## Blatt 3. Abgabe bis 07.11.2025

13. Let  $\{V_{\alpha}\}$  be a family of charts covering a smooth manifold M. Prove that if a function  $f: M \to \mathbb{R}$  belongs to  $C^{\infty}(V_{\alpha})$  for any  $\alpha$  then  $f \in C^{\infty}(M)$ .

*Remark.* By definition,  $f \in C^{\infty}(M)$  if  $f \in C^{\infty}(U)$  for any chart U in M.

14. Prove that a smooth hypersurface in  $\mathbb{R}^{n+1}$  is a smooth n-dimensional manifold.

*Remark.* Recall that a smooth hypersurface is a subset M of  $\mathbb{R}^{n+1}$  that is locally a graph of a smooth function. Each graph gives rise to a chart on M. You need to prove that the change of coordinates between any two of such charts is given by smooth functions.

15. (a) Let U be an open set in  $\mathbb{R}^n$  and  $\Psi: U \to \mathbb{R}^m$  be a smooth mapping. Let  $\Gamma$  be the graph of  $\Psi$ , that is,

$$\Gamma = \left\{ (x, \Psi(x)) \in \mathbb{R}^{n+m} : x \in \mathbb{R}^n \right\}.$$

Prove that  $\Gamma$  is a submanifold of  $\mathbb{R}^{n+m}$  of dimension n.

(b) Prove that any smooth hypersurface in  $\mathbb{R}^{n+1}$  in a submanifold of  $\mathbb{R}^{n+1}$  of dimension n.

Hint. Use the definition of a submanifold.

16. Let M be a smooth manifold of dimension n and S be its submanifold of dimension m. Let  $x^1, ..., x^n$  be local coordinates in a chart U in M and  $y^1, ..., y^m$  be local coordinates in a chart V on S. Assume that  $V \subset U$ . Then, for any point in V, its x-coordinates can be expressed as functions of its y-coordinates:

$$x^{i} = f^{i}(y^{1}, ..., y^{m}), \quad i = 1, ..., n,$$

where  $f^i$  are some real-valued functions on V. Prove that  $f^i \in C^{\infty}(V)$ .

*Hint.* Use the definition of a submanifold.

17. \* Let X and Y be smooth manifolds of dimensions n and m, respectively, with  $n \ge m$ . A mapping  $\Phi: Y \to X$  is called smooth if in local coordinates  $x^1, ..., x^n$  in X and  $y^1, ..., y^m$  in Y it is given by equations

$$x^i = \Phi^i(y^1, ..., y^m), i = 1, ..., n,$$

where  $\Phi^i$  are smooth functions. Let  $\Phi$  be a smooth mapping as above satisfying the following three properties:

- (1) the mapping  $\Phi: Y \to X$  is injective;
- (2) the rank of the Jacobi matrix  $J = \left(\frac{\partial \Phi^i}{\partial y^j}\right)$  of  $\Phi$  is maximal at all points, that is, it is equal to m;
- (3)  $\Phi$  is a homeomorphism of Y onto its image  $S := \Phi(Y) \subset X$ .

Prove that S is a submanifold of X of dimension m.

18. \* Give examples to show that any of the above conditions (1), (2), (3) is essential for the statement of Exercise 17.