Blatt 1. Abgabe bis 24.10.2025

- 5. Let M be a C-manifold of dimension n. Let V be a chart on M and E be a subset of V. The compact inclusion $E \subseteq V$ can be understood in two ways: in the sense of the topology of M as well as in the sense of the topology of \mathbb{R}^n , when identifying V with a subset of \mathbb{R}^n . Prove that these two meanings of $E \subseteq V$ are equivalent.
- 6. Prove that, on any C-manifold M, there is a countable *locally finite* family of relatively compact charts covering M.

Remark. A family \mathcal{F} of subsets of M is called locally finite if any compact subset of M intersects only finitely many sets from \mathcal{F} .

7. Fix some positive integers n, m, let $F : \mathbb{R}^{n+m} \to \mathbb{R}^m$ be a C^1 -function. Consider the null set of F, that is, the set

$$M = \left\{ x \in \mathbb{R}^{n+m} : F\left(x\right) = 0 \right\},\,$$

and assume that, for any point $x \in M$, the Jacobi matrix F'(x) has the rank m. Prove that M is a C-manifold of dimension n.

Hint. Use the implicit function theorem.

8. Let K be a compact subset of a smooth manifold M and $\{U_j\}_{j=1}^k$ be a finite family of open sets covering K. Prove that there exist non-negative functions $\varphi_j \in C_0^{\infty}(U_j)$ such that $\sum_{j=1}^k \varphi_j \equiv 1$ in an open neighbourhood of K and $\sum_{j=1}^k \varphi_j \leq 1$ in M.

Remark. The family $\{\varphi_j\}$ is called a partition of unity at K subordinate to $\{U_j\}$. If all U_j are charts then the existence of the partition of unity was proved in lectures.

Hint. Choose first a finite family $\{W_i\}$ of charts covering K and such that each W_i is contained in one of the sets U_j . By a theorem from lectures, there exists a partition of unity $\{\psi_i\}$ of K subordinate to $\{W_i\}$. Use functions ψ_i to construct functions φ_j .