Blatt 8. Abgabe bis 12.12.2025

Die mit *markierten Aufgaben sind zusätzlich und werden korrigiert Die mit **markierten Aufgaben sind zusätzlich und werden nicht korrigiert.

40. Prove that if a Riemannian manifold (M, \mathbf{g}) is connected then $d(x, y) < \infty$ for all $x, y \in M$, where d is the geodesic distance function.

Hint: Show that, for any $x \in M$, the set $N := \{y \in M : d(x,y) < \infty\}$ is open and closed.

- 41. Let (M, \mathbf{g}) be a Riemannian model, and let x', x'' be two points in $M \setminus \{o\}$ with the polar coordinates (r', θ') and (r'', θ'') , respectively.
 - (a) Prove that, for any piecewise C^1 path γ on M connecting the points x' and x'',

$$\ell_{\mathbf{g}}(\gamma) \geq |r' - r''|$$
.

Deduce that $d(x', x'') \ge |r' - r''|$, where d is the geodesic distance on (M, \mathbf{g}) . *Hint*. Use the metric \mathbf{g} in the polar coordinates on M.

- (b) Prove that if $\theta' = \theta''$ then d(x', x'') = |r' r''|.
- (c) Prove that, for any point $x = (r, \theta)$, we have d(o, x) = r.
- (d) Conclude that in $(\mathbb{R}^n, \mathbf{g}_{\mathbb{R}^n})$ the geodesic distance d(x, y) is equal to |x y| for all $x, y \in \mathbb{R}^n$.
- 42. Let $\gamma\left(t\right):\left(a,b\right)\to M$ be a parametric C^{1} curve on a Riemannian manifold $\left(M,\mathbf{g}\right)$.
 - (a) Consider a time change $\tau:(\alpha,\beta)\to(a,b)$ where the function τ is bijective and C^1 smooth. Then τ determines a new parametric curve

$$\widetilde{\gamma}: (\alpha, \beta) \to M$$

$$\widetilde{\gamma}(s) = \gamma(\tau(s)).$$

Prove that $\ell_{\mathbf{g}}(\widetilde{\gamma}) = \ell_{\mathbf{g}}(\gamma)$.

Remark. This identity means that the length of the parametric curve does not depend on a specific parametrization.

(b) Assume in addition that γ is C^{∞} smooth, injective, $\dot{\gamma}(t) \neq 0$ for all $t \in (a,b)$ and that γ is a homeomorphism of (a,b) onto the image $S = \gamma(a.b)$. Then, by Exercise 17, S is a submanifold of dimension 1. Let ν_S be the induced metric on S. Prove that

$$\ell_{\mathbf{g}}(\gamma) = \nu_S(S).$$

Hint. Write down the induced metric \mathbf{g}_S using the local coordinate t.

43. Let I be an open interval in \mathbb{R} and S be a surface of revolution in \mathbb{R}^{n+1} around I that is given by the equation

$$|x'| = \varphi\left(x^{n+1}\right), \quad x^{n+1} \in I,$$

where $x' = (x^1, ..., x^n)$ and $\varphi(t)$ is a smooth positive function on I.

Here is an example of a surface of revolution:

- (a) Prove that S is a submanifold of \mathbb{R}^{n+1} of dimension n.
- (b) Let us introduce on S the prepolar coordinates (t, θ) as follows: for any point $(x', x^{n+1}) \in S$, set

$$t = x^{n+1} \in I$$
 and $\theta = \frac{x'}{|x'|} \in \mathbb{S}^{n-1}$.

Prove that in the coordinates (t,θ) the induced metric $\mathbf{g}_S := \mathbf{g}_{\mathbb{R}^{n+1}}|_S$ has the form

$$\mathbf{g}_{S} = \left(1 + \varphi'(t)^{2}\right) dt^{2} + \varphi^{2}(t) \,\mathbf{g}_{\mathbb{S}^{n-1}}.$$

Hint. Express all x^{i} in terms of t and the Cartesian coordinates $f^{i}(\theta)$ of θ .

(c) Define the *polar coordinates* (r, θ) on S as follows: θ is as above, while r = r(t) is defined by

$$r = \int_{t_0}^{t} \sqrt{1 + \varphi'(\xi)^2} d\xi, \qquad (23)$$

where t_0 is any fixed point from I. Prove that the metric \mathbf{g}_S has in the coordinates (r, θ) the model form

$$\mathbf{g}_S = dr^2 + \psi^2(r) \,\mathbf{g}_{\mathbb{S}^{n-1}},\tag{24}$$

where the function ψ is defined by the identity $\psi\left(r(t)\right)=\varphi\left(t\right)$.

Hint. Use (23) to express dr via dt.

Remark. The manifold (S, \mathbf{g}_S) is called a *cylindrical* model, which refers the fact that S is homeomorphic to a cylinder $I \times \mathbb{S}^{n-1}$ (rather than to a ball).

(d) Represent in the model form (24) the induced metric of the cone

$$Cone = \left\{x \in \mathbb{R}^{n+1} : |x'| = \alpha x^{n+1} + \beta, \quad x^{n+1} > 0\right\},$$

where $\alpha > 0$ and $\beta \geq 0$.

- 44. * The purpose of this question is to compute the induced metric \mathbf{g}_S on surfaces of revolution given in parametric form.
 - (a) Assume that a surface of revolution S in \mathbb{R}^{n+1} is given by the parametric equations

$$x^{n+1} = a(s)$$
 and $|x'| = b(s)$,

where a, b are smooth functions of s on some interval and a'(s) > 0. Prove that the polar radius r on S (see (23)) can be computed as a function of s by

$$r = \int_{s_0}^{s} \sqrt{(a'(\xi))^2 + (b'(\xi))^2} d\xi,$$

and the function ψ in (24) is determined by the equation $\psi(r(s)) = b(s)$.

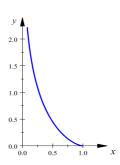
17

(b) The pseudo-sphere PS in \mathbb{R}^{n+1} is given by the parametric equations

$$x^{n+1} = s - \tanh s \text{ and } |x'| = \frac{1}{\cosh s}, \quad s > 0.$$

Prove that the induced metric on PS has in the polar coordinates the form

$$\mathbf{g}_{PS} = dr^2 + e^{-2r} \mathbf{g}_{\mathbb{S}^{n-1}}.$$



A tractrix $x = \frac{1}{\cosh s}$, $y = s - \tanh s$

A pseudosphere in \mathbb{R}^3

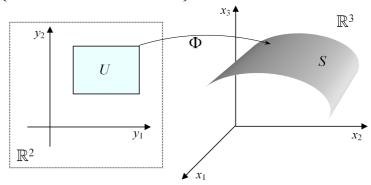
Remark. The pseudo-sphere is the surface of revolution of a tractrix.

45. * Let a surface S in \mathbb{R}^3 be given in a parametric form as follows:

$$S = \left\{ x \in \mathbb{R}^3 : x = \Phi(y), \ y \in U \right\},\,$$

where U is an open subset of \mathbb{R}^2 and $\Phi: U \to \mathbb{R}^3$ is a smooth injective mapping.

Assume that the Jacobi matrix J of Φ has rank 2 at all points.



Assume also that Φ is a homeomorphism of U onto S. Then by Exercise 17 S is a 2-dimensional submanifold of \mathbb{R}^3 .

Let the components of Φ be Φ^i , i=1,2,3. Denoting by y^1,y^2 the Cartesian coordinates in U, consider at any point of U the following two 3-dimensional vectors:

$$u := \left(\frac{\partial \Phi^1}{\partial y^1}, \frac{\partial \Phi^2}{\partial y^1}, \frac{\partial \Phi^3}{\partial y^1}\right) \text{ and } v := \left(\frac{\partial \Phi^1}{\partial y^2}, \frac{\partial \Phi^2}{\partial y^2}, \frac{\partial \Phi^3}{\partial y^2}\right).$$

(a) Prove that the induced metric $\mathbf{g}_S = \mathbf{g}_{\mathbb{R}^n}|_S$ is given in the local coordinates y^1, y^2 by the matrix

$$g_S = \left(\begin{array}{ccc} u \cdot u & u \cdot v \\ u \cdot v & v \cdot v \end{array}\right)$$

where " \cdot " denotes the scalar product of vectors in \mathbb{R}^3 . Prove also that

$$\det g_S = |u \times v|^2 \,, \tag{25}$$

where " \times " denotes the cross product of vectors in \mathbb{R}^3 .

(b) Using (25), compute the induced measure ν_S for the surface S that is given by the parametric equations

$$x^{1} = \sin \varphi \cos \theta$$
, $x^{2} = \sin \varphi \sin \theta$, $x^{3} = \cos \varphi$,

where $\varphi \in (0, \pi)$ and $\theta \in (-\pi, \pi)$.

46. ** Prove that, for any $n \ge 1$,

$$\omega_n = 2 \frac{\pi^{n/2}}{\Gamma(n/2)},\tag{26}$$

where ω_n is the surface area of \mathbb{S}^{n-1} and Γ is the gamma function.

Hint. Consider the integrals

$$I_n = \int_0^{\pi} \sin^n r dr$$

and, using integration by parts, prove that

$$I_n = \frac{n-1}{n} I_{n-2}.$$

By induction obtain that

$$I_n = \sqrt{\pi} \frac{\Gamma\left(\left(n+1\right)/2\right)}{\Gamma\left(\left(n+2\right)/2\right)}.$$

Then prove (26) by means of the inductive relation $\omega_{n+1} = \omega_n I_{n-1}$ from lectures.

Remark. The gamma function is defined for all x > 0 by

$$\Gamma(x) = \int_0^\infty t^{x-1} e^{-t} dt.$$

It is known that $\Gamma(x) = (x-1)!$ for a positive integer x. The following identities are satisfied for all x > -1:

$$\Gamma(x+1) = x\Gamma(x)$$
, $\Gamma(1) = 1$ and $\Gamma(1/2) = \sqrt{\pi}$.