## Blatt 2. Abgabe bis 31.10.2025

In all exercises, M is a smooth manifold of dimension n.

9. A path on M is any smooth mapping  $\gamma:[0,a]\to M$ , where a>0. Set  $x=\gamma(0)$ . For any function  $f\in C^\infty(M)$ , define the derivative of f along the path  $\gamma$  at the point x by

$$\frac{\partial f}{\partial \gamma} := \left. \frac{d}{dt} f\left(\gamma\left(t\right)\right) \right|_{t=0}.$$

- (a) Prove that  $\frac{\partial}{\partial \gamma}$  is an  $\mathbb{R}$ -differentiation at x, that is,  $\frac{\partial}{\partial \gamma} \in T_x M$ .
- (b) Prove that any tangent vector  $\xi \in T_x M$  can be represented in the form  $\xi = \frac{\partial}{\partial \gamma}$  for some path  $\gamma$ .
- 10. A smooth vector field on M is a mapping  $X: C^{\infty}(M) \to C^{\infty}(M)$  such that, for any  $x \in M$ , the mapping

$$C^{\infty}(M) \to \mathbb{R}$$
  
 $f \mapsto X(f)(x)$ 

is a  $\mathbb{R}$ -differentiation at x. Prove that, in any chart U with the local coordinates  $x^1, ..., x^n$ , there are functions  $a^1, ..., a^n \in C^{\infty}(U)$  such that

$$X(f) = \sum_{i=1}^{n} a^{i} \frac{\partial f}{\partial x^{i}}$$
 for any  $f \in C^{\infty}(M)$ .

*Hint*. Use the fact that any  $\mathbb{R}$ -differentiation  $\xi$  can be represented in the form

$$\xi = \sum_{i=1}^{n} \xi^{i} \frac{\partial}{\partial x^{i}}$$

for some  $\xi^i \in \mathbb{R}$ .

11. Let X and Y be two smooth vector fields on M (as in Exercise 10). Define the Lie bracket [X, Y] of X, Y as a mapping of  $C^{\infty}(M)$  into itself by

$$[X,Y] := XY - YX,$$

that is, [X,Y](f) = X(Y(f)) - Y(X(f)) for any  $f \in C^{\infty}(M)$ .

Prove that [X, Y] is a smooth vector field on M.

Hint. In the local coordinates, X(f) is a combination of the first partial derivatives  $\frac{\partial f}{\partial x^i}$  (by Exercise 10). Hence, XY(f) and YX(f) contain the second derivatives of f. The point of the present claim is that the difference XY(f) - YX(f) depends on the first derivatives of f only, that is, the second derivatives cancel out.

12. (The Jacobi identity) Prove the following identity for three smooth vector fields X, Y, Z on a smooth manifold M:

$$[X, [Y, Z]] + [Z, [X, Y]] + [Y, [Z, X]] = 0, (1)$$

where  $[\cdot,\cdot]$  is the Lie bracket defined in Exercise 11,

 $\mathit{Hint}.$  By linearity, it suffices to consider the case when X,Y,Z are given in the local coordinates  $x^1,...,x^n$  by

$$X = a \frac{\partial}{\partial x^i}, \quad Y = b \frac{\partial}{\partial x^j}, \quad Z = c \frac{\partial}{\partial x^k},$$

where a,b,c are smooth functions of  $x^1,...,x^n$  and i,j,k are some indices from 1,...,n.