Blatt 0. Keine Abgabe

- 1. Let M be any topological space. Let K be a compact subset of M and F be a closed subset of M. Prove that if $F \subset K$ then F is compact.
- 2. A topological space M is called Hausdorff if, for any two disjoint points $x, y \in M$, there exist two disjoint open sets $U, V \subset M$ such that $x \in U$ and $y \in V$. Prove the following properties of a compact subset K of a Hausdorff topological space M.
 - (a) For any $x \in K^c$ there exists an open set W_x containing x and disjoint from K.
 - (b) K is a closed subset of M.
- 3. Let X, Y be two topological spaces and $f: X \to Y$ be a continuous mapping. Prove that if K is a compact subset of X then f(K) is a compact subset of Y.
- 4. Prove that, on any C-manifold M, there exists a countable sequence $\{\Omega_k\}$ of relatively compact open sets such that $\Omega_k \in \Omega_{k+1}$ (that is, Ω_k is relatively compact and $\overline{\Omega}_k \subset \Omega_{k+1}$) and the union of all Ω_k is M. Prove also that if M is connected then the sets Ω_k can also be taken connected.

Remark. An increasing sequence $\{\Omega_k\}$ of open subsets of M whose union is M, is called an exhaustion sequence. If in addition $\Omega_k \in \Omega_{k+1}$ then the sequence $\{\Omega_k\}$ is called a compact exhaustion sequence.