

Mock exam (Probeklausur) “Analysis on manifolds”, WS 2025/26

Duration of the exam 120 minutes. Each problem is worth of 25 points.

Full mark (Note 1,0) \approx 90-95 points, pass mark (Note 4,0) \approx 45-50 points.

No scripts, books, calculators, computers etc. are allowed.

Problem 1

Let M be a smooth manifold.

- (a) Give the definitions of a tangent vector and a tangent space $T_x M$.
- (b) State and prove a theorem about the dimension of $T_x M$.

Problem 2

Let (M, \mathbf{g}) be a Riemannian manifold.

- (a) Give the definitions of the differential df and gradient ∇f for a smooth function f on M . State without proof the divergence theorem giving the definition of the divergence $\operatorname{div} v$ of a smooth vector field v on M .
- (b) Prove the product rule for the operators d and ∇ : for any two smooth functions u and v on M ,

$$d(uv) = u dv + v du \quad (1)$$

and

$$\nabla(uv) = u \nabla v + v \nabla u. \quad (2)$$

- (c) Prove the product rule for divergence: for any smooth function u and any smooth vector field v on M ,

$$\operatorname{div}(uv) = \langle \nabla u, v \rangle + u \operatorname{div} v. \quad (3)$$

Problem 3

Let (M, \mathbf{g}) be a Riemannian manifold.

- (a) Let S be a smooth submanifold of M of dimension m . Give the definition of the induced metric \mathbf{g}_S on S . State and prove the formula for the induced metric in the local coordinates.
- (b) Let Γ be the graph of a smooth function $f : U \rightarrow \mathbb{R}$, where $U \subset \mathbb{R}^{n+1}$ is an open set. Let y^1, \dots, y^n be the Cartesian coordinates in U . Considering Γ as a submanifold of \mathbb{R}^{n+1} , prove that the components of the induced metric \mathbf{g}_Γ are given by the formula

$$(g_\Gamma)_{ij} = \delta_{ij} + \frac{\partial f}{\partial y^i} \frac{\partial f}{\partial y^j},$$

where $\delta_{ij} = 1$ if $i = j$ and $\delta_{ij} = 0$ if $i \neq j$.

(c) Prove that the induced measure ν_Γ on Γ is given in the coordinates y^1, \dots, y^n by the formula

$$d\nu_\Gamma = \sqrt{1 + \left(\frac{\partial f}{\partial y^1}\right)^2 + \dots + \left(\frac{\partial f}{\partial y^n}\right)^2} dy. \quad (4)$$

Hint. You can use without proof the identity

$$\det(\delta_{ij} + a_i a_j)_{i,j=1}^n = 1 + a_1^2 + \dots + a_n^2. \quad (5)$$

Problem 4

Let (M, \mathbf{g}) be a Riemannian manifold.

- (a) Give the definition of the Laplace-Beltrami operator $\Delta_{\mathbf{g}}$ acting on smooth functions on M . State and prove the representation of $\Delta_{\mathbf{g}}$ in the local coordinates.
- (b) Define the notion of a model manifold (M, \mathbf{g}) with the profile function $\psi(r)$. State and prove the representation of the Laplace-Beltrami operator $\Delta_{\mathbf{g}}$ in the polar coordinates (r, θ) of M . Write down the Laplace-Beltrami operator of the hyperbolic space \mathbb{H}^n in the polar coordinates using the profile function $\psi(r) = \sinh r$ of the hyperbolic space.

Problem 5

Let (M, \mathbf{g}, μ) be a weighted manifold and $\Delta = \Delta_{\mathbf{g}, \mu}$. Let Ω be an open subset of M .

- (a) Define a weak Dirichlet problem in Ω . State without proof a theorem about existence and uniqueness of solution and about the properties of the resolvent operator R_α for $\alpha > 0$.
- (b) Let Ω be precompact. State without proof a theorem about existence of the eigenfunctions and the eigenvalues of Δ in Ω .
- (c) $\{v_k\}_{k=1}^\infty$ be an orthonormal basis in $L^2(\Omega)$ that consists of the eigenfunctions of Δ in Ω , and $\{\lambda_k\}_{k=1}^\infty$ be the corresponding eigenvalues. Let a function $f \in L^2(\Omega)$ have an eigenfunction expansion $f = \sum_{k=1}^\infty a_k v_k$ that converges in $L^2(\Omega)$. Prove that, for any $\alpha > 0$,

$$R_\alpha f = \sum_{k=1}^\infty \frac{1}{\alpha + \lambda_k} a_k v_k. \quad (6)$$

Using (6) prove the following *resolvent identity*: for all $\alpha, \beta > 0$

$$R_\alpha - R_\beta = (\beta - \alpha) R_\alpha R_\beta. \quad (7)$$