Blatt 6. Abgabe bis 28.11.2025

- 28. (Product rule for divergence) Let (M, \mathbf{g}) be a Riemannian manifold. Let $\nabla = \nabla_{\mathbf{g}}$ and div = div_g be the gradient and divergence associated with \mathbf{g} , respectively. Let u be any smooth function on M and v be any smooth vector field on M.
 - (a) Prove the identity $\operatorname{div}(uv) = \langle \nabla u, v \rangle + u \operatorname{div} v$.

Hint. Use the divergence theorem and the gradient product rule of Exercise 21a.

- (b) Let (M, \mathbf{g}, μ) be a weighted manifold. Prove that the weighted divergence $\operatorname{div}_{\mathbf{g},\mu}$ satisfies the identity $\operatorname{div}_{\mathbf{g},\mu}(uv) = \langle \nabla u, v \rangle + u \operatorname{div}_{\mathbf{g},\mu} v$.
- 29. Recall that the Laplace-Beltrami operator $\Delta = \Delta_{\mathbf{g}}$ on a Riemannian manifold (M, \mathbf{g}) is defined for any function $u \in C^{\infty}(M)$ by $\Delta u = \operatorname{div}(\nabla u)$.
 - (a) (Product rule for the Laplacian) Prove that, for smooth functions u and v on M, $\Delta(uv) = u\Delta v + 2\langle \nabla u, \nabla v \rangle + (\Delta u)v.$
 - (b) (Chain rule for the Laplacian) Prove that, for functions $u \in C^{\infty}(M)$ and $f \in C^{\infty}(\mathbb{R})$, $\Delta f(u) = f''(u) |\nabla u|^2 + f'(u) \Delta u.$
- 30. Let (M, \mathbf{g}, μ) be a weighted manifold. Prove the following identities.
 - (a) (The divergence theorem) If u is a smooth function on M and v is a smooth vector field, such that either u or v has a compact support then

$$\int_{M} (\operatorname{div}_{\mathbf{g},\mu} v) \ u \, d\mu = -\int_{M} \langle v, \nabla u \rangle \, d\mu. \tag{11}$$

(b) (The Green formula) If u, v are smooth functions on M and one of them has a compact support then

$$\int_{M} u \, \Delta_{\mathbf{g},\mu} v \, d\mu = -\int_{M} \langle \nabla u, \nabla v \rangle \, d\mu = \int_{M} v \, \Delta_{\mathbf{g},\mu} u \, d\mu. \tag{12}$$

- 31. (Change of metric and measure) Let (M, \mathbf{g}, μ) be a weighted manifold.
 - (a) Let a(x), b(x) be smooth positive functions on M. Define new metric $\widetilde{\mathbf{g}}$ and measure $\widetilde{\mu}$ by

$$\widetilde{\mathbf{g}} = a \, \mathbf{g}$$
 and $d\widetilde{\mu} = b \, d\mu$,

where the first identity means that $\langle \xi, \eta \rangle_{\widetilde{\mathbf{g}}} = a(x) \langle \xi, \eta \rangle_{\mathbf{g}}$ for all $\xi, \eta \in T_x M$. Prove that the Laplace operator $\Delta_{\widetilde{\mathbf{g}},\widetilde{\mu}}$ of the weighted manifold $(M,\widetilde{\mathbf{g}},\widetilde{\mu})$ is given by the formula

$$\Delta_{\widetilde{\mathbf{g}},\widetilde{\mu}}u = \frac{1}{b}\operatorname{div}_{\mathbf{g},\mu}\left(\frac{b}{a}\nabla_{\mathbf{g}}u\right)$$
 for any $u \in C^{\infty}(M)$.

Hint. Use the Green formula (13).

(b) Consider the following operator L

$$Lu = \Delta_{\mathbf{g},\mu}u + \langle \nabla v, \nabla u \rangle_{\mathbf{g}},$$

acting on functions $u \in C^{\infty}(M)$, where $v \in C^{\infty}(M)$ is a given fixed function. Prove that $L = \Delta_{\mathbf{g},\widetilde{\mu}}$ for some measure $\widetilde{\mu}$, and determine this measure.

32. * Consider in \mathbb{R}^n the following differential operator

$$L = \frac{1}{b(x)} \frac{\partial}{\partial x^{i}} \left(a^{ij}(x) \frac{\partial}{\partial x^{j}} \right),$$

where $(a^{ij}(x))$ is a symmetric positive definite matrix smoothly depending on $x \in \mathbb{R}^n$, and b(x) is a smooth positive function. Find in \mathbb{R}^n a Riemannian metric \mathbf{g} and a measure μ such that the weighted Laplace operator $\Delta_{\mathbf{g},\mu}$ coincides with L.

33. * Fix n reals $a_1, ..., a_n$ and consider the matrix

$$B = \begin{pmatrix} 1 + a_1^2 & a_1 a_2 & a_1 a_3 & \dots & a_1 a_n \\ a_2 a_1 & 1 + a_2^2 & a_2 a_3 & \dots & a_2 a_n \\ a_3 a_1 & a_3 a_2 & 1 + a_3^2 & \dots & a_3 a_n \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_n a_1 & a_n a_2 & a_n a_3 & \dots & 1 + a_n^2 \end{pmatrix}$$

that is, $B = (b_{ij})$ where $b_{ii} = 1 + a_i^2$ and $b_{ij} = a_i a_j$ for $i \neq j$. The purpose of this question is to prove the identity

$$\det B = 1 + a_1^2 + \dots + a_n^2. \tag{13}$$

(a) Consider an auxiliary $(n+1) \times (n+1)$ matrix

$$A = \begin{pmatrix} 1 & -a_1 & -a_2 & \dots & \dots & -a_n \\ a_1 & 1 & & & & \\ a_2 & & 1 & & \mathbf{0} \\ \vdots & & & \ddots & & \\ \vdots & & \mathbf{0} & & \ddots & \\ a_n & & & & 1 \end{pmatrix},$$

where all the entries of the matrix outside the first column, the first row and the main diagonal are zeros. Prove that det $A = 1 + a_1^2 + ... + a_n^2$.

(b) Prove the identity (21).

Hint. Prove first that the matrix AA^T has the block diagonal form

$$AA^T = \left(\begin{array}{cc} c & \mathbf{0} \\ \mathbf{0} & B \end{array}\right),$$

where B is the above matrix and $c = 1 + a_1^2 + ... + a_n^2$.

Remark. The identity (21) will be used in one of the problems in the next problem sheet in order to compute Riemannian measure on certain submanifolds.

11