Blatt 5. Abgabe bis 21.11.2025

24. Let M be a smooth manifold, S be a submanifold, and $x \in S$. Prove that, for any $f \in C^{\infty}(M)$,

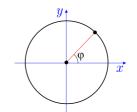
$$d(f|_S) = (df)|_{T_r S}, \tag{7}$$

where d in the left hand side is differential on S, while d in the right hand side is differential on M, and $(df)|_{T_sS}$ means the restriction of df to the tangent space T_xS .

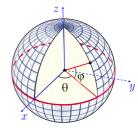
25. For any submanifold S of \mathbb{R}^n , denote by \mathbf{g}_S the Riemannian metric on S that is induced by the canonical Euclidean metric

$$\mathbf{g}_{\mathbb{R}^n} = (dx^1)^2 + \dots + (dx^n)^2$$
. (8)

(a) Let \mathbb{S}^1 be the unit circle in \mathbb{R}^2 . Express the induced metric $\mathbf{g}_{\mathbb{S}^1}$ using the polar angle φ on \mathbb{S}^1 as a local coordinate.



(b) Let \mathbb{S}^2 be the unit sphere in \mathbb{R}^3 . Express the induced metric $\mathbf{g}_{\mathbb{S}^2}$ on \mathbb{S}^2 in terms of the local coordinates θ , φ where θ is the longitude on \mathbb{S}^2 and φ is the latitude.

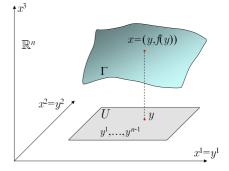


Hint. Express the Cartesian coordinates in terms of the polar coordinates and use the representation (8) of the metric in the Cartesian coordinates.

26. Let Γ be the graph of a smooth function $f:U\to\mathbb{R}$, where $U\subset\mathbb{R}^{n-1}$ is an open set.

Let \mathbf{g} be the canonical metric in \mathbb{R}^n . Denote by \mathbf{g}_{Γ} the induced Riemannian metric on Γ considering Γ as a submanifold of \mathbb{R}^n .

Let $y^1, ..., y^{n-1}$ be the Cartesian coordinates in U; consider them as local coordinates in Γ . Prove that the components of the metric \mathbf{g}_{Γ} in the coordinates $y^1, ..., y^{n-1}$ are as follows:



$$(g_{\Gamma})_{ij} = \delta_{ij} + \frac{\partial f}{\partial y^i} \frac{\partial f}{\partial y^j}, \tag{9}$$

where $\delta_{ij} = 1$ if i = j and $\delta_{ij} = 0$ if $i \neq j$.

Hint. Use the following result from lectures: if S is a submanifold of a Riemannian manifold (M, \mathbf{g}) then the induced metric \mathbf{g}_S is given in the local coordinates $x^1, ..., x^n$ on M and $y^1, ..., y^m$ on S by the formula

$$(g_S)_{ij} = g_{kl} \frac{\partial x^k}{\partial y^i} \frac{\partial x^l}{\partial y^j}.$$
 (10)

27. A catenoid Cat is a surface in \mathbb{R}^3 that is given by the parametric equations

$$x^1 = \cosh \rho \cos \theta$$
, $x^2 = \cosh \rho \sin \theta$, $x^3 = \rho$,

where $\rho \in \mathbb{R}$ and $\theta \in (-\pi, \pi)$.

Express the induced Riemannian metric on

Cat in terms of the coordinates ρ , θ .

Remark. The catenoid Cat is the image of the mapping $\mathbb{R} \times (-\pi, \pi) \to \mathbb{R}^3$ given by the above equations. By using Exercise 17, it is possible to show that Cat is a submanifold of \mathbb{R}^3 of dimension 2.