ep, for p = 1
Ep + d

(
Ep−1

)
, for p ≥ 2

, Ip =

{
Fp, for p = 1
Fp + d

(
Fp−1

)
, for p ≥ 2,

,

and set J =
∞
⊕

p=1
J p, I =

∞
⊕

p=1
Ip. Then J p ⊂ Ip ⊂ Ωp

A , which induces inclusions of cochain

complexes
J −→ I −→ ΩA. (2.30)

Proof. The inclusions J p ⊂ Ip ⊂ Ωp
A commute with differentials.

Corollary 2.25 Under assumptions of Corollary 2.24 we have the following short exact
sequence of cochain complexes of K-modules

0 −→ I/J −→ ΩA/J −→ ΩA/I −→ 0 (2.31)

which can be written in the form of a commutative diagram of K-modules

0 −→ 0 −→ 0 −→ 0 −→ . . .
↓ ↓ ↓

0 −→ 0 −→ I1/J 1 −→ I2/J 2 −→ . . .
↓ ↓ ↓

0 −→ Ω0
A −→ Ω1

A/J 1 −→ Ω2
A/J 2 −→ . . .

↓ ↓ ↓
0 −→ Ω0

A −→ Ω1
A/I1 −→ Ω2

A/I2 −→ . . .
↓ ↓ ↓

0 −→ 0 −→ 0 −→ 0 −→ . . .

(2.32)
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In (2.32) all columns are exact and rows are cochain complexes. All the differentials in
(2.32) are induced by the differential d. The diagram (2.32) induces a cohomology long
exact sequence

0 −→ H0(ΩA/J ) −→ H0(ΩA/I) −→ H1(I/J ) −→ H1(ΩA/J ) −→ . . .

Proof. The proof is standard, see [20, III, §1] and [22].

Now we discuss functorial properties of differential calculi (see, for example, [3], [20],
[22]). Consider a category ALG in which objects are associative unital K-algebras and
morphisms are homomorphisms of K-algebras.

Definition 2.26 Define a category DC of differential calculi by the following way. An
object of DC is a differential calculus (ΛA, dA) on a unital associative algebra A (see
Definition 2.8). A morphism λ : (ΛA, dA) −→ (ΛB, dB) in the category DC is given by a
degree preserving morphism of graded algebras

λ =
⊕

i=0,1,...

λi : ΛA → ΛB, where λi : Λi
A → Λi

B, i ≥ 0,

and λ0 : A −→ B is a morphism in the category ALG, and the maps λi (i ≥ 0) are
homomorphisms of K-modules which commutes with the differentials.

Let A and B be unital associative algebras over a commutative unital ring K and
g : A → B be a homomorphism. Now we would like to define an induced by g morphism

λ =
⊕

0,1,...

λi = U(g) : (ΩA, dA) −→ (ΩB, dB)

of the universal differential calculus (ΩA, dA) to the universal differential calculus (ΩB, dB).
Let TA, TB be graded algebras defined by algebras A, and B as in Definition 2.10. Let

φk : T k
A → T k

B , k ≥ 0,

be a homomorphism of K-modules (see [3, II, §3.2]) defined by

φk(a0 ⊗ a1 ⊗ ∙ ∙ ∙ ⊗ ak) = g(a0) ⊗ g(a1) ⊗ ∙ ∙ ∙ ⊗ g(ak).

Denote by

φ =
∞
⊕

k=0
φk : TA =

∞
⊕

k=0
T k
A −→ TB =

∞
⊕

k=0
T k
B

a graded homomorphism of graded K-modules. The map φ is a degree preserving homo-
morphism of graded algebras, since

φk+l[(a0 ⊗ a1 ⊗ ∙ ∙ ∙ ⊗ ak) • (b0 ⊗ b1 ⊗ ∙ ∙ ∙ ⊗ bl)]

= g(a0) ⊗ g(a1) ⊗ ∙ ∙ ∙ ⊗ g(akb0) ⊗ g(b1) ⊗ ∙ ∙ ∙ ⊗ g(bl)

= g(a0) ⊗ g(a1) ⊗ ∙ ∙ ∙ ⊗ g(ak)g(b0) ⊗ g(b1) ⊗ ∙ ∙ ∙ ⊗ g(bl)

= φk(a0 ⊗ a1 ⊗ ∙ ∙ ∙ ⊗ ak) • φl(b0 ⊗ b1 ⊗ ∙ ∙ ∙ ⊗ bl .

The maps φk commutes with differentials, since g(1A) = 1B.

Let λi (i ≥ 0) be the restriction λi = φi|Ωi
A

: Ωi
A −→ T i

B, and set λ =
∞
⊕
i=0

λi.
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Proposition 2.27 The homomorphism of K-modules λk is a morphism of differential
calculi (ΩA, dA) −→ (ΩB, dB).

Proof. We must check only that λk(Ωk
A) ⊂ Ωk

B. This follows from the fact that φk

commutes with the differentials and from the inductive definition of Ωk
A, Ωk

B as in Definition
2.14.

Theorem 2.28 We can assign to any associative unital K-algebra A a universal differ-
ential calculus U(A) = (ΩA, dA) and to homomorphism g : A → B of such algebras a
morphism λ = U(g) : (ΩA, dA) −→ (ΩB, dB) of the universal differential calculi. Thus, U
is a functor from the category of associative unital K-algebras to the category of differential
calculi.

Proof. Trivial checking.

Theorem 2.29 Let (Ω, d) be a differential calculus on an algebra A with an exterior
multiplication •. The multiplication • induces a well-defined associative multiplication

Hp(Ω) • Hq(Ω) −→ Hp+q(Ω).

Proof. Let w, v ∈ Ω and dw = 0, dv = 0. Then d(wv) = 0 by Leibniz rule. Now, let
w1 = w + dx, v1 = v + dy, where dw = 0 and dv = 0. Then we have

w1 • v1 = (w + dx) • (v + dy) = w • v + w • dy + (dx) • v + (dx) • (dy) =

= w • v + d(±w • y) + d(x • v) + d(x • d(y))

where we have used the Leibniz rule and d(x • dy) = (dx) • (dy).

Corollary 2.30 A homomorphism g : A → B of K-algebras induces a homomorphism of
cohomology rings H∗(ΩA) → H∗(ΩB). This correspondence is functorial.

3 Differential calculus on finite sets

From now on let K be a field. We apply the general constructions of the previous sections to
the algebra A of functions V → K defined on a finite set V = {0, 1, . . . , n}. In construction
of differential calculus on A we follow [7] and [8]. The we describe functorial properties of
the calculus in the form which will be helpful in the next sections.

The algebra A has a K-basis

ei : V → K, i = 0, 1, . . . , n, where ei(j) = δj
i :=

{
1K, i = j
0, i 6= j

, 0 ≤ i, j ≤ n,

and the following relations are satisfied:

eiej = δj
i e

j ,
n∑

i=0

ei = 1A (3.1)

Denote by (Ω1
V , d) the first order differential calculus (Ω1

A, d) defined in Section 2 with
the exterior multiplication •.
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Theorem 3.1 [8] The K-module Ω1
V has a basis

{
ei ⊗ ej

}
where 0 ≤ i, j ≤ n, i 6= j. The

differential d : A → Ω1
V on the basic elements ei of A is given by the formula

dei =
∑

0≤j≤n, j 6=i

(ej ⊗ ei − ei ⊗ ej). (3.2)

Also, the following identity is satisfied:

ei • dej =

{
ei ⊗ ej , i 6= j
−
∑

k 6=i ei ⊗ ek, i = j
(3.3)

Proof. For 0 ≤ i, j ≤ n, we have by (2.4)

μ(ei ⊗ ej) = eiej = δi
j .

Hence ei ⊗ ej ∈ Ω1
V for i 6= j and ei ⊗ ei /∈ Ω1

V for 0 ≤ i ≤ n. The finite dimensional
K-module A⊗A has basis

{
ei ⊗ ej

}
for 0 ≤ i, j ≤ n (see [3, II §7.7 Remark]), whence the

first statement follows.
The identities (3.2) and (3.3) are proved by direct computation using the definition of

d and relations (3.1).

Let Ωk
V = Ωk

A ⊂ T k
A (k ≥ 0), and ΩV = ΩA be the graded algebra defined in Section

2 with the multiplication •. Let us introduce the following notation:

ei0...ik := ei0 ⊗ ei1 ⊗ ei2 ⊗ ∙ ∙ ∙ ⊗ eik

assuming that im 6= im+1 for all 0 ≤ m ≤ k − 1. Clearly, ei0...ik are the elements of Ωk
V .

Theorem 3.2 [8] (i) The elements
{
ei0...ik

}
form a K-basis in Ωk

V .
(ii) The exterior multiplication • of the basic elements is given by the following formula

ei0...ik • ej0...jl =

{
0, ik 6= j0

ei0...ikj1...jl , ik = j0.

(iii) The differential d is given on the basic elements by

dei0...ik =
k+1∑

m=0

∑

j 6=im−1,im

(−1)m ei0...im−1jim...ik .

Proof. (i) The elements ei0...ik with im 6= im+1 for all 0 ≤ m ≤ k − 1 are linearly
independent in the K-module T k (see [3, II §7.7 Remark]). We must only prove that such
elements lie in Ωk

V ⊂ T k. By Theorem 2.16 we have an isomorphism of graded algebras
f : Ω̃A → ΩV = ΩA with an isomorphism of K-modules

fk : Ω̃k
A → Ωk

V , k ≥ 0,

which is the identity isomorphism for k = 0, 1. Hence the statement (i) is true for k = 0, 1
by the definition of A and by Theorem 3.1. For k ≥ 2, consider an element w = ei0...ik ∈ T k

with im 6= im+1 for all 0 ≤ m ≤ k − 1. Then the elements ei0i1 , ei1i2 , . . . , eik−1ik lie in Ω̃1
A

and hence their ?-product

ω = ei0i1 ? ei1i2 ? ∙ ∙ ∙ ? eik−1ik
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is contained in Ω̃k
A, and, hence, fk(ω) ∈ Ωk

V . By the definition of fk we have

fk

(
ei0i1 ? ei1i2 ? ∙ ∙ ∙ ? eik−1ik

)
= f1

(
ei0i1

)
• f1

(
ei1i2

)
• ∙ ∙ ∙ • f1

(
eik−1ik

)

= f1

(
ei0 ⊗ ei1) • f1(e

i1 ⊗ ei2) • ... • f1(e
ik−1 ⊗ eik

)

= ei0 ⊗ (ei1ei1) ⊗ ...
(
eik−1eik−1

)
⊗ eik

= ei0...ik

so that fk (ω) ∈ Ωk
V .

(ii) This follows from the definition of multiplication • in Definition 2.10 and (3.1).
(iii) We prove this by induction on k. For k = 0 it is proved in Theorem 3.1. For

k = 1, let i 6= j. We have using (3.1)

d
(
ei ⊗ ej

)
= 1A ⊗ ei ⊗ ej − ei ⊗ 1A ⊗ ej + ei ⊗ ej ⊗ 1A

=
∑

k

(ek ⊗ ei ⊗ ej − ei ⊗ ek ⊗ ej + ei ⊗ ej ⊗ ek)

= (ei ⊗ ei ⊗ ej − ei ⊗ ei ⊗ ej − ei ⊗ ej ⊗ ej + ei ⊗ ej ⊗ ej)

+
∑

k 6=i

ek ⊗ ei ⊗ ej −
∑

k 6=i,k 6=j

ei ⊗ ek ⊗ ej +
∑

k 6=j

ei ⊗ ej ⊗ ek

The sum in the brackets is equal to zero, and we obtain the result for k = 1. For k ≥ 2
we have, using the Leibniz rule,

d
(
ei0 ⊗ ei1 ⊗ ∙ ∙ ∙ ⊗ eik

)

= d
(
(ei0 ⊗ ei1) • (ei1 ⊗ ei2 ⊗ ∙ ∙ ∙ ⊗ eik)

)

= (ei0 ⊗ ei1) • (ei1 ⊗ ei2 ⊗ ∙ ∙ ∙ ⊗ eik) − (ei0 ⊗ ei1) • d(ei1 ⊗ ei2 ⊗ ∙ ∙ ∙ ⊗ eik)

The result then follows by the inductive hypotheses and elementary transformations.

We have the augmentation homomorphism ε : K→ A = Ω0
V that is induced by

ε(1K) = 1A =
n∑

i=0

ei ∈ A.

Since dε : K→ Ω1
V is trivial, we can consider a cochain complex Ωε

V with the augmentation
ε

0 −→ K
ε

−→ Ω0
V −→ Ω1

V −→ . . . −→ Ωn
V −→ . . . (3.4)

Proposition 3.3 The cohomology group H0(Ωε
V ) of the complex (3.4) is trivial.

Proof. Let w ∈ Ω0
V be such that dw = 0. The element w can be written in the form

w =
∑n

i=0 fie
i where fi ∈ K. By Theorem 3.1 we have

dw =
∑

i

fi




∑

{k: k 6=i}

(
ek ⊗ ei − ei ⊗ ek

)


 =
∑

{k,i: k 6=i}

(fi − fk)e
k ⊗ ei.

Since for i 6= k, ei ⊗ ek are the basic elements, the last sum is trivial if and only if fi = fk

for all i, k. Then we obtain w = f0

(∑n
i=0 ei

)
= f0ε(1) = ε(f0), that is, w belongs to the

image of ε.
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Let SET be a category in which objects are finite sets and morphisms are the maps of
finite sets. Let V and W be finite sets, and A(V ) = AV , A(W ) = AW be algebras of K-
valued functions respectively. For any map F : V → W define an induced homomorphism
of algebras

A(F ) = F ∗ : AW → AV by F ∗(f) = f ◦ F, f ∈ AW , f ◦ F ∈ AV .

We formulate the next Proposition and Corollary, the proofs of which are standard,
for conveniences of references.

Proposition 3.4 The map A is a contravariant functor from the category SET to the
category ALG of associative unital algebras.

Corollary 3.5 For a finite set V , let U(AV ) = (ΩV , d) be the universal differential cal-
culus (ΩV , d) on algebra AV of K-valued functions on V . Let us assign to any map
F : V → W of finite sets a morphism

U(A(F )) = U(F ∗) : (ΩW , d) → (ΩV , d)

where F ∗ is defined above. The composition U ◦ A defines a contravariant functor from
the category SET to the category DC of differential calculi.

Now let F : V → W be a identical inclusion of a set V = {0, 1, . . . , k} into a set
W = {0, 1, . . . , n} where k < n. As before, let A and B be the algebras of K-valued
functions on V and W , respectively. Define a K-linear subspace J of ΩW by

J = ⊕m≥0J
m where J 0 = span{ek+1, . . . , en} ⊂ Ω0

W = B

and for m ≥ 1, a subspace Jm of Ωm
W is generated by the elements ei0...im such that the

set {i0, i1, . . . , im} contains at least one number from the set {k + 1, k + 2, . . . , n}.

Proposition 3.6 (i) The subspace J ⊂ ΩW is an graded ideal in the graded algebra ΩW

such that
dJ m ⊂ J m+1 for all m ≥ 0.

Thus, the restriction of the differential d to J induces a cochain complex

0 −→ J 0 −→ J 1 −→ J 2 −→ . . .

of K-modules such that the natural inclusion J −→ ΩW is a morphism of cochain com-
plexes.

(ii) The factor algebra ΩW /J endowed with the induced differential is a differential
calculus which is isomorphic to the differential calculus ΩV .

Proof. (i) Let ei0...ip ∈ J p, ej0...jq ∈ Ωq
V , el0...lr ∈ Ωr

W . Then by Theorem 3.2 the
product ej0...jq • ei0...ip • el0...lr lies in J p+q+r. The condition dJ m ⊂ J m+1 is satisfied by
definition of J and Theorem 3.2.

(ii) Any element [w] ∈ Ωp
W /J p has a unique representative w =

∑
wi0...ipe

i0...ip where
wi0...ip ∈ K and the sum goes over indices ij ∈ {1, . . . , k} for 0 ≤ j ≤ p. Define a map
sp : Ωp

W /J p → Ωp
V by sp[w] = w and set

s =
⊕

p

sp : ΩW /J → ΩV .
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Then the map s is a well-defined homomorphism of graded algebras that commutes with
differential. It is easy to see that it an epimorphism with a trivial kernel. Hence it is an
isomorphism.

Remark 3.7 The composition

ΩW −→ ΩW /J
s

−→ ΩV ,

where the first map is a natural projection, coincides with the morphism of U(A(F )) from
Corollary 3.5 for the inclusion F : V → W .

Corollary 3.8 Under the hypotheses of Proposition 3.6 we have a cohomology long exact
sequence

0 −→ H0(J ) −→ H0(ΩW ) −→ H0(ΩV ) −→ H1(J ) −→ . . .

Theorem 3.9 For any finite set V the cohomology group Hp(ΩV ) is trivial for p ≥ 1.

Proof. Follows from Theorem 5.4 in [13].

Corollary 3.10 Under assumptions of Proposition 3.6, Hp(J ) = 0 for p ≥ 0.

4 Cohomology of digraphs

In this section we define a cohomology of any finite simple digraph and describe its prop-
erties. From intuitive point of view the rank of k-dimensional cohomology group of a
digraph G correspond to “the number of k + 1-dimensional holes in G”, but sometimes
our intuition is not adequate as we can see from Example 4.8 v) in this section.

Let us briefly recall the construction in [13] of n-chains leading to the notion of a chain
complex of a digraph. Let K be a fixed commutative ring with a unity 1, and G be a
digraph with the finite set V of vertices. An elementary p-path on V is any (ordered)
sequence i0, ..., ip of p + 1 of vertices that will be denoted by ei0...ip . Consider the free
K-module Λp = Λp (V ) which is generated by elementary p-paths ei0...ip , whose elements
are called p-paths; and define the boundary operator ∂ : Λp+1 → Λp on basic elements by

∂ei0...ip =
p∑

q=0

(−1)q ei0...îq ...ip
(p ≥ 1) and ∂ei = 0, (4.1)

where we set Λ−1 = {0}. It follows from the definition that ∂2 = 0. An elementary
p-path ei0...ip is called regular if ik 6= ik+1 for all k and irregular otherwise. Let Ip be the
subspace of Λp that is spanned by all irregular p-paths. The operator ∂ is well defined on
the quotient space

Rp = Rp (V ) = Λp/Ip.

The module Rp is linearly isomorphic to the module generated by regular p-paths:

span
{
ei0...ip : i0...ip is regular

}
.

For simplicity of notation, we will identify Rp with this space, by setting all irregular
p-paths to be equal to 0.
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Now the paths on a digraph G are defined in a natural way. A regular elementary p-path
ei0...ip on the set of vertices V is allowed if ik → ik+1 for any k = 0, ..., p−1, and non-allowed
otherwise. Denote by Ap = Ap (G) the subspace of Rp spanned by the allowed elementary
p-paths, and consider the ∂-invariant subspaces Ωp = Ωp (G) = {v ∈ Ap : ∂v ∈ Ap−1}.
Thus, for a digraph G, we obtain a chain complex Ω∗(G) and a dual complex Ω∗ (G), thus
leading to the notions of homology reps. cohomology groups of the digraph. Note that
the main results of [13] are the formulas for homology groups of the join and product of
digraphs.

In this section we construct a cochain complex ΩG that is naturally isomorphic to
Ω∗ (G), investigate its functorial properties, and prove the cohomology realization Theo-
rem 4.22.

All digraphs considered in this section are simple digraphs with a finite set of ver-
tices. Let H = (V,E) be a simple complete digraph consisting of the set of vertices
V = {0, 1, . . . , n} and all directed edges E = {(i → j)| i 6= j}. Let A be the algebra of
K-valued functions on the set V , where K is a commutative unital ring.

Definition 4.1 The differential calculus on a complete finite simple digraph H is the
universal differential calculus (ΩV , d) on the algebra A constructed in Section 3 with the
multiplication • and the differential d that given in Theorem 3.2.

Now let G be a sub-digraph of the digraph H with the same set of vertices V =
{0, 1, 2, . . . , n} and a set EG ⊂ EH of edges. Denote by g : G → H the natural inclusion.

Definition 4.2 (i) A basic element ei0i1...ik ∈ Ωk
V is called allowed if {ij , ij+1} ∈ EG for

all 0 ≤ j ≤ k − 1, and non-allowed otherwise.
(ii) Let Ek

g be a K-submodule of Ωk
V generated by non-allowed elements (in particular,

E0
g = {0}), and set Eg =

⊕
k≥0 E

k
g ⊂ ΩV .

Proposition 4.3 The set Eg is a graded ideal of algebra ΩV .

Proof. The result follows from Theorem 3.2 (ii).

Definition 4.4 Denote by Jg =
⊕

k≥0 J
k
g , where

J k
g =

{
Ek

g , for k = 0, 1,

Ek
g + dEk−1

g , for k ≥ 2,

a K-submodule of Ωk
V .

Proposition 4.5 The set Jg is a graded ideal of algebra ΩV , dJg ⊂ Jg, and the inclusion
Jg −→ ΩV is a morphism of cochain complexes. In particular, we have an exact sequence
of cochain complexes

0 −→ Jg −→ ΩV −→ ΩV /Jg −→ 0.

Proof. Follows from Proposition 4.3 and Theorem 2.22.
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Definition 4.6 Let g : G → H be an inclusion of a digraph G into the simple complete
digraph H with the same set V of vertices.

i) The differential calculus on G is the calculus (ΩG, d) = (ΩV /Jg, d) on the algebra A
with a differential that is induced from differential d on ΩV .

ii) The cohomology H i(G,K) (i = 0, 1, 2, . . . ) of the digraph G with coefficients K is
the cohomology of the cochain complex

0 −→ Ω0
G −→ Ω1

G −→ Ω2
G −→ . . . −→ Ωn

G −→ . . .

where Ω0
G = Ω0

V = A.

Note, that there is also a cochain complex with the augmentation ε

0 −→ K −→ Ω0
G −→ Ω1

G −→ Ω2
G −→ . . . −→ Ωn

G −→ . . .

Proposition 4.7 Under assumption above, there is a short exact sequence

0 −→ K −→ H0(ΩG) −→ H1(Jg) −→ 0

and there are isomorphisms H i(ΩG) ∼= H i+1(Jg) for i ≥ 1.

Proof. Follows directly from Proposition 4.5, Theorem 3.9, and Proposition 3.3.

Example 4.8 i) For any digraph G, H0(G) = (K)c, where c is the number of connected
components of the digraph G. The proof follows immediately from definition (see also
Section 4.1 of [13]).

ii) Consider the following digraphs:
I = (VI , EI), VI = {0, 1}, EI = {0 → 1};
II = (VII , EII), VII = {0, 1}, EII = {0 → 1, 1 → 0};
T = (VT , ET ), VT = {0, 1, 2}, ET = {0 → 1, 1 → 2, 0 → 2};
S = (VS , ES), VS = {0, 1, 2, 3}, ES = {0 → 1, 1 → 2, 0 → 3, 3 → 2};
R = (VR, ER), VR = {0, 1, 2}, ER = {0 → 1, 1 → 2, 0 → 2, 2 → 0}.
Let G be one of the digraphs from this list. Then H0(G,K) = K and H i(G,K) = 0

for i ≥ 1.

iii) Given a digraph G, the underlying graph of G is the graph with the same vertices
as G, in which (u, v) is an edge whenever at least one of (u → v), (v → u) lies in EG

(cf. page 2 of [16]). Let a digraph G be a tree (that is, the underlying graph is a tree).
Then H0(G,K) = K and H i(G,K) = 0 for i ≥ 1. This statement follows from ii) and by
induction from Theorem 4.17 below (see also [13]).

iv) Define for any n ≥ 5 the digraph Cn = (VCn , ECn) as follows: VCn = {0, 1, . . . , n−1}
and ECn contains exactly one arrow i → i + 1 or i + 1 → i for 0 ≤ i ≤ n − 2 and exactly
one arrow n − 1 → 0 or 0 → n − 1. For n = 3 and n = 4 define Cn as follows.

C3 = (VC3 , EC3), VC3 = {0, 1, 2}, EC3 = {0 → 1, 1 → 2, 2 → 0},
C4 = (VC4 , EC4), VC4 = {0, 1, 2, 3}, EC4 = {0 → 1, 1 → 2, 2 → 3, 3 → 0},
Consider also a digraph
D4 = (VD4 , ED4), VD4 = {0, 1, 2, 3}, ED4 = {0 → 1, 1 → 2, 2 → 3, 0 → 3}.
Let G be one of the digraphs Cn or D4 as above. Then H0(G,K) ∼= H1(G,K) = K

and H i(G,K) = 0 for i ≥ 2 (see [13]).
v) Let G = (VG, EG) be a planar digraph with
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VG = {0, 1, 2, 3, 4}, EG = {0 → 1, 1 → 2, 2 → 0, 0 → 3, 1 → 3, 2 → 3, 0 → 4, 1 → 4, 2 →
4}.

Then H0(G,K) ∼= H2(G,K) = K, H1(G,K) = 0, and H i(G,K) = 0 for i ≥ 3. The
result follows from Theorem 4.21 below (see also [13]).

Consider a commutative diagram

F
s

−→ G
↘f g ↙

H

(4.2)

of inclusions of digraphs F and G into H with the same number of vertices. Let Ef

and Eg be the subspaces generated by non-allowed elements for the inclusions f and g
correspondingly, and Jf ⊂ ΩV , Jg ⊂ ΩV are the graded ideals defined above.

Theorem 4.9 We have the inclusions of the chain complexes

Jg ⊂ Jf ⊂ ΩV ,

which induce a short exact sequence of chain complexes

0 −→ Jf/Jg −→ ΩV /Jg
s∗
−→ ΩV /Jf −→ 0. (4.3)

The cohomology long exact sequence of (4.3) has the following form

0 −→ H0(ΩG) −→ H0(ΩF ) −→ H1(Jf/Jg) −→ H1(ΩG) −→ H1(ΩF ) −→ . . . (4.4)

Proof. Any non-allowed element from Eg is evidently non-allowed in Ef . Now the
result follows from Corollaries 2.24 and 2.25.

Now consider an arbitrary inclusion of digraphs σ : F → G, where F = (VF , EF ) and
G = (VG, EG). Let H1 and H2 be complete simple digraphs with the same number of
vertices as F and G, respectively. Consider a commutative diagram

F
σ

−→ G
↓ f ↓ g

H1
σv−→ H2

(4.5)

where vertical maps are natural inclusions, and σv : H1 → H2 is the inclusion defined by σ.
By Corollary 3.5 and Definition 4.1, the map σv induces a morphism U(σv) : ΩVG

−→ ΩVF
.

Thus by Proposition 4.5 we can write down the following diagram

0 → Jg → ΩVG
→ ΩG → 0

↓ U(σv)
0 → Jf → ΩVF

→ ΩF → 0
(4.6)

where the horizontal rows are exact sequences of cochain complexes.

Lemma 4.10 In diagram (4.6) we have U(Jg) ⊂ Jf ⊂ ΩVF
and hence the induced mor-

phism U(σ) : ΩG −→ ΩF of differential calculus is defined.
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Proof. Let ei0...ik ∈ Ek
g ⊂ Ωk

H2
be a non-allowed element for the digraph G. If all ij for

j = 0, 1, . . . , k are contained in the image of σ|VF
: VF → VG, then U(ei0...ik) = ei0...ik ⊂ Ef

by diagram (4.5) since the map σ is an inclusion. In the opposite case by Proposition 3.6
and Remark 3.7 we obtain U(ei0...ik) = 0. Hence U(Eg) ⊂ Ef . From now the result follows
from the definition of J , since vertical maps in diagram (4.6) are morphisms of cochain
complexes.

Denote by GRI the category in which objects are simple finite digraphs and the mor-
phisms are inclusions.

Theorem 4.11 Let U(G) be a differential calculus (ΩG, d) defined in Definition 4.6, and
for an inclusion σ : F → G of graphs let U(σ) : ΩG −→ ΩF be a morphism of differential
calculi defined in Lemma 4.10. Then U is a contravariant functor from category GRI to
the category DC.

Proof. We must only check that for two inclusions of digraphs

σ : F → G and τ : G → M

we have U(τ ◦ σ) = U(σ) ◦ U(τ). By Lemma 4.10 we have a commutative diagram

0 0 0
↓ ↓ ↓
Jm → Jg → Jf

↓ ↓ ↓

ΩVM

U(τv)
−→ ΩVG

U(σv)
−→ ΩVF

↓ ↓ ↓

ΩM
U(τ)
−→ ΩG

U(σ)
−→ ΩF

↓ ↓ ↓
0 0 0

(4.7)

By Corollary 3.5 we have U(σv) ◦ U(τ v) = U(τ vσv). The commutativity of diagram

Jm −→ Jg

↘ ↙
Jf

follows from Lemma 4.10. This implies the claim, since the vertical columns in (4.7) are
exact sequences.

Remark 4.12 Let s : F → G be an inclusion of digraphs with the same number of ver-
tices. Then U(s) coincides with the morphism s∗ from Theorem 4.9.

Definition 4.13 Let G be a simple digraph with the set of vertices V and the set of
edges EG. Define a simple digraph G with the same set of vertices V and with the set of
inverse-directed edges

EG = {{i, j} : {j, i} ∈ EG} .

Note that the mapping G −→ G is an involution on the set of simple digraphs.
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Theorem 4.14 Let G be a simple digraph. Then we have an isomorphism of cochain
complexes ΩG −→ ΩG which is given on the basic elements by the following map

ei0i1...ip−1ip −→ (−1)keipip−1...i1i0 ,

where k = 1 for p = 1, 2mod 4 and k = 0 for p = 0, 3mod 4.

Proof. Let H be a full simple digraph with the same number of vertices V =
{0, 1, . . . , n} as the digraph G, and g : G → H, g : G → H be the natural inclusions.
Define a K-linear map τ : ΩV −→ ΩV on the basic elements by the following way:

τ
(
ei0i1...ip−1ip

)
= eipip−1...,i1i0 .

The map τ is an anti-automorphism of the graded algebra ΩV since

τ(vw) = τ(w)τ(v), τ (v + w) = τ(v) + τ(w).

We can write down two diagrams

Ω2k+1
V

d
−→ Ω2k+2

V

↓ τ ↓ τ

Ω2k+1
V

d
−→ Ω2k+2

V

,

Ω2k
V

d
−→ Ω2k+1

V

↓ τ ↓ τ

Ω2k
V

d
−→ Ω2k+1

V

.

And it is easy to check, that the first diagram is commutative, that is τd = dτ , and the
second diagram is anti-commutative that is τd = −dτ . Thus, we obtain a commutative
diagram of chain complexes

0 → K −→ Ω0
V

d
−→ Ω1

V
d

−→ Ω2
V

d
−→ Ω3

V → . . .
↓= ↓ τ ↓ −τ ↓ −τ ↓ τ

0 → K −→ Ω0
V

d
−→ Ω1

V
d

−→ Ω2
V

d
−→ Ω3

V → . . .

(4.8)

where all the vertical maps are isomorphisms of K-modules.
Since τ |Eg : Eg → Eg is clearly bijective, Eg = −Eg and Eg = −Eg, the restriction of the

vertical maps in (4.8) to Jg provides isomorphisms J p
g −→ J p

g , whence the result follows.

By a digraph with a pointed vertex we mean a couple (G, v) where G is a digraph and
v is one of its vertices.

Definition 4.15 Let {(Gi, vi)}i∈A be a finite family of digraphs Gi = (Vi, Ei) with pointed
vertices. Assume that all the vertex sets Vi are disjoint. The wedge sum (or bouquet)
(G, v) of the digraphs (Gi, vi) is a digraph with the set V of vertices that is obtained from
the disjoint union U =

⋃
i∈A Vi by identification of all pointed vertices vi, i ∈ A, with one

vertex v, and with the following set of edges E =
⋃

i∈A Ei with the same identification of
the endpoint.

We shall denote the wedge sum by G =
∨

i∈A Gi.

From now we shall consider a wedge sum of two digraphs G = G1
∨

G2, with pointed
vertices v1 ∈ G1, v2 ∈ G2 and v ∈ G. Denote

W1 = V1 \ {v1}, W2 = V2 \ {v2}.
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Let H1, H2, and H be complete simple digraphs with the set of vertices V1, V2, and V ,
respectively. Let

g1 : G1 → H1, g2 : G2 → H2, g : G → H

be natural inclusions. The graded ideals

Eg1 ⊂ ΩV1 , Eg2 ⊂ ΩV2 , Eg ⊂ ΩV

are defined as above as well as the graded ideals

Jg1 ⊂ ΩV1 , Jg2 ⊂ ΩV2 , Jg ⊂ ΩV .

Lemma 4.16 Let G = G1
∨

G2 as above. Let a basic element ei0i1...ip ∈ Ωp
V be such that

the multiindex {i0, i1, . . . , ip} contains at least one vertex ik ∈ W1 and at least one vertex
im ∈ W2. Then ei0i1...ip ∈ Jg.

Proof. Let ei0i1...ip be as in the hypotheses. Consider two cases. If the pointed vertex
v does not belong to the sequence {i0, i1, . . . , ip} then, by definition of the wedge sum,
ei0i1...ip ∈ Eg ⊂ Jg, since it is non-allowed. Now assume that v ∈ {i0, i1, . . . , ip}. In this
case we have necessarily p ≥ 2. For p = 2 the element ei0i1...ip can be written as

ei1vi2 ∈ Ω2
V where i1 ∈ W1, i2 ∈ W2

(or i1 ∈ W2 and i2 ∈ W1). By definition of the wedge sum, ei1i2 ∈ Eg. Hence

dei1i2 =





[
∑

i

eii1i2

]

−




∑

i 6=v

ei1ii2



+

[
∑

i

ei1i2i

]

− ei1vi2



 ∈ Jg.

Here first three summands lie in Eg, whence ei1vi2 ∈ Jg. Now consider the case p ≥ 3.
Then there exists 1 ≤ l ≤ p− 1 such that v = il. Then either il−1 ∈ W1 and il+1 ∈ W2 (or
il−1 ∈ W2 and il+1 ∈ W1). Using the case p = 2 we conclude that eil−1vil+1 ∈ Jg, which
implies ei0i1...ip ∈ Jg since Jg is a two-sided ideal in ΩV .

Theorem 4.17 Let G = G1
∨

G2 where Gi (i = 1, 2) are connected digraphs. Then

H0(ΩG) = K and Hk(ΩG) = Hk(ΩG1) ⊕ Hk(ΩG2) for k ≥ 1.

Proof. Let Vi (i = 1, 2) be the set of vertices of the digraphs Gi, and we recall that
these sets are disjoint. Let V be the set of vertices of the digraph G. Let Hi (i = 1, 2) be
complete simple digraphs with the set of vertices Vi, and H be a complete simple digraph
with the set of vertices V . Let

fi : Hi −→ H, i = 1, 2

be the natural inclusions of complete simple digraphs. Define for any mapping fi the
graded ideal Ji of ΩV as in Proposition 3.6. By definition, J k

1 is a K-linear subspace
of Ωk

V that is generated by the elements ei0i1...ik ∈ Ωk
V such that the set {i0, i1, . . . , ik}

contains at least one vertex from V \ V1. The subspace J k
2 ⊂ Ωk

V is defined similarly.
By Proposition 3.6 the graded ideals Ji (i = 1, 2) of ΩV induce short exact sequences of
K-modules

0 −→ Ji
f̂i−→ ΩV

pi−→ ΩVi −→ 0, (4.9)
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where pi and f̂i are chain maps. Then p = (p1, p2) : ΩV −→ ΩV1 ⊕ ΩV2 is a chain map.
We denote by pk a restriction of p to Ωk

V . In dimension 0, the map p0 is a monomorphism
with a one-dimensional cokernel generated by ev1 ⊕ 0 (or 0⊕ ev2), since p0(ev) = ev1 ⊕ ev2 .
The map p is an epimorphism in dimensions k ≥ 1. Indeed, consider an arbitrary element

ei0i1...ik ⊕ ej0j1...jk ∈ Ωk
V1

⊕ Ωk
V2

.

Set α = {i0i1 . . . ik} and define a new multiindex α′ by the following rule: if α does not
contain the pointed vertex v1 then α′ = α, otherwise α′ is obtained from α by changing
v1 to v. Similarly, using multiindex β = {j0j1 . . . jk} we define a multiindex β′. Then we
have

p1(e
α′

) = ei0i1...ik , p2

(
eβ′
)

= ej0j1...jk

and it is clear that p2(eα′
) = 0, p1(eβ′

) = 0. It follows that

p
(
eα′

+ eβ′
)

= ei0i1...ik ⊕ ej0j1...jk ∈ Ωk
V1

⊕ Ωk
V2

,

which proves that p is an epimorphism in dimensions k ≥ 1.
Observe that J k

12 := J k
1 ∩ J k

2 is a graded ideal in ΩV and Ker p = J12. Note, that
J 0

12 = {0} and we have a short exact sequence

0 −→ Ω0
V

p
−→ Ω0

V1
⊕ Ω0

V2
−→ 〈ev1 ⊕ 0〉 −→ 0. (4.10)

Consider now the case k ≥ 1. In this case we obtain a short exact sequence of chain
complexes

0 −→ J k
12

f̂
−→ Ωk

V
p

−→ Ωk
V1

⊕ Ωk
V2

−→ 0, (4.11)

where f̂ = f̂1|J12 = f̂2|J12 and p are chain maps. Recall, that the ideal J12 is generated
by ei0i1...ik ∈ ΩV such that the set {i0, i1, . . . , ik} contains il ∈ W1 and im ∈ W2.

Let us introduce the following notations:

J ′
12 = ⊕k≥1J

k
12, J ′

g = ⊕k≥1J
k
g , J ′

gi
= ⊕k≥1J

k
gi

, Ω′
V = ⊕k≥1Ω

k
V , Ω′

Vi
= ⊕k≥1Ω

k
Vi

.

Lemma 4.18 Under the above assumptions (k ≥ 1) there is a commutative diagram of
chain complexes

0 −→ J ′
12 −→ J ′

g
q

−→ J ′
g1

⊕ J ′
g2

−→ 0
|| ↓mono ↓mono

0 −→ J ′
12 −→ Ω′

V

p
−→ Ω′

V1
⊕ Ω′

V2
→ 0

(4.12)

where the rows are exact sequences and the two right vertical maps are natural inclusions.

Proof. The bottom exact sequence is the exact sequence (4.11). The inclusion J ′
12 →

J ′
g follows from Lemma 4.16 and we obtain that the left square is commutative. Set

q = p|J ′
g

: J ′
g → Ω′

V1
⊕ Ω′

V2

where we identify J ′
g with a subspace of Ω′

V . It remains to prove that the image of q is
J ′

g1
⊕ J ′

g2
.

Let us first prove that
J ′

g1
⊕ J ′

g2
⊂ q

(
J ′

g

)
(4.13)
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For i = 1, 2 we shall define the grade preserving homomorphisms of K-modules

si : ΩVi −→ ΩV .

For any basic elements eα = ei0...ik ∈ ΩV1 , let α′ be the multiindex that is equal to α if α
does not contain the pointed vertex v1, and otherwise α′ is obtained from α by changing
all occurrences of v1 in α to v. Similarly define eβ′

for eβ = ej0...jk ∈ ΩV2 . Then set
s1(eα) = eα′

and s2(eβ) = eβ′
and extend s1 and s2 by linearity to all the spaces ΩV1 and

ΩV2 , respectively. It follows immediately from this definition, that

s1 (eα) ∈ Eg, if eα ∈ Eg1 and s2

(
eβ
)
∈ Eg, if eβ ∈ Eg2 .

Note, that the maps si do not commutes with the differentials, but they satisfy the fol-
lowing properties:

pisj =

{
Id : Ωk

Vi
→ Ωk

Vi
, i = j

0: Ωk
Vj

→ Ωk
Vi

, i 6= j
(4.14)

and, for eα ∈ Ωk
V1

,

dH(s1(e
α)) = s1(dH1(e

α)) +
∑

γ

fγeγ , where
∑

γ

fγeγ ∈ J k
12 (4.15)

and a similar identity holds for eβ ∈ Ωk
V2

. Let

u = u1 ⊕ u2 ∈ J k
g1

⊕ J k
g2

⊂ Ωk
V1

⊕ Ωk
V2

.

By definition of J k
g1

we have

u1 = w1 + dH1(w
′
1) ∈ J k

g1
⊂ Ωk

V1
where w1, w

′
1 ∈ Eg1 .

Note that s1(w1), s1 (w′
1) ∈ Eg whence it follows that

s1(w1) + dH(s1(w
′
1)) ∈ Jg.

Using by (4.14) and (4.15) we obtain that

p1

(
s1(w1) + dH(s1(w

′
1))
)

= w1 + p1

(
dH(s1(w

′
1))
)

= w1 + p1

(

s1(dH1(w
′
1)) +

∑

γ

fγeγ

)

which equals to w1 + dH1(w
′
1) = u1. Where we have used that
∑

γ

fγeγ ∈ J12 and p(J12) = 0.

By the same line of arguments we obtain

p2

(
s1(w1) + dH(s1(w

′
1))
)

= w1 + p2

(
dH(s1(w

′
1))
)

= 0,

and
p2

(
s2(w2) + dH(s2(w

′
2))
)

= u2, p1

(
s2(w2) + dH(s2(w

′
2))
)

= 0.

Hence,
p(
(
s1(w1) + dH(s1(w

′
1)) + s2(w2) + dH(s2(w

′
2))
)

= u1 ⊕ u2,
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which proves the inclusion (4.13).
Let us prove the opposite inclusion. Any element of Jg has the form w + dw′ where

w = s1 (u1) + s2 (u2) + u3, w′ = s1

(
u′

1

)
+ s2

(
u′

2

)
+ u′

3

where u1, u
′
1 ∈ Eg1 , u2, u

′
2 ∈ Eg2 and u3, u

′
3 ∈ J12. As above we obtain for i = 1, 2

pi

(
w + dw′) = ui + dHiu

′
i ∈ Jgi

which finishes the proof of Lemma.

By Lemma 4.18 we obtain a commutative diagram of chain complexes in which rows
and columns are exact (in dimensions k ≥ 1):

0 0 0
↓ ↓ ↓

0 −→ J12 −→ Jg
q

−→ Jg1 ⊕ Jg2 −→ 0
↓= ↓ ↓

0 −→ J12 −→ ΩV
p

−→ ΩV1 ⊕ ΩV2 −→ 0
↓ ↓ ↓

0 −→ 0 −→ ΩG
∼=−→ ΩG1 ⊕ ΩG2 −→ 0

↓ ↓ ↓
0 0 0

(4.16)

In dimension 0 we have isomorphisms

Ω0
G = Ω0

V , Ω0
G1

= Ω0
V1

, Ω0
G2

= Ω0
V2

and an exact sequence

0 −→ Ω0
V

p
−→ Ω0

V1
⊕ Ω0

V2
−→ 〈ev1 ⊕ 0〉 −→ 0.

Now from (4.16) and the last exact sequence we obtain a commutative diagram

0 −→ 0 −→ 0 −→ 0 −→ . . .
↓ ↓ ↓

0 −→ Ω0
G −→ Ω1

G
d

−→ Ω2
G

d
−→ . . .

↓ ↓= ↓=

0 −→ Ω0
G1

⊕ Ω0
G2

d⊕d
−→ Ω1

G1
⊕ Ω1

G2

d⊕d
−→ Ω2

G1
⊕ Ω2

G2

d⊕d
−→ . . .

↓ ↓ ↓
0 −→ 〈ev1 ⊕ 0〉 −→ 0 −→ 0 −→ . . .

↓ ↓ ↓
0 −→ 0 −→ 0 −→ 0 −→ . . .

(4.17)

where the columns are exact sequences, and the rows are chain complexes. Using the
obvious identity

H∗(ΩG1 ⊕ ΩG2) = H∗(ΩG1) ⊕ H∗(ΩG2)

and the cohomology long exact sequences of (4.17) we finish the proof of the theorem.
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Corollary 4.19 Let G =
∨

i∈A Gi be a finite wedge sum, and all Gi are connected di-
graphs. Then

H0(ΩG) = K and Hm(ΩG) = ⊕i∈AHm(ΩGi) for m ≥ 1.

Proof. Induction on i.

Let G be a digraph with the set of vertices V = {0, 1, . . . , n}.

Definition 4.20 [13] (i) The cone CG of the digraph G is obtained by adding a new
vertex v to the set of vertices V and new edges {i, v} for all 0 ≤ i ≤ n.

(ii) The suspension SG of the digraph G is obtained from the digraph G by adding
two new vertices v and w and new edges {i, v}, {i, w} for all 0 ≤ i ≤ n.

We recall here the following result from [13].

Theorem 4.21 [13] For any digraph G we have

Hp(ΩCG) ∼=

{
K, p = 0
0, p ≥ 1,

, Hp+1(ΩSG) ∼=






K, p = −1
H0(Ωε

G), p = 0
Hp(ΩG), p ≥ 1

where Ωε
G is a cochain complex with the augmentation.

One of the main results of this paper is the following theorem.

Theorem 4.22 For any finite collection of nonnegative integers k0, k1, . . . kn such that
k0 ≥ 1 there exists a digraph G such that the cohomology groups of its differential calculus
satisfies the conditions

dim H i(ΩG) = ki, for all 0 ≤ i ≤ n. (4.18)

In particular, if k0 = 1 then the digraph G is connected.
Proof. At first we construct a connected digraph Gm (m ≥ 1) such that

dim Hp(ΩGm) =

{
1, p = 0,m
0, otherwise.

(4.19)

For m = 1 this is the digraph with the set of vertices V = {0, 1, 2} and the set of edges
E = {{0, 1}, {1, 2}, {2, 1}}. Then, by induction we define Gm+1 = SGm. By Theorem
4.21 it satisfies (4.19).

For any m ≥ 1, define the digraph Fm as follows. If km = 0 then Fm consists of a
single vertex, and if km ≥ 1 then Fm is equal to the wedge some of km copies of Gm. By
Theorem 4.21, we have

Hp(ΩF m) =






1, p = 0,
km, p = m,
0, otherwise.

(4.20)

Let F0 be a digraph, consisting of k0 vertices and no edges. Now define

G =
∨

m=0,1,2,...,kn

Fm.

Then (4.18) follows from Theorem 4.21.

The next result can be helpful for computational purposes.
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Corollary 4.23 Under assumption of Theorem 4.22, there exists a digraph G with

k0 + 2k1 + 4k2 + 6k3 + ∙ ∙ ∙ + (2n)kn

vertices such that
dim H i(ΩG) = ki, ∀ 0 ≤ i ≤ n.

Proof. This follows from a direct computation of the number of vertices of the digraphs
in the proof of Theorem 4.22.

The number of vertices of G in Corollary 4.23 can be easily improved. An interesting
open question is to find the minimum number of vertices of the digraph satisfying (4.18).

Now let Σ be a finite simplicial complex (see [17], [23]). Consider a digraph G(Σ) with
the set of vertices V = {σ ∈ Σ} that coincides with the set of simplexes from Σ and we
have an arrow σ → τ if and only if (σ ⊃ τ)&(σ 6= τ). This digraph evidently gives a poset
of his vertices a ≥ b if and only if there is arrow a → b.

Theorem 4.24 (cf. [14]). The dual chain complex to the complex ΩG(Σ) is isomorphic
to the simplicial chain complex of the first barycentric subdivision of Σ.

Proof. The transitivity condition for arrows (σ → τ → ρ) =⇒ (σ → ρ) implies for
the digraph G(Σ) that d(E) ∈ E , where E as usually an ideal generated by non-admissible
elements. Hence J = E , and we can equip ΩG(Σ) = ΩV /J by K-basis of admissible
elements ei0i1...in and the differential is given by formula in Theorem 3.2 (iii) in which the
sum is only by admissible elements. Hence in the dual basis ei0i1...in

∗ differential is given
by the formula

δ(ei0i1...in
∗ ) =

n∑

p=0

e
i0...ĭp...in
∗ . (4.21)

But every such sequence i0i1 . . . in define a unique simplex i0 → i1 ∙ ∙ ∙ → in of the first
barycentric subdivision (see, for example, [14] and [12]) with the same as in (4.21) bound-
ary map.

Thus the Theorem 4.22 gives a non-trivial realization theorem in contrast with the
Theorem 4.24, that provides a realization theorem for the digraphs that obtained from
simplicial complexes.

Now consider a digraph G with the set of vertices V and the set of edges EG. Let H
be a digraph with the set of vertices W and and the set of edges EH .

Definition 4.25 A map of sets F : V → W defines a morphism of digraphs

f : G → H

if for any edge (i → j) ∈ G we have (F (i) → F (j)) ∈ H is an edge of H, or F (i) = F (j) ∈
W . The last condition means that the edge (i → j) maps to the vertex F (i) = F (j).

Remark 4.26 It follows from this definition, that if the edge (j, l) is non-admissible in
H then for any two vertices i, k ∈ V , for which F (i) = j, F (k) = l, the edge (i, k) is
non-admissible in G.
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The set of digraphs with the morphisms given by maps from Definition 4.25 is a
category which we shall denote by GR.

Let
En

H ⊂ J n
H ⊂ Ωn

W , n ≥ 0, JH =
⊕

n≥0

J n
H

be as in Definition 4.2 and Definition 4.4.
The factor algebra ΩW /JH equipped with the induced differential is a differential

calculus ΩH on the digraph H, and by a similar way a differential calculus ΩG = ΩV /JG

is defined. By results of Corollary 3.5 we have a contravariant functor from the category
SET to the the category DC of differential calculi.

Lemma 4.27 Let U(F ∗) : (ΩW , d) −→ (ΩV , d) be the map of chain complexes from Corol-
lary 3.5. Then

(U(F ∗))(JH) ⊂ JG

and hence an induced morphism of factor complexes

ΩH = ΩW /JH −→ ΩG = ΩV /JG,

which we denote by U(F ∗), is good defined.

Proof. The morphism U(F ∗) : (ΩW , d) −→ (ΩV , d) is given on basic elements by the
rule

U(F ∗)(ei0 ⊗ ∙ ∙ ∙ ⊗ eil) = F ∗(ei0) ⊗ ∙ ∙ ∙ ⊗ F ∗(eil)

where i0, . . . , il ∈ W and F ∗(ej) = ej ◦ F . By Remark 4.26

(U(F ∗))(EH) ⊂ EG and hence (U(F ∗))(JH) ⊂ JG.

Theorem 4.28 Let a map F : V → W be a morphism of digraphs G → H in the sense
of Definition 4.25 and

U(F ∗) : ΩH = ΩW /JH −→ ΩG = ΩV /JG

the above constructed morphism of differential calculi. Thus we obtain a functor from the
category GR of digraphs to the category of differential calculus DC.

Proof. It is trivial to check that this is a functor.

Corollary 4.29 A morphism F : G → H of digraphs induces a homomorphism of coho-
mology rings H∗(F ) : H∗(H,K) → H∗(G,K). This correspondence is functorial.

Proof. Follows from Theorems 4.28, 2.28, and 2.29.
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5 Cohomology of undirected graphs

In this section we define a natural equivalence of the subcategory of digraphs to the
category of graphs. Thus we transfer the cohomology theory to the category of graphs
and prove it is homotopy invariant in relation to the homotopy theory defined in [1] and
[2]. Then we present several examples.

Definition 5.1 A simple digraph G = (V,E) is symmetric if (v → w) ∈ EG implies that
(w → v) ∈ EG.

Proposition 5.2 The symmetric digraphs with the morphisms defined in Definition 4.25
give a full subcategory SGR of the category GR.

Proof. Direct checking.

Definition 5.3 Let G = (VG, EG), H = (VH , EH) be (undirected) graphs. A morphism
f : G → H is given by a map of vertices f : VG → VH such that if (v, w) ∈ EG then we
have (f(v), f(w)) ∈ EH or f(v) = f(w) ∈ W . The last condition means that the edge
(v, w) maps to the vertex f(v) = f(w).

Proposition 5.4 The graphs with the morphisms defined in Definition 5.3 give a category
NGR.

Proof. Direct checking.

Let G = (VG, EG) be a graph. Define a symmetric digraph S(G) = (VS(G), ES(G)),
where VS(G) = VG, (v → w) ∈ ES(G) if (v, w) ∈ EG. Any morphism f : G → H of graphs
defines an unique morphism S(f) : S(G) → S(H) of symmetric digraphs. It is easy to
check that S is a functor from the category NGR to the full subcategory SGR (see [16]).

Proposition 5.5 The functor S provides an equivalence of categories NGR ' SGR with
the inverse functor S−1.

Proof. Direct checking.

Definition 5.6 The differential calculus on a graph G is the differential calculus ΩS(G)

on the symmetric digraph S(G). The cohomology ring H∗(G,K) of a graph G is the
cohomology ring H∗(S(G),K).

Theorem 5.7 A morphism f : G → H of graphs induces a homomorphism of cohomology
rings H∗(f) : H∗(H,K) → H∗(G,K). This correspondence is functorial.

Proof. Follows from Corollary 4.29 and Proposition 5.5.

Example 5.8 The statements of the examples below can be trivially checked by direct
computing or follows directly from the results of previous section.

i) For any graph G, rank H0(G,K) coincides with the number of connect components
of G.

ii) Let a graph G be a tree. Then H i(G,K) = 0 for i ≥ 1.
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iii) Let Cn = (VCn , ECn) be a cyclic graph where

VCn = {0, 1, 2, . . . , n − 1} and ECn = {(0, 1), (1, 2), . . . , (n − 2, n − 1), (n − 1, 0)}.

Then H1(Cn,K) = 0 for n ≤ 4 and H1(Cn,K) = K for n ≥ 5; and H i(Cn,K) = 0 for i ≥ 2
and any n.

iv) Let S = (VS , ES) be a graph on Fig. 1. Then H2(S,K) = K and H i(S,K) = 0 for
i 6= 0, 2.

  6 

0 
1 

2 3 
4 

5 

Figure 1:

v) Let Q be the graph that is given by one-dimensional skeleton of n-dimensional cube.
Then H i(Q,K) = 0 for i ≥ 1. The similar result is true for a one-dimensional skeleton of
any simplex.

Recall a homotopy theory of graphs constructed in [1] and [2].
Let In(n ≥ 0) denote a graph with the set of vertices VI = {0, 1, . . . , n} and the set of

edges (i, i + 1) for 0 ≤ i ≤ n − 1. The graph In we shall call a line graph. Note that by
this definition a one-point graph I0 is a line graph. Let I = I1.

For two graphs G = (VG, EG) and H = (VH , EH) we define a �- product Π = G�H =
(VΠ, EΠ) as a graph with a set of vertices VΠ = VG × VH and a set of edges EΠ such that

[(x, y), (x′, y′)] ∈ EΠ for x, x′ ∈ VG; y, y′ ∈ VH

if one of the conditions is satisfied

x′ = x, (y, y′) ∈ EH or y′ = y, (x, x′) ∈ EG.

Definition 5.9 [2, Definition 5.1] i) Two maps

fi : G → H, i = 0, 1

of a graph G to a graph H are homotopic if there exists a line graph In and a morphism

F : G� In → H

such that
F |G�{0} = f0 : G� {0} → H, F |G�{n} = f1 : G� {n} → H.

In this case we shall write f0 ' f1.
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ii) Two graphs G and H are homotopy equivalent if there exist maps

f : G → H, g : H → G

such that
f ◦ g ' IdH , g ◦ f ' IdG .

In this case we shall write H ' G. In this case maps f and g are called homotopy inverses
of each other.

Now we state and prove the theorem that answer on the question from [2, page 32]
about construction of natural homotopy invariant homology theory for graphs.

Theorem 5.10 i) Let f ' g : G → H be two homotopy equivalent maps of graphs. Then
these maps induce the equal homomorphisms of cohomology groups.

ii) Let G ' H be two homotopy equivalent graphs. Then they have isomorphic coho-
mology groups.

Proof. Let F : G × I → H be a homotopy between f and g, such that

F |G�{0} = f : G → H, F |G�{1} = g : G → H.

The morphisms f , g, and F induce morphisms of cochain complexes f∗, g∗ : ΩS(H) →
ΩS(G), and

F ∗ : ΩS(H) → ΩS(G�I) = ΩS(G)�S(I).

Let Φ be a composition of morphisms

S(G)� I1 −→ S(G)� S(I) = S(G� I)
F

−→ S(H)

where the first morphism is the natural inclusion of digraphs and I1 is a digraph with
VI1 = {0, 1}, EI1 = (0 → 1). Then we have a also a morphism Φ∗ : ΩS(H) → ΩS(G)�I1 of
cochain complexes.

Consider the chain complexes Ω∗
S(G), Ω

∗
S(H), Ω

∗
S(G)�I1

that are dual to the cochain com-
plexes ΩS(G), ΩS(H), ΩS(G)�I1 , correspondingly. Denote by δ the differentials in the chain
complexes, since it is clear from the context what chain complex is under consideration.
The morphisms f , g induce morphisms of chain complexes f∗, g∗ : Ω∗

S(G) → Ω∗
S(H), and the

morphism Φ induces a morphism Φ∗ : Ω∗
S(G)�I1

→ Ω∗
S(H). Consider a K-module morphism

P : Ωn
S(G)�I1

→ Ωn−1
S(G)

that is dual to the K-module morphism

[Ω∗
S(G)]n−1

−→ [Ω∗
S(G)�I1

]
n
, given by x −→ x × I1,

that is defined in [13]. Let

Ln = (−1)nP ◦ Φ∗ : Ωn
S(H) → Ωn−1

S(G).

Let wn ∈ Ωn
S(H), x ∈ [Ω∗

S(G)]n
. Then, using computation in [13], we have

[(∂Ln + Ln+1∂)(wn)](x) = (−1)n [∂PΦ∗(wn)] (x) + (−1)n+1[PΦ∗∂(wn)](x).
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But δ is dual to ∂ an P is dual to x → x × I1, thus the last equals to

(−1)n [PΦ∗(wn)] (δx) + (−1)n+1[Φ∗∂(wn)](x × I1)

= (−1)n [Φ∗(wn)] (δx × I1) + (−1)n+1[Φ∗∂(wn)](x × I1)

(since ∂Φ∗ = Φ∗∂, δΦ∗ = Φ∗δ, and Φ∗ is dual to Φ∗)

= (−1)nwn[Φ∗(δx × I1)] + (−1)n+1[∂(wn)][Φ∗(x × I1)]

= (−1)nwn[Φ∗(δx × I1)] + (−1)n+1wn[δΦ∗(x × I1)]

= (−1)nwn[Φ∗(δx × I1 − δ(x × I1))]

= (−1)nwn [Φ∗ (δ(x × I1) − δx × I1)]

(by [13, Prop 7.3])

= (−1)nwnΦ∗ ((−1)nx × δI1 + δx × I1 − δx × I1)

= wn [Φ∗(x × {1} − x × {0})]

= wn[(g∗ − f∗)(x)] = [(f∗ − g∗)(wn)](x).

From now the result follows by [22, Theorem 2.1] for In = I1. The general case follows by
induction.

6 Cohomology acyclic digraphs

Definition 6.1 (i) A complete acyclic digraph Γ is a finite simple digraph with a set of
vertices V = {0, 1, 2, . . . , n} and the set of directed edges

E = {{i, j} : i < j; i, j = 0, 1, 2, . . . , n} .

(ii) An acyclic digraph G is any subgraph of a complete acyclic digraph Γ.

We have a natural inclusion γ : Γ −→ H, where H is a full finite simple digraph with
the set V of vertices defined in Section 4.

By Definition 4.2 and Proposition 4.3 of Section 4 we have a graded ideal

Eγ =
⊕

p≥0

Ep
γ ⊂

⊕

p≥0

Ωp
V = ΩV , (6.1)

where E0
γ = {0} and Ep

γ for p ≥ 1 is generated by non-allowed elements.
Recall that A is an algebra of K-valued functions on the set V .

Proposition 6.2 For p ≥ 0 we have dEp
γ ⊂ Ep+1

γ , and the differential calculus (ΩΓ, dΓ)
from Definition 4.6 coincides with the calculus (ΩV /Eγ , d). In particular, we have an exact
sequence of cochain complexes

0 −→ Eγ −→ ΩV −→ ΩΓ −→ 0.

Proof. For p ≥ 1, an element ei0i1...ip ∈ Ep
γ is non-allowed if and only the sequence

{i0, i1, . . . , ip} is non monotonic increasing. Now the result follows from description of
differential on basic elements in Theorem 3.2.
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Corollary 6.3 (i) The basic elements of the differential calculus (ΩΓ, dΓ) of the digraph
Γ can be represented by classes of elements ei0i1...ip ∈ Ωp

V such that 0 ≤ i0 < ∙ ∙ ∙ < ip ≤ n.
(ii) For 0 ≤ k, l ≤ n, the exterior multiplication • of basic elements is given by the

following formula

(ei0i1...ik) • (ej0j1...jl) =

{
0, ik 6= j0

ei0i1...ikj1...jl , ik = j0.

(iii) The differential dΓ is given on basic elements by

dΓ

(
ei0i1...ik

)
=
∑̃

j 6=i0

eji0i1...ik −
∑̃

j 6=i0;j 6=i1

ei0ji1...ik + . . .

+(−1)l+1
∑̃

j 6=il;j 6=il+1

ei0i1...iljil+1...ik + ∙ ∙ ∙ + (−1)k+1̃
∑

j 6=ik

ei0i1...ikj ,

where ˜ over the sign
∑

means that in summation are presented only the elements with
strongly monotonic increasing sets of indices.

Proof. Follows from Theorem 3.2 and the proof of Proposition 6.2.

We shall omit subscript Γ in the differential, if it is clear from context what cochain
complex we consider.

Corollary 6.4 For k > n we have Ωk
Γ = 0, and the maps Ek

γ −→ Ωk
H are isomorphisms.

Proof. The space Ωk
Γ is generated by basic elements ei0i1...ik , where 0 ≤ i0 < i1 < ∙ ∙ ∙ <

ik ≤ n. Any finite sequence of more than n + 1-elements from the set V = {0, 1, 2, . . . , n}
has at least two equal elements. Now the statement follows from Corollary 6.3.

From now we describe several non-trivial cases in which it is possible to reduce com-
puting the homology of an acyclic digraph to the homology of a simplicial complex. Recall
that one of such examples is given by Theorem 4.24. For the definition and basic prop-
erties of homology and cohomology groups of a simplicial complex we refer to [17] and
[23].

Let (ΩV /Eγ , d) = (ΩΓ, d) be the differential calculus on the complete monotonic digraph
Γ with the set of vertices V = {0, 1, . . . , n}, and Ω∗

Γ be the dual chain complex with the
basis e∗i0i1...ip

(0 ≤ i0 < i1 < ∙ ∙ ∙ < ip ≤ n) which is dual to the basis described in Corollary
6.3 and with the boundary operator δ : [ΩΓ]∗p −→ [ΩΓ]∗p−1.

Let Δ be simplicial complex consisting of a n-dimensional simplex Δn = [0, 1, . . . , n]
and all its faces [i0, i1, . . . , ik] that are given by increasing subsequences i0 < i1 < ∙ ∙ ∙ < ik
of 0 < 1 < ∙ ∙ ∙ < n, and C(Δn) be a chain complex with k-dimensional modules Ck(Δ)
generated by k-simplexes of Δn and the standard boundary map ∂ : Ck(Δ) → Ck−1(Δ).

Theorem 6.5 The boundary operator δ : [ΩΓ]∗p −→ [ΩΓ]∗p−1 is given on the basic elements
by the rule

δ(e∗i0i1...ip) =
∑

0≤k≤p

(−1)ke∗i0...ik−1 ı̂kik+1...ip

where ı̂k means omitting the symbol ik from the multiindex. For k ≥ 0 the maps Tk : [ΩΓ]∗k →
Ck(Δn), of K-modules given on basic elements by formulas

e∗i0i1...ip −→ [i0, i1, . . . , ip], 0 ≤ i0 < i1 < ∙ ∙ ∙ < ip ≤ n.
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commute with differentials and define an isomorphism between the chain complexes

T =
⊕

k

Tk : Ω∗
Γ → C(Δn).

Proof. Let ej0j1...jp−1 be a basic element of Ωp−1
Γ . Then

[δ(e∗i0i1...ip)](e
j0j1...jp−1) = e∗i0i1...ip(dej0j1...jp−1)

= e∗i0i1,...ip




p∑

q=0

∑̃

k

(−1)qej0j1...,jq−1kjq ...jp−1





=
p∑

q=0

∑̃

k

(−1)qe∗i0i1...ip

[
ej0j1...,jq−1kjq ...jp−1

]

where ˜ means that only elements with monotonic multiindices are used in the summa-
tion. We have

e∗i0i1...ip

[
ej0j1...jq−1kjq ...jp−1

]
= 1 only if {i0i1 . . . ip} = {j0j1 . . . jq−1kjq . . . jp−1}

for some place q. This means that the sequence {j0, j1, . . . , jp−1} is obtained from the
sequence {i0, i1, . . . , ip} by deleting a term iq = k. For such basic elements we have

[δ(e∗i0i1...ip)](e
i0i1...iq−1iq+1...ip) = (−1)q, 0 ≤ q ≤ p.

Hence, we obtain
δ(e∗i0i1...ip) = (−1)q

∑

0≤q≤p

e∗i0i1...iq−1 ı̂qiq+1...ip

which finishes the proof of the first statement of the theorem. The second statement follows
from this one since T gives one-to-one correspondence between basic elements commuting
with differentials.

Corollary 6.6 Under the assumptions of Theorem 6.5 we have

Hp(ΩΓ) =

{
K, p = 0

0, p ≥ 1.

Now let G be an acyclic digraph with a set of vertices V = {0, 1, 2, . . . , n}, Γ be the
complete acyclic graph with the same set of vertices V and H be the complete simple
digraph with the set of vertices V .

We have a commutative diagram of inclusions of digraph as (4.2)

G
s

−→ Γ
↘g γ ↙

H
(6.2)

The exact sequence of chain complexes (4.3) has the following form

0 −→ Jg/Eγ −→ ΩΓ −→ ΩG −→ 0. (6.3)
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Theorem 6.7 For p ≥ 1, we have an isomorphism Hp(ΩG) ∼= Hp+1(Jg/Eγ) and an exact
sequence

0 −→ K −→ H0(ΩG) −→ H1(Jg/Eγ) −→ 0.

Proof. Follows from Corollary 6.6 and exact sequence (6.3).

Definition 6.8 Let E0
s = 0 and Ep

s , p ≥ 1 be a subspace of Ωp
Γ generated by those

ei0i1...ip ∈ Ωp
Γ that are non-allowed elements for the digraph G. Let

J p
s = Ep

s + dΓE
p−1
s ⊂ Ωp

Γ

where dΓ is the differential in ΩΓ described in Corollary 6.3. Denote

Es =
⊕

0≤i≤n

E i
s, Js =

⊕

0≤i≤n

J i
s .

Proposition 6.9 The submodule Js ⊂ ΩΓ is a graded ideal such that the inclusion is a
morphism of chain complexes and the exact sequence

0 −→ Js −→ ΩΓ −→ ΩΓ/Js −→ 0 (6.4)

is isomorphic to the exact sequence in (6.3), and hence ΩΓ/Js
∼= ΩG.

Proof. The subspace Es ∈ ΩΓ is a graded ideal. As in the proof of Theorem 2.22, we
can see that Js ⊂ ΩΓ is a graded ideal and the inclusion is a morphism of chain complexes.
By definition, we have a graded isomorphism ΩV /Eγ −→ ΩΓ. It follows from Definition
6.8 and Corollary 6.3 that a restriction of this map to Jg/Eγ ⊂ ΩV /Eγ correctly defines a
graded isomorphism Jg/Eγ −→ Js which agrees with the differentials. The Proposition is
proved.

Let Γ be a complete acyclic digraph with the set V = {0, 1, 2, . . . , n} of vertices and
the set of edges

E = {{i, j} : i < j; i, j = 0, 1, 2, . . . , n} .

Let F and G be acyclic digraphs with the same number of vertices such that we have a
commutative diagram of inclusions

F
r

−→ G
↘t s ↙

Γ
(6.5)

where the horizontal map is an inclusion r : F −→ G and swallow maps are inclusions into
Γ.

Theorem 6.10 Let Es and Et be the subspaces generated by non-admissible elements in
ΩΓ for the inclusions s and t respectively,, and Js ⊂ ΩΓ, Jt ⊂ ΩΓ are the ideals defined
in Definition 6.8. Then we have the inclusions of chain complexes

Js ⊂ Jt ⊂ ΩΓ,

which induce a short exact sequence of chain complexes

0 −→ Jt/Js −→ ΩΓ/Js −→ ΩΓ/Jt −→ 0 (6.6)
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where (ΩΓ/Js, d) = (ΩG, d) is a differential calculus of the digraph G and (ΩΓ/Jt, d) =
(ΩF , d) is a differential calculus of the digraph F . The cohomology long exact sequence of
(6.6) has the following form

0 −→ H0(ΩG) −→ H0(ΩF ) −→ H1(Jt/Js) −→ H1(ΩG) −→ . . . (6.7)

Proof. Similarly to the proof of Theorem 4.9.

Remark 6.11 In the case of an inclusion r : F → G from (6.5) we can write down a
commutative diagram similarly to (4.2)

F
r

−→ G
↘f g ↙

H

where H is a simple complete digraph. Theorem 4.9 is applicable in this situation, as well.
The advantage of Theorem 6.10 is in simplification of all computations, since we can work
with very small number of basic elements directly described in Corollary 6.3.

Remark 6.12 The acyclic digraphs with the morphisms defined in Definition 4.25 give a
full subcategory MGR of the category GR. The realization Theorem 4.22 is true in the
category of acyclic digraphs. It is easy to see, that we can define suspension and a wedge
sum in the category of acyclic digraphs. Now let D2 be an acyclic digraph that has two
vertices and no edges. Then

Hk(D2,K) ∼=

{
K2, k = 0
0, k 6= 0

, Hk(SD2,K) ∼=

{
K, k = 0, 1
0, k ≥ 2.

Now we can repeat all the constructions from the proof of Theorem 4.22 in the category
of acyclic digraphs.

Example 6.13 For n ≥ 2 and any digraph G define n-suspension inductively by Sn(G) =
S(Sn−1G). Let D2 be the digraph from Remark 6.12. Then for n ≥ 1 we have

H0(SnD2,K) = Hn(SnD2,K) = K

and H i(SnD2,K) = 0 for i 6= 0, n.

Now we describe sufficiently wide classes of acyclic digraphs for which there exists a
geometric realization of cohomology theory by cohomology theory of simplicial complexes.

Let Γ be a complete acyclic digraph with the set V = {0, 1, . . . , n} and Θ be a com-
plete acyclic digraph with the set W = {0, 1, . . . , k} (k ≤ n) of vertices. We have a
natural inclusion σ : Θ → Γ. By Lemma 4.10 we have a morphism of cochain complexes
U(σ) : ΩΓ → ΩΘ which induces a morphism of chain complexes U(σ)∗ : Ω∗

Θ → ΩΓ∗ by the
standard rule

U(σ)∗(f) = f ◦ U(σ), f : ΩΘ → K.
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Proposition 6.14 There exists a commutative diagram of chain complexes

Ω∗
Θ

U(σ)∗

−→ ΩΓ∗
↓ T ↓ T

C(Δk)
τ∗−→ C(Δ)

where τ∗ is induced by natural inclusion τ : Δk → Δn on the first k-face.

Proof. Follows from Proposition 3.6, Corollary 6.3, and Theorem 6.5.

Let Γ be a complete acyclic digraph with the set V = {0, 1, . . . , n} of vertices and the
set EΓ of edges, and let s : Gk → Γ be the natural inclusion of the sub-digraph Gk with
the same set of vertices and the set of edges Ek = EGk

= EΓ \ {{k, k + 1}} where k is a
number 0 ≤ k ≤ n− 1. That is the digraph Gk is obtained from Γ by deleting exactly one
edge {k, k + 1}.

Proposition 6.15 (i) Let Es, Js be subspaces of ΩΓ from Definition 6.8. Then J p
s = Ep

s

for p ≥ 0.
(ii) The basic elements of the differential calculus (ΩGk

, dGk
) = (ΩΓ/Js, d) of the

digraph Gk can be represented by classes [ei0i1...ip ] ∈ Ωp
Gk

of elements ei0i1...ip ∈ Ωp
Γ such

that 0 ≤ i0 < i1 < ∙ ∙ ∙ < ip ≤ n and {k, k + 1} is not a subset of {i0, i1, . . . , ip}. The
exterior multiplication and differential are described by Corollary 6.3, where in summing
for differential we must delete summands ±ei0,...im in which {k, k + 1} is a subset of
{i0, i1, . . . , im}.

Proof. For p = 0, 1 the statement follows from Definition 6.8. In the case p ≥ 2 we
have the inclusion Ep

s ⊂ J p
s . Any basic element of Ep−1

s has the form w = ei0i1...[k][k+1]...ip−1 .
To finish the proof we note that dw is described in Corollary 6.3 (iii), where the summing
contains only elements with strongly monotonic increasing sets of indices. Since we can
not put integer number between k and k +1 to obtain monotonic increasing sequence, the
all elements eα in the sum satisfy condition {k, k + 1} ⊂ {α}. Hence dw ∈ Ep

s . From now
the Proposition follows.

Let Δ be a simplicial complex given by the simplex Δn = [0, 1, . . . , n] and all its faces.
Denote by Δk the k-th face Δk = [0, 1, . . . ǩ, . . . n], and let

Δk,k+1 = Δk ∪ Δk+1

be a simplicial complex that geometrically corresponds to the union of two (n − 1)-faces
of Δn and we have a natural inclusion τ : Δk,k+1 → Δ.

Theorem 6.16 We have a commutative diagram of chain complexes

Ω∗
Gk

U(s)∗

−→ ΩΓ∗
↓ T ′ ↓ T

C (Δk,k+1)
τ∗−→ C(Δ)

(6.8)

where T ′ and T are isomorphisms, and τ∗ is induced by the natural inclusion τ .
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Proof. In diagram (6.8) the right vertical isomorphism and the horizontal morphisms
are already defined. We must define T ′ and check the commutativity.

Consider a basic element [ei0...ip ]
∗ ∈ [ΩGk

]∗p that is dual to [ei0...ip ] ∈ Ωp
Gk

described in
Proposition 6.15. Define T ′ on the basic elements by

T ′([ei0...ip ]
∗) = [i0, . . . , ip] ⊂ Cp(Δ).

and extend to [ΩGk
]∗p by linearity.

The map T ′ is evidently a one-to-one correspondence between basic elements. Checking
that it commutes with differentials and commutativity of diagram 6.8 is routine.

Denote by Γ = (V,E) a complete acyclic digraph with a set of vertices V = {0, 1, 2, . . . , n}.
Let K ⊂ V be a subset such that n /∈ K. Consider an acyclic sub-digraph s : GK → Γ
with the same number of vertices and the set of edges

EK = EGK
= EΓ \ {{i → i + 1}| i ∈ K}.

Theorem 6.17 There exists a simplicial complex SK with an inclusion τ : SK → Δ such
that the following diagram is commutative

Ω∗
GK

U(s)∗

−→ ΩΓ∗
↓ T ′ ↓ T

C (SK)
τ∗−→ C(Δ)

(6.9)

where T ′ and T are isomorphisms, and τ∗ is induced by a natural inclusion τ .

Proof. The proof is based on the same line of arguments as the proof of Theorem 6.16,
that we briefly repeat. We can check directly that Js = Es in this case. The basic elements
of the differential calculus (ΩGK

, dK) = (ΩΓ/Js, d) of the digraph GK can be represented
by classes [ei0i1...ip ] ∈ Ωp

GK
of elements ei0i1...ip ∈ Ωp

Γ such that 0 ≤ i0 < i1 < ∙ ∙ ∙ < ip ≤ n
and, for any k ∈ K, {k, k + 1} is not a subset of {i0, i1, . . . , ip}. The differential dK is
given on the basic elements by

dK

[
ei0i1...ip

]
=

∑̂

j 6=i0

[eji0i1...ip ] −
∑̂

j 6=i0;j 6=i1

[ei0ji1...ip ] + . . .

+(−1)l+1
∑̂

j 6=il;j 6=il+1

[ei0i1...iljil+1...ip ] + ∙ ∙ ∙ + (−1)k+1̂
∑

j 6=ip

[ei0i1...ipj ]

where ̂ means that every element ei0,...im of the sum satisfies the conditions 0 ≤ i0 <
∙ ∙ ∙ < im ≤ n and, for any k ∈ K, the pair {k, k +1} is not a subset of {i0, i1, . . . , im}. Let
for a number Δk,k+1 (k ∈ K) be a simplicial complex, defined above, that geometrically
corresponds to union of two (n − 1)-faces of Δn. It is given by the union of all simplexes
from Δn that does not contain the edge {k, k + 1}. Set

SK =
⋂

k∈K

Δk,k+1 .

Equivalently, SK can be described as the union of all the simplexes from Δn that do
not contain an edge in the form {k, k + 1} for k ∈ K. In the diagram (6.9) we must
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define a chain map T ′ and check commutativity. Define T ′ on the basic elements as in
the proof of Theorem 6.16 and extend to [ΩGK

]∗p by linearity. We obtain an isomorphism
T ′ : [ΩGK

]∗ −→ C(SK) of K-modules which commutes with differentials and it is easy to
check that diagram (6.9) is commutative.

Now let Γ be a complete acyclic digraph with the set V = {0, 1, . . . , n} of vertices
(n ≥ 2) and the set EΓ of edges. Let s : Fk → Γ be the natural inclusion of the sub-
digraph Fk with the same set of vertices and the set of edges

Ek = EFk
= EΓ \ {(k → k + 2)} where 0 ≤ k ≤ n − 2.

Theorem 6.18 There exists a simplicial complex Δk,k+2 with an inclusion τ : Δk,k+2 →
Δ such that the following diagram is commutative

Ω∗
FK

U(s)∗

−→ ΩΓ∗
↓ T ′ ↓ T

C (Δk,k+2)
τ∗−→ C(Δ)

(6.10)

where T ′ and T are isomorphisms, and τ∗ is induced by a natural inclusion τ .

Proof. It is easy to check that in this case

J 0
s = {0}, J p

s = 〈ei0...ip |{k, k + 2} ⊂ {i0, i1, . . . , ip}, p ≥ 1〉.

The basic elements of [ΩFk
]∗m are given by the classes [e∗i0...im

], where {i0, . . . , im} does
not contain the pair {il, il+1} = {k, k + 2}. Then the proof is finished similarly to that of
Theorems 6.16 and 6.17.

Now let Γ = (V,E) be a complete acyclic digraph as above, and K ⊂ V be a subset
such that n /∈ K, and L ⊂ V such that n /∈ L and (n − 1) /∈ L. Consider an acyclic
sub-digraph s : GK,L → Γ with the same number of vertices as Γ and the set of edges

EK = EGK
= EΓ \ [{(i → i + 1)|i ∈ K} ∪ {(j → j + 2)|j ∈ L}]

Theorem 6.19 There exists a simplicial complex SK,L with an inclusion τ : SK,L → Δn

such that there exists a commutative diagram of chain complexes

Ω∗
GK,L

U(s)∗

−→ ΩΓ∗
↓ T ′ ↓ T

C (SK,L)
τ∗−→ C(Δn)

(6.11)

where T ′ and T are isomorphisms, and τ∗ is induced by a natural inclusion τ .

Proof. The simplicial complex SK,L is defined as

SK,L =

(
⋂

k∈K

Δk,k+1

)
⋂
(
⋂

l∈L

Δl,l+2

)

.

The same line of arguments as in the proof of Theorems 6.16, 6.17, and 6.18 finishes the
proof.
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Corollary 6.20 Let G be a digraph Gk or Fk from Theorems 6.16, 6.18. Then H0(G,K) =
K and H i(G,K) = 0 for i ≥ 1.

Theorem 6.19 obviously reduces computation of cohomology for a wide class of digraphs
to that of simplicial complexes.

Example 6.21 Let Γ be a complete acyclic digraph with the set of vertices V = {0, 1, 2, 3, 4}
and let G be the digraph that is obtained from Γ by removing the edges (1 → 2), (2 →
3), (1 → 3). Then G satisfies the hypotheses of Theorem 6.19 and, hence, can be realized
as a simplicial complex. Let G0 be the digraph that is obtained from G by further remov-
ing the edge (0 → 4). Digraph G0 does not satisfy the hypothesis of Theorem 6.19, and
one can show that it does not admit a geometric realization as a simplicial complex. The
chain complex of the digraph G0 was explicitly described in [14].

References

[1] Eric Babson, Helene Barcelo, Mark de Longueville, and Reinhard Laubenbacher.
Homotopy theory of graphs. Journal Algebr. Comb., 24:31–44, 2006.

[2] Helene Barcelo, Xenia Kramer, Reinhard Laubenbacher, and Christopher Weaver.
Foundations of a connectivity theory for simplicial complexes. Advances in Appl.
Mathematics, 26:97–128, 2001.

[3] Nicolas Bourbaki. Elements of mathematics. Algebra I. Chapters 1-3. Transl. from
the French. 2nd printing. Berlin etc.: Springer-Verlag, 709 pp. , 1989.

[4] Biefang Chen, Shing-Tung Yau, and Yeong-Nan Yeh. Graph homotopy and Graham
homotopy. Discrete Math., 241:153–170, 2001.

[5] C. Cibils. Cohomology of incidence algebras and simplicial complexes. Journal of
Pure and Appl. Algebra, 56:221–232, 1989.

[6] Alain Connes. Noncommutative differential geometry. Publ.I.H.E.S., 1985.

[7] Aristophanes Dimakis and Folkert Müller-Hoissen. Differential calculus and gauge
theory on finite sets. J. Phys. A, Math. Gen., 27(9):3159–3178, 1994.

[8] Aristophanes Dimakis and Folkert Müller-Hoissen. Discrete differential calculus:
Graphs, topologies, and gauge theory. J. Math. Phys., 35(12):6703–6735, 1994.

[9] N.P. Dolbilin, M.A. Shtan’ko, and M.I. Shtogrin. Cubic manifolds in lattices. Izv.
Ross. Akad. Nauk Ser. Mat., 58(2):93–107, 1994.

[10] N.P. Dolbilin, Yu.M. Zinoviev, A.S. Mishchenko, M.A. M.A. Shtan’ko, and M.I.
Shtogrin. Homological properties of dimer configurations for lattices on surfaces.
Funct. Anal. Appl, 30(3):163–173, 1996.

[11] I.M Gel’fand and V.A Ponomarev. Model algebras and representations of graphs.
Funktsional. Anal. Appl., 13(3):1–12, 1979.

[12] M. Gerstenhaber and S.D. Schack. Simplicial cohomology is Hochschild cohomology.
J. Pure Appl. Algebra, 30:143–156, 1983.

45



[13] Alexander Grigor’yan, Yong Lin, Yuri Muranov, and Shing-Tung Yau. Homologies of
path complexes and digraphs. Math arXiv: 1207.2834v4, 2013.

[14] Alexander Grigor’yan, Yuri Muranov, and Shing-Tung Yau. Graphs associated with
simplicial complexes. Homology, Homotopy, and Applications, 16:295–311, 2014.

[15] Alexander Grigor’yan, Yuri Muranov, and Shing-Tung Yau. On a cohomology of
digraphs and Hochschild cohomology. to appear in J. Homotopy Relat. Struct., 2015.

[16] Pvol Hell and Jaroslav Nesetril. Graphs and Homomorphisms. Oxford Lecture Series
in Mathematics and its Applications 28, 2004.

[17] P. J. Hilton and S. Wylie. Homology Theory. Cambridge, University Press, 1960.

[18] Alexander V. Ivashchenko. Contractible transformations do not change the homology
groups of graphs. Discrete Math., 126:159–170, 1994.

[19] Dmitry Kozlov. Combinatorial Algebraic Topology. Algorithms and Computation in
Mathematics. Volume 281, Springer-Verlag, 2008.

[20] Serge Lang. Algebra. 3rd revised ed. Graduate Texts in Mathematics. 211. New York,
NY: Springer, 2002.

[21] Jean-Louis Loday. Cyclic homology. Springer, 1998.

[22] S. MacLane. Homology. Die Grundlehren der mathematischen Wissenschaften. Bd.
114. Berlin-Göttingen-Heidelberg: Springer-Verlag, 522 pp. , 1963.

[23] V. V. Prasolov. Elements of homology theory. Graduate Studies in Mathematics 81.
Providence, RI: American Mathematical Society (AMS). ix, 418 p. , 2007.

[24] Roman R. Zapatrin. Polyhedral representations of discrete differential manifolds. J.
Math. Phys., 38(5):2741–2750, 1997.

46


	Introduction
	Differential calculus on algebras
	Differential calculus on finite sets
	Cohomology of digraphs
	Cohomology of undirected graphs
	Cohomology acyclic digraphs

