Blatt 9. Abgabe bis 19.12.2025

Die mit *markierten Aufgaben sind zusätzlich und werden korrigiert Die mit **markierten Aufgaben sind zusätzlich und werden nicht korrigiert.

- 47. Denote by σ_n the canonical Riemannian measure on the sphere \mathbb{S}^n and by η_n the canonical Riemannian measure on the hyperbolic space \mathbb{H}^n .
 - (a) Let (φ, θ) be the polar coordinates on \mathbb{S}^2 , where $\varphi \in (0, \pi)$ is the polar radius and $\theta \in (0, 2\pi)$ is the polar angle. Compute $\sigma_2(A)$ for the following subset A of \mathbb{S}^2 :

for the following
$$<\varphi <\alpha, \ \ 0<\theta <\beta\}\,,$$
 and $\beta \in (0,2\pi)$ are given.

$$A = \{ (\varphi, \theta) : 0 < \varphi < \alpha, \quad 0 < \theta < \beta \},\,$$

where $\alpha \in (0, \pi)$ and $\beta \in (0, 2\pi)$ are given.

(b) Let (r, φ, θ) the spherical coordinates on \mathbb{S}^3 , where $r \in (0, \pi)$ is the polar radius and (φ, θ) are the polar coordinates on \mathbb{S}^2 as in (a). Compute $\sigma_3(B)$ for the following subset B of \mathbb{S}^3 :

$$B = \{ (r, \varphi, \theta) : 0 < r < R, \quad 0 < \varphi < \alpha, \quad 0 < \theta < \beta \},$$

and $0 < R < \pi$, $\alpha \in (0, \pi)$, $\beta \in (0, 2\pi)$ are given.

(c) Let (r, θ) be the polar coordinates in \mathbb{H}^2 . Compute $\eta_2(C)$ for the following subset $C ext{ of } \mathbb{H}^2$:

$$C = \{(r, \theta) : 0 < r < R, \ 0 < \theta < \beta\},\,$$

where R > 0 and $\beta \in (0, 2\pi)$ are given.

(d) Let (r, φ, θ) be the spherical coordinates on \mathbb{H}^3 , where r > 0 is the polar radius and (φ, θ) are the polar coordinates on \mathbb{S}^2 as in (a). Compute $\eta_3(D)$ for the following subset D of \mathbb{H}^3 :

$$D = \left\{ (r, \varphi, \theta) : 0 < r < R, \ 0 < \varphi < \alpha, \ 0 < \theta < \beta \right\},$$

where R > 0, $\alpha \in (0, \pi)$, $\beta \in (0, 2\pi)$ are given.

48. Let (M, \mathbf{g}) be a Riemannian manifold. A smooth function u in an open set $\Omega \subset M$ is called harmonic in Ω if $\Delta_{\mathbf{g}}u = 0$ in Ω . Suppose that M is a model manifold of radius r_0 with the area function S(r). A function u in $M \setminus \{o\}$ is called radial if it depends only on the polar radius r (and does not depend on the polar angle θ).

(a) Prove that a smooth radial function u in $M \setminus \{o\}$ is harmonic if and only if

$$u(r) = C_1 \int_{r_1}^{r} \frac{dt}{S(t)} + C_2,$$
 (27)

where C_1, C_2 are arbitrary real constants and $r_1 \in (0, r_0)$ is arbitrary.

Hint. Use the representation of the Laplace-Beltrami operator $\Delta_{\mathbf{g}}$ in polar coordinates using the area function.

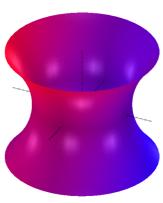
- (b) With help of (27) find all radial harmonic functions in \mathbb{R}^n , \mathbb{S}^n , \mathbb{H}^n for n=2,3.
- 49. (Continuation of Exercises 27 and 34). A catenoid Cat is a surface in \mathbb{R}^3 that is given by the parametric equations

$$x^{1} = \cosh \rho \cos \theta$$
, $x^{2} = \cosh \rho \sin \theta$, $x^{3} = \rho$,

where $\rho \in \mathbb{R}$ and $\theta \in (-\pi, \pi)$.

- (a) Write down the Laplace-Beltrami operator $\Delta_{\mathbf{g}}$ on Cat in the coordinates ρ, θ .
- (b) Considering the Cartesian coordinates x^1 , x^2 , x^3 as functions on the catenoid, prove that they are harmonic, that is,

$$\Delta_{\mathbf{g}} x^1 = \Delta_{\mathbf{g}} x^2 = \Delta_{\mathbf{g}} x^3 = 0.$$



Catenoid

Hint. Use the Riemannian metric on Cat stated in Exercise 34.

50. A non-zero smooth function v on a Riemannian manifold (M, \mathbf{g}) is called an *eigenfunction* of the Laplace-Beltrami operator $\Delta_{\mathbf{g}}$ if, for some constant λ ,

$$\Delta_{\mathbf{g}}v + \lambda v = 0,$$

where the constant λ is called an *eigenvalue* of $\Delta_{\mathbf{g}}$. The *multiplicity* of the eigenvalue λ is defined as the dimension of the *eigenspace*

$$E_{\lambda} = \{ v \in C^{\infty}(M) : \Delta_{\mathbf{g}} v + \lambda v = 0 \}.$$

Prove that all the eigenvalues of the Laplace-Beltrami operator $\Delta_{\mathbb{S}^1}$ on the unit circle \mathbb{S}^1 are given by the sequence $\{m^2\}_{m=0}^{\infty}$, where the eigenvalue 0 has the multiplicity 1, and each eigenvalue m^2 with $m \geq 1$ has the multiplicity 2.

Hint. Write down the equation $\Delta_{\mathbb{S}^1}v + \lambda v = 0$ using the angle $\theta \in (-\pi, \pi)$ as a local coordinate on \mathbb{S}^1 , and find solutions $v(\theta)$ that are 2π -periodic in θ .

51. * Consider in \mathbb{H}^3 a function u given in the polar coordinates (r,θ) by

$$u = \frac{r}{\sinh r}.$$

(a) Prove that, away from the pole of \mathbb{H}^3 , the function u satisfies the equation

$$\Delta_{\mathbb{H}^3} u + u = 0. \tag{28}$$

Hint. Use the representation of $\Delta_{\mathbb{H}^3}$ in the polar coordinates.

(b) Prove that the function u extends to a smooth function on the entire space \mathbb{H}^3 and, hence, satisfies (28) on \mathbb{H}^3 .

Hint. Show first that the function $v = r^2$ is a smooth function on \mathbb{H}^3 (as well as on any model manifold). Then represent u as a smooth function of r^2 .

52. ** Consider the Riemannian manifold (M, \mathbf{g}) , where

$$M = \mathbb{R}^n_+ := \{ (x^1, ..., x^n) \in \mathbb{R}^n : x^n > 0 \}$$

and

$$\mathbf{g} = \frac{(dx^1)^2 + \dots + (dx^n)^2}{(x^n)^2}.$$

Consider on \mathbb{R}^n_+ the following function

$$u(x) = (x^n)^s$$

where s is any real parameter. Prove that $\Delta_{\mathbf{g}}u = \lambda u$, where $\lambda = s\left(s - n + 1\right)$.

- 53. ** A function $P: \mathbb{R}^N \to \mathbb{R}$ is called a *polynomial* if P(x) is a finite \mathbb{R} -linear combination of the *monomials* $x_1^{m_1}...x_N^{m_N}$ where $m_1,...,m_N$ are non-negative integers. The sum $m_1+...+m_N$ is called the *degree* of the monomial. A polynomial P is called *homogeneous* of degree m if all non-zero monomials of P have the same degree m.
 - (a) Let P be a homogeneous polynomial of degree m on \mathbb{R}^{n+1} , where m is a nonnegative integer. Assume that P is harmonic, that is, P satisfies the equation

$$\Delta_{\mathbb{R}^{n+1}}P = 0 \text{ in } \mathbb{R}^{n+1}.$$

Prove that the function $v = P|_{\mathbb{S}^n}$ is an eigenfunction of the Laplace-Beltrami operator $\Delta_{\mathbb{S}^n}$ with the eigenvalue $\lambda = m (m + n - 1)$, that is,

$$\Delta_{\mathbb{S}^n} v + \lambda v = 0$$
 in \mathbb{S}^n .

Hint. Use the identity $P(x) = \alpha^m P\left(\frac{x}{\alpha}\right)$ for all $\alpha \in \mathbb{R} \setminus \{0\}$ and all $x \in \mathbb{R}^{n+1}$ that follows from the homogeneity of P, and represent $\Delta_{\mathbb{R}^{n+1}}$ in the polar coordinates.

(b) Prove that a polynomial in \mathbb{R}^3

$$P(x) = C_1 x_1^3 x_2 x_3 + C_2 x_1 x_2^3 x_3 + C_3 x_1 x_2 x_3^3$$

is harmonic for some non-zero coefficients C_1, C_2, C_3 . Hence, prove that $\lambda = 30$ is an eigenvalue of the Laplace-Beltrami operator $\Delta_{\mathbb{S}^2}$.

Remark. It is possible to prove that all the eigenvalues of $\Delta_{\mathbb{S}^n}$ are given by the sequence $\{m(m+n-1)\}_{m=0}^{\infty}$, and the eigenvalue m(m+n-1) has the multiplicity

$$\frac{(n+m-2)!(n+2m-1)}{(n-1)!m!}$$

if $m \ge 1$, and 1 if m = 0.