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Chapter 1

Riemannian manifolds and
Laplace-Beltrami operator

08.04.24 Lecture 1

We introduce in this Chapter the notions of smooth and Riemannian manifolds, Rie-
mannian measure, and the Riemannian Laplace operator.

1.1 Topological spaces and manifolds

Topological spaces. Recall that a topological space is a couple (M, Q) where M
is any set and O is a collection of subsets of M that are called open and satisfy the
following axioms:

e () and M are open;
e union of any family of open sets is open;

e intersection of two open sets is open.

A subset F' of M is called closed if its complement F°:= M \ F is open. A subset K
of M is called compact if any open covering {€,} of K contains a finite subcover. It
is easy to prove that any closed subset of a compact set is also compact (Exercise 1).

Definition. A topological space M is called Hausdorff if, for any two disjoint points
x,y € M, there exist two disjoint open sets U,V C M containing x and y, respectively.
One says in this case that the sets U and V' separate the points x, y.

In a Hausdorff space M, any compact subset K of M is closed (see Exercise 2).

Definition. We say that M has a countable base if there exists a countable family
{Bj};il of open sets in M such that any other open set is a union of some sets B;.
The family {B;} is called a base of the topology of M.

Let M be a topological space and S be any subset of M. Then S itself is a
topological space with the induced topology, that is, open sets in .S are intersections of

1



2CHAPTER 1. RIEMANNIAN MANIFOLDS AND LAPLACE-BELTRAMI OPERATOR

open sets in M with S. If M has a countable base, then S also has countable base; if
M is Hausdorff, the same is true also for S.

Let X and Y be two topological spaces. A mapping F': X — Y is called continuous
if for any open subset V of Y, the preimage F~!(Y) is an open subset of X. Tt is known
that if F' is continuous then, for any compact subset K of X, the image F(K) is a
compact subset of Y.

A mapping F' : X — Y is called a homeomorphism if F' is bijective, and both F
and its inverse mapping are continuous.

Any metric space (M, d) is a topological space with the following standard topology:
a subset (2 C M is called open if for any x € €2 there is a metric ball

B(z,r):={ye M :d(z,y) <r}

with radius r > 0 that is a subset of (2. It is easy to see that all metric balls are open
sets. The topology of a metric space is automatically Hausdorff because for any two
distinct points =,y € M, the balls B(z,7/2) and B(y,r/2) with r = d(z,y) separate
the points z,y.

A metric space has a countable base if and only if it is separable, that is, if it
contains a countable dense subset D. Indeed, if such a set exists then all balls of
rational radii centered at the points of D form a countable base. Conversely, if {B;}
is a countable base then choosing one point in each B;, we obtain a countable dense
subset D of M.

For example, R" as a metric space with the Euclidean distance is an example of a
Hausdorff topological space with a countable base.

(C-manifolds. Let us define the notion of a manifold.

Definition. A n-dimensional chart on a topological space M is any couple (U, ) where
U is an open subset of M and ¢ is a homeomorphism of U onto an open subset of R"
(which is called the image of the chart).

Any chart (U, ) on M gives rise to the local coordinate system x',x? ...,z" in U
by taking the p-pullback of the Cartesian coordinate system in R™. Hence, we can say
that a chart is an open set U C M with a local coordinate system. Normally, we will
identify U with its image ¢(U) so that the coordinates z', 2%, ..., 2" can be regarded as
the Cartesian coordinates in a region in R".

(D)

A chart on the surface of the earth
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Definition. A C-manifold of dimension n is a Hausdorff topological space M with
a countable base such that any point of M belongs to a n-dimensional chart. The
collection of all n-dimensional charts on M is called an atlas.

This terminology originates from geography and refers to a geographical atlas of
the Earth, where each sheet can be regarded as (the image of) a 2-dimensional chart
on the Earth’s surface.

For example, R™ is a C-manifold and U = R" is a single n-dimensional chart that
covers R". Let us consider some subsets of R" that are C'-manifolds.
Example. Let V' be an open subset of R” and f : V — R™ be a continuous mapping.
Then its graph
I'={(z,f(z)) eR"™:2€V}

is a C-manifold because it is covered by a single n-dimensional chart (I", ¢) where

p:I'=V
oz, f(x) =2

is a homeomorphism.

Example. A hypersurface M in R"*! is a subset of R™*! such that, for any point
x € M, there exists an open set  C R™"! containing x such that Q N M is a graph
with respect to one of the coordinates z?, ..., 2"*! of a continuous function f: V — R
defined on an open subset V' of R”. Since 2N M is a chart and M can be covered by
such charts, we conclude that M is a C'-manifold.

Example. Let F : R""! — R be a C'-function. Consider the null set of F, that is,
the set
M ={zeR"™: F(z) =0},

and assume that VF(z) # 0 for any point x € M. Then M is a hypersurface and,
hence, a C-manifold of dimension n (Exercise 7).
For example, the unit sphere

S = {:l: e R . |z|| = 1}

is a C-manifold of dimension n because it is the null set of the function F(x) = ||z|*—1,
and VF =2z # 0 for all x € S™.

12.04.24 Lecture 2

The hypothesis of a countable base will be mostly used via the next simple lemma.
Let us first fix some notations. For any set A C M, define the closure A of A as the
intersection of all closed sets containing A. In other words, A is the smallest closed
set containing A. We will use the relation A € B (compact inclusion) between two
subsets A and B of M, which means the following: the closure A of A is a compact
set and A C B. A set A is called precompact (or relatively compact) if its closure A is
compact.
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Lemma 1.1 For any C-manifold M, there is a countable family {U;};°, of charts
covering all M and such that U; € V; for some chart V;.

Proof. Any point x € M is contained in a chart, say V,. Choose U, € V, to be a
small open ball around x so that U, is also a chart. Hence, we obtain a covering of
M by charts {U,},.,, such that each of then is compactly included in another chart.
It remains to choose a countable subcover. By definition, manifold M has a countable
base. Choose from this base only those elements that are contained in one of the sets
U,; let it be a sequence {Bj}?il- Since U, is open, it is a union of some sets B;. It
follows that {B;} is a covering of M. Select for each B; exactly one chart U, containing
Bj, say U,,. Thus, we obtain a countable family of charts {ij} covering M, which
finishes the proof. m

In particular, we see that a C-manifold M is a locally compact topological space.

If (U,p) and (V,4) are two charts on a C-manifold M then in the intersection
U NV two coordinate systems are defined, say z!,...,2™ and y!, ...,y The change
of the coordinates from z!,...,2" to y',...,y" is given then by continuous functions
y' = y'(z!, ..., 2"™) because they are the components of the mapping 1 o !, Similarly,
the change from y',...,y" to x!, ..., 2™ are given by continuous functions z’ (3!, ..., y™)
that are the components of the mapping ¢ o ¢~

x! . xn yLon

The mapping 1) o o1

Smooth manifolds. Now we define the notion of a smooth manifold.

Definition. A family A of charts on a C-manifold is called a C*-atlas (where k is a
positive integer or +00) if the charts from A covers all M and the change of coordinates
in the intersection of any two charts from A is given by C*-functions. Two C*-atlases
are said to be compatible if their union is again a C*-atlas. A family of all compatible
C*-atlases determines a C*-structure on M.

Definition. A C*-manifold is a C-manifold endowed with a C*-structure. A smooth
manifold is a C'°°-manifold.

Alternatively, one can say that a C*-manifold is a couple (M, .A), where M is a
C-manifold and A is a C*-atlas on M. However, if the two C*-atlases A and A’ are
compatible then (M, A) and (M, A’) determine the same C*-manifold.
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In this course we are going to consider mostly smooth manifolds. By default, the
term “manifold” will be used as a synonymous of “smooth manifold”. By a chart on a
smooth manifold we will always mean a chart from its C'*°-structure, that is, any chart
compatible with the defining atlas A.

Here are some examples of smooth manifolds.

1. R™ with the atlas consisting of a single chart (R™,id).

2. Any C*°-hypersurface that is locally a graph of a C*°-function, is a smooth man-
ifold.

3. If F: R — R be a C*°-function whose null set M = {F = 0} is non-degenerate
then M is a smooth manifolds. For example, the unit sphere S™ is a smooth
manifold.

If ©2 is an open subset of M then () naturally inherits all the above structures of
M and becomes a smooth manifold if M is so. Indeed, the open sets in §2 are defined
as the intersections of open sets in M with €2, and in the same way one defines charts
and atlases in 2.

If fis a (real valued) function on a smooth manifold M and k is a non-negative
integer or co then we write f € C¥(M) (or f € C*) if the restriction of f to any chart
is a C* function of the local coordinates x',...,2". The set C* (M) is a linear space
over R with respect to the usual addition of functions and multiplication by constant.

1.2 Cutoff functions and partition of unity

For any function f € C' (M), its support is defined by

supp f ={z € M : f (z) # 0},
where the bar stands for the closure. It follows from the definition of supp f that if
f = 0 outside a closed set F' C M then supp f C F.
Denote by C¥(M) the subspace of C* (M), which consists of functions with compact

supports. If € is an open subset of M then C§ () denotes the set of all functions
f € C¥(M) such that supp f C Q.
Definition. Let M be a smooth manifold, U be an open subset of M and K be a
compact subset of U. We say that a function function ¢ on M is a cutoff function of
K in U if

e pe Gy (U)

e ¢ =1 in a neighborhood of K

e 0<p<1lon M.

[N

A cutoff function ¢ of K in U
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Lemma 1.2 For any open subset U of R™ and any compact set K C U, there exists a
cutoff function of K in U.

In the proof we use the notion of a mollifier. We say that a function ¢ € C§° (R")
is a mollifier if suppy C By (0), ¥ > 0, and

Ydp = 1. (1.1)
R
For example, the following function
cex —;) , x| < 1/2
¥ (z) = P ( (1-122)° 2l <1/ (1.2)
0, 7] = 1/2

is a mollifier, for a suitable normalizing constant ¢ > 0.

-0.5 -0.4 -0.3

The mollifier (1.2) in R.

If v is a mollifier then, for any 0 < € < 1, the function
o, (T
—
3

is also a mollifier, and supp ¥, C B (0).

Proof of Lemma 1.2. Let V be an open neighborhood of K such that V € U, and
set f = 1y. Fix a mollifier 1, ¢ > 0 and consider the convolution

f*w5<x): Rnf(x_y>wa(y>dy: Ba( )f(Z)wa(fU_z)dZ-

Since f € L' (R"), we have f *_ € C*(R"). Clearly,

0< fxtp(x) <sup|f] Rnwg(y)dyzsuplfl =1L

If £ is small enough then f *1_ is supported in U so that f v, € C§° (U).
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Construction of a cutoff function

Besides, for small enough ¢ and for any x € K, we have B.(xr) C V, whence
f|B5(x) = 1 and

f*wau*):/B()f(zwg(:c—z)dz: b (x—2)dz=1

Be(x)

Hence, the function ¢ = f * 1. is a cutoff function of K in U, provided ¢ is small
enough. m

The following statement provides a convenient vehicle for transporting the local
properties of R™ to manifolds.

Proposition 1.3 Let K be a compact subset of a smooth manifold M and {Uj}?ﬂ
be a finite family of charts covering K. Then there exist non-negative functions ¢; €

Cg° (U;) such that Z?Zl ¢; = 1 in an open neighbourhood of K and 25;1 ; < 1in
M.

A sequence of functions {gpj} as in Proposition 1.3 is called a partition of unity at
K subordinate to the cover {U,}.

A particular case of Proposition 1.3 with & = 1 says that, for any compact K and
any chart U D K, there exists a non-negative function ¢ € C§° (U) such that ¢ =1 in
a neighborhood of K and ¢ <1 on M; that is, ¢ is a cutoff function of K in U.

Corollary 1.4 Let {U,} be an arbitrary family of charts covering M. Then, for any
function f € C3° (M), there exists a finite sequence {j}}f:1 of functions from C§° (M)
such that each f; is supported in one of the charts U, and

f=f+..+fx on M. (1.3)

Proof. Let K = supp f and let Uy, ..., Uy be a finite subfamily of {U,} that covers
K. By Proposition 1.3, there exists a partition of unity {goj}k at K subordinate to

j=1
{Uj}le. Set f; = fiy; so that f; € Cg° (U;). Then we have

k
ij:f on M,
j=1

because on K we have ;#; = 1, while outside K all the functions f and f; vanish.
|
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Proof of Proposition 1.3. We claim that there exists open sets V; € U; such that
{VJ}Z:1 is a covering of K. Indeed, since any point « € K belongs to a chart Uj, there
is a ball B, in this chart centered at x and such that B, € U;. The family of balls
{B;},cx obviously covers K. Since K is compact, there is a finite subfamily {B;}.",
covering K. For any j = 1,..., k, consider the set

{i:Bi@U]‘}

By construction, the set V; is open, V; @ U;, and the union of all sets V; covers K.

Set V; is the
union of the balls

Function 1; is a cutoff function of V; in Uj.

15.04.24 Lecture 3

By Lemma 1.2 there exists a cutoff function ¢; € Cg°(U;) of V] in U; considering
Uj as a subset of R". Now we consider U; as a subset of M and extend ¢; to M by
setting ¢; = 0 in M \ Uj, so that ¢, € Cg°(M).

Define now functions ¢;, j =1,...,k, by
¥; = wj (1 - 1/11) (1 - wj—l) ) (1-4)
that is,

01 =Py, Py =y (1 - 2/Jl) s Pp = Uy (1 - 2/11) (1 - wk—l) .
Obviously, ¢; € Cg° (U;) and ¢; > 0. It is easy to check by induction in I the following
identity

1
L= ¢y =1=2y) .. (1-wy). (1.5)
j=1

Indeed, for [ =1 it is trivial. If it is true for some [, then

I+1

1_2:%:41_%y“a—w0—%ﬂ
j=1

A=) (L=y) = by (1= ¢y) . (1 =4y
(L =v) . (I =t) (1= ¥iya)
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which proves the induction step.
It follows from (1.5) with [ = k that

k

=11 =) .. (1-1y) <L (1.6)

i=1

Since 1 —1,; = 0 on Vj, (1.6) implies that Z?Zl ¢; = 1 on the union U;?:l V; that is an
open neighborhood of K, which was to be proved. m

1.3 Tangent space and tangent vectors

Let M be a smooth manifold and zy be a point on M.

Definition. A mapping ¢ : C*° (M) — R is called an R-differentiation at o € M if
e ¢ is linear;
e ¢ satisfies the product rule in the following form:

§(fg) =¢(f) g (o) +£(9) f (w0),

for all f,g € C*°.

The set of all R-differentiations at xz( is denoted by 7, M. For any &,n € T,,M one
defines the sum & + 7 as the sum of two functions on C'*°, and similarly one defined A\
for any A € R. It is easy to check that both £ + 71 and A¢ are again R-differentiations,
so that T, M is a linear space over R.

Definition. The linear space T,,M is called the tangent space of M at xy, and its
elements (that is, R-differentiations) are also called tangent vectors at x.

In R™ we have the following example of R-differentiation:

€)= 52 (w),

that is clearly linear and satisfies the product rule. In particular, 7, ,R™ contains n
R-differentiations %, e 8% that are clearly linearly independent.
Moreover, for any vector v € R", the directional derivative %(:1:0) is also a R-

differentiation, which allows us to identify R™ as a subspace of T, ,R". Since

of _ 0f

%_Uﬁx"

(where we assume the convention about summation over repeated indices; in this case,
summation over i), it follows that

0 . 0

%:U ozt

Theorem 1.5 If M is a smooth manifold of dimension n then the tangent space T, M
s a linear space of the same dimension n.
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Consequently, dim 7}, R" = n, which implies that every R-differentiation in R™ has
the form % for some v € R™. We will prove Theorem 1.5 after a series of claims.

Claim 1. Let U C M be a chart and V € U be an open subset of U. Then, for any
function f € C> (U), there exists a function F' € C§° (M) such that f = F onV.

Proof. Indeed, let ¢ be a cutoff function of V in U (see Lemma 1.2).

f

v v

U
Functions f and v in Claim 1

Then define function F' by

F=uf inl,
F=0 inM\U,

which clearly satisfies all the requirements. m

Claim 2. Let f € C* (M) and let f =0 in an open neighbourhood U of the point
xg € M. Then £(f) =0 for any & € T, M. Consequently, if fi and fo are smooth
functions on M such that fi = fo in an open neighbourhood of a point xqg € M then

§(fr) =& (f2) for any & € Ty M.

Proof. By reducing U we can assume that U is a chart. Let V' be an open neighborhood
of xo that is compactly included in U. Let ¥ be a cutoff function of V' in U so that
Y (xg) = 1. Then we have fi¢p =0 on M, which implies £ (fi) = 0.

Functions f and v in Claim 2

On the other hand, we have by the product rule

E(Y) = E(f)P(xo) + & W) fwo) = E(f),

because 9 (z9) = 1 and f(z9) = 0. Hence, & (f) = 0. The second part follows from the
first one applied to the function f=f; — fo. =

Remark. Originally a tangent vector { € T,, M is defined as a functional on C'* (M).
The results of Claims 1 and 2 imply that £ can be regarded as a functional on C* (U)
where U is any open neighbourhood of xy. Indeed, by Claim 1, for any f € C* (U)
there exists a function F' € C*° (M) such that f = F' in a small open neighborhood V
of Zo.
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U

Functions f € C*°(U) and F € C3°(M)

Hence, define £(f) by £ (f) := £ (F). By Claim 2, this definition of £ (f) does not
depend on the choice of F.

Claim 3. Let f be a smooth function in a ball B = Bg(o) in R™ where o is the origin
of R™. Then there exist smooth functions hy, hs, ..., h, tn B such that, for any x € B,

f(z) = fo) + ' hi(x), (L.7)
where we assume summation over the repeated index i. Also, we have
of
hi(o) = =(0). 1.8
(0) = 52-(0) (1)

Proof. By the fundamental theorem of calculus applied to the function ¢ +— f (tx) on
the interval ¢ € [0, 1], we have

fla) = f0)+ [ G (1.9

whence it follows

1 af
= '——(tz)dt.
@) = flo)+ | a' 5t
Setting
[
hi(z) = i axi(m)dt

we obtain (1.7). Clearly, h; € C*°(B). The identity (1.8) follows from the line above
by substitution x = 0. =

Claim 4. Under the hypothesis of Claim 3, there ewist smooth functions h;; in B
(where i,7 = 1,2,...,n) such that, for any x € B,

of
oxt

f(z) = f(o) + o (0) + 227 hyj (). (1.10)

Proof. Applying (1.7) to the function h; instead of f we obtain that there exist smooth
functions h;; in B, such that
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Substituting this into the representation (1.7) for f and using h;(0) = 88 gf (0) we obtain
i i 0f i
f(x) = f(o) + 2'hi(z) = f(o) + x Py (0) + 'z’ hij(x).

Now we can prove Theorem 1.5.

Proof of Theorem 1.5. Let z!, 22, ..., 2" be local coordinates in a chart U containing
xo. All the partial derivatives 8?61- evaluated at xy are R-differentiations at xg, and they
are clearly linearly independent. We will prove that any tangent vector & € T,,, M can

be represented in the form

£ = §Z% where & =¢ (xl) . (1.11)

Note that, by the above Remark, the R-differentiation ¢ applies also to smooth func-
tions defined in a neighborhood of zg; in particular, £ (z*) is well-defined. The iden-
tity (1.11) implies that {8%}?:1 is a basis in the linear space T,,M and, hence,
dim T, M = n.

Without loss of generality, we can assume that z( is the origin o of the chart U.
For any smooth function f on M, we have by (1.10) the following representation in a
ball B C U centred at o:

F() = F(0) + 4 9 o) 4 aahy(a)

where h;; are some smooth functions in B. Using the linearity of £, we obtain

E() = £0) J(0) + € (+) o2 (0) 1 & (e'a%hy). (1.12)

By the product rule, we have

E1) =& =¢M)1+£(1)1=26(1),
whence £ (1) = 0. Set u; = 27h;;. By the linearity and the product rule, we have
3 (xzuz) =¢ (l’l) ui(0) + & (u;) #*(0) = 0,
because (o) = 0 and wu; (0) = 27 (0) hy; (0) = 0. Hence, in the right hand side of
(1.12), the first and the third term vanish. Setting &' := £ ("), we obtain

i Of

et (1.13)

§(f)=¢

which is equivalent to (1.11). m
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The numbers ¢' are referred to as the components of the vector ¢ in the coordinate
system x', ..., 2" One often uses the following alternative notation for & (f):

_of
Then the identity (1.13) takes the form
of _ Lof

which allows to think of £ as a direction at xy and to interpret g% as a directional
derivative.

A vector field on a smooth manifold M is a family {{ (z)},.,, of tangent vectors
such that ¢ (z) € T,M for any x € M. In the local coordinates x',...,z", it can be
represented in the form

Ea) = € (1) i

The vector field € (z) is called smooth if all the functions &' () are smooth in any chart.

1.4 Cotangent space

As any other finite dimensional linear space, T, M possesses the dual space T} M that
consists of all linear functionals on T, M:

w:T,M — R.
Then 77 M is also a linear space over R; moreover, it is known from linear algebra that

dimT; M = dim T, M = n.

Definition. The linear space T M is referred to as the cotangent space of M at x.
The elements of T7*M are called tangent covectors.

For any w € Ty M and & € T, M, the value w(§) will be also denoted by (w, &) and
referred to as the pairing of w and £. This notation reflects the fact that every vector
¢ € T, M can be regarded as a linear functional on 7 M given by £ (w) = (w, ). Note
that all linear functionals on 7 M have this form (that is, the second dual space T,;* M
is identified with T, M).

Fix a point x € M and let f be a smooth function in a neighborhood of .
Definition. Define the differential df at x as a tangent covector as follows:

(df, &) == ¢ (f) for any £ € T, M, (1.15)

where £(f) is the value of the R-differentiation ¢ at the function f.

Given the local coordinates z?, ..., 2™, we can consider each coordinate z* as a func-

tion in the chart. In particular, dz® is a tangent covector.
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Lemma 1.6 {dz'}; | is a basis in T:M.

Proof. Indeed, any basis {ei,...,e,} in a linear space has a dual basis {e!,...,e"} in
the dual space that is defined by

i v A 17 j:Z,
<e’ej>_5j‘_{o, j#i.

Since { 8‘?0,.} is a basis in T, M, we obtain that {dz'} is the dual basis in T M because

Consequently, any tangent covector w € Ty M has an expansion in this basis:
w = w;dz’,

where the coefficients w; € R are referred to as the components of w. Hence, for any

tangent vector £ = & 621-, we obtain

(w, &) = <Wid$iafj%> = wifjéé = w;".

2]

57 We obtain
X

In particular, for £ =

0

W; = (w, %>

For example, for the covector df we obtain from (1.15) that

B o, Of
and, hence,
_9f
df = axidx . (1.16)

1.5 Riemannian metric

Let M be a smooth n-dimensional manifold.

Definition. A Riemannian metric (or a metric tensor) on M is afamily g = {g(x)},.,,
such that, for any x € M, g(x) is a symmetric, positive definite, bilinear form on the
tangent space T, M, smoothly depending on x € M.

The metric tensor determines an inner product (-, ), in any tangent space 7,,M by

&g :=g(x)(&n) forall &,ne T, M

so that T, M becomes a Euclidean (=inner product) space.
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In the local coordinates 2!, ..., 2", we have

0 .0 o
= v N = g;: tpd
e = (€07 50) =95 )€
where
o 0
95 () = (550 5 5 e (1.17)
Clearly, (g;; (m))?jzl is a symmetric positive definite n x n matrix. The functions g;; (x)
are called the components of the metric tensor g in the coordinates z!, ..., z".

Definition. The condition that g (z) smoothly depends on x means that all the com-
ponents g;; (z) are C*>°-functions in any chart.

The metric tensor can be represented in the local coordinates as follows:

g = g;;da'dal |, (1.18)

where dr'dz’ stands for the tensor product of the covectors dx' and dx’ (sometimes
also denoted by dz’ ® dz’), that is a bilinear functional on T, M defined by

da'dx? (€, ) = (da', €){d?,n) for all &, € T, M.

Indeed, since
(da', ) = € (a¥) = &=t = €
it follows that o o
gijda'dz? (§,n) = gi; &'’ = (& e,
which proves (1.18).

Definition. A Riemannian manifold is a couple (M, g) where M is a smooth manifold
and g is a Riemannian metric on M.

A trivial example of a Riemannian manifold is R™ with the canonical Euclidean
metric ggn defined in the Cartesian coordinates z!, ..., 2" by

grn = (dx1)2 + o+ (da™)?.

For this metric, we have (g;;) = id.

Let (M, g) be a Riemannian manifold. The metric tensor g can be regarded as a
linear mapping
g(z): T,M—T:M (1.19)

as follows. For any vector £ € T, M, define g (z) & € T¥M by the identity

(g(z)&,m) = (€, m)g for all n € T, M, (1.20)

Rewriting (1.20) in the local coordinates, we obtain

(g (x)&);1m = g€’
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which implies

(g () €); = gis€' | (1.21)

In particular, the components of the linear operator g(z) are g;; — the same as the
components of the metric tensor.

If the Riemannian metric g is fixed then it is customary to drop g from all the
notations. For example, the notation of the inner product of two tangent vectors &, 7
becomes (£,71). Moreover, the notation for the covector g (x)¢{ becomes just &; that
is, the same as for the vector. However, the notation &' is still used to denote the
components of the vector ¢ in the basis { 8?32}, while &; will be used to denote the
components of the covector ¢ in the basis {dz7}. The relation between the vector
components &' and the covector components & ; 1s given then by

§j = (g () f)j = gijfi'

The operation of passing from £ to & ; 1s called lowering the inde.

26.04.24 Lecture 5

Lemma 1.7 The linear operator g(z) : T, M — T M is invertible. The inverse map-
ping
gt (x): T'M — T,M

has in the local coordinates the following form for any w € T M:

(g7 (x)u)' = gVu; | (1.22)

where the matriz (gV) is the inverse of (gi;), that is,
(97) = (95) "
Proof. The operator g(z) is injective: indeed, if £ # 0 then also g (x) £ # 0 because

(8(2)6.6) = (6.6}, > 0.

Since the spaces T, M and T}M have the same dimensions, it follows that g(z) is
bijective and, hence, invertible.
Fix v € T M and set ¢ = g~!(z)u so that u = g(z)¢. By (1.21) we have

uj = gkjfk-
Using the fact that (g*) is the inverse matrix of (g;;), we obtain
gijuj = gijgkjﬁk = gijgjkgk = (ﬁcfk = fi,

which is equivalent to (1.22). m
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Denoting the vector g~ (x) v also by u, we obtain the following relation between
the vector and covector components of u:

u = (g7 (2) u)Z = g"u;.

The operation of passing from u; to u’ is called raising the index. Clearly, this is the
inverse operation to lowering the index.

Definition. The operator g~! (x) determines an inner product in T M as follows: for
all u,v € Ty M, set

(u,v)g1 = (g7 (x) u, 87" (2) V). (1.23)

In the local coordinates we have
(u, V) g1 = g7uv; (1.24)

because by (1.23), (1.20) and (1.22)

(U, v)g-1 = (gt (2)u, gt (1) v)g = (u, g7 " (z)v) = u (g_l (x) v)i = g"uv;.

By elimination g from all the notations, we see that the expression (u,v) has the same
value in the following four possible cases:

e u and v are covectors, and (u,v) is their inner product in T M;

e u and v are vectors, and (u,v) is their inner product in 7, M;

e u is a covector, v is a vector, and (u,v) is their pairing;

e u is a vector, v is a covector, and (u,v) is their pairing.

Definition. For any f € C>°(M) define its gradient V f (x) at any point x € M by

Vi) =g (2)df (2), (1.25)

that is, V f (z) is a vector that is obtained from the covector df (x) by raising the index.

Applying (1.20) with £ = V f (z), we obtain, for any n € T, M,

(Vfing = (df,n) = g—£ : (1.26)

which can be considered as an alternative definition of the gradient. In the local
coordinates z', ..., x™, we obtain by (1.22) and (1.25)

. L 0f
=g7—| 1.27
(Vi) =g oL (127
If h is another smooth function on M then we obtain from (1.24)
. Of Oh
(Y, Vh)g = (df. dhygr = g7 (1.28)

Oxi O3
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1.6 Submanifolds

The notion of a submanifold. If M is a smooth manifold then any open subset
Q) C M trivially becomes a smooth manifold by restricting all charts to €2. Also, if g
is a Riemannian metric on M then g|, is a Riemannian metric on 2. Hence, any open
subset © of M can be considered as a (Riemannian) submanifold of a (Riemannian)
manifold M of the same dimension.

Consider a more interesting notion of a submanifold of smaller dimension. Any
subset S of a smooth manifold M can be regarded as a topological space with induced
topology. It is easy to see that S inherits from M the properties of being Hausdorff
and having a countable base.

Definition. A set S C M is called a (embedded) submanifold of dimension m if, for
any point xy € S, there is a chart U > zy in M with local coordinates z!, ..., 2™ such
that SN U is given in the local coordinates by the equations

gt =" = =" =0. (1.29)

The condition (1.29) implies that SN U is a chart on S with coordinates z*, ..., 2™
and, consequently, S is a smooth manifold of dimension m.

More precisely this can be justified as follows. Let the coordinates in U be given
by a homeomorphism ¢ of U onto an open subset of R™. Then the condition that S in
U is given by the equations (1.29) means that

e(SNU)={zecp):2™" = =2"=0} =¢((U)NR",
where we identify R™ with a subspace of R" as follows: R™ = {z € R" : 2™"! = ... = 2" = 0} .

T /QD( SNU)
LT
a B / T\

y ],
D S

M T Rn

Hence, ¢|sny can be considered as a mapping from S N U to R™, and this mapping
is an homeomorphism of S N U onto the open set ¢ (U) NR™. Hence, (SNU, ¢|sv)
is a m-dimensional chart on S, with the local coordinates x!,2,...,2™. With the
atlas consisting of all such charts, the submanifold S becomes a smooth m-dimensional
manifold.

Lemma 1.8 Let M be a smooth manifold of dimension n and F': M — R be a smooth
function on M. Consider the null set of F', that is

S={reM:F(x)=0}.
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If
dF #0on S (1.30)

then S 1s a submanifold of dimension n — 1.

Proof. Fix a point 2o € S and a chart U containing xy. The condition dF(zg) # 0

means that one of the partial derivatives g; does not vanish at zg. Without loss of

generality we can assume that %(mo) # 0.

By the implicit function theorem,
there exists an open subset V C U, N
containing xg, such that, for x € V|
equation F'(z) = 0 can be resolved
with respect to the coordinate x™;
that is, for all x € V,

F(z)=0 & 2" = f(z',...,2"7"),

where f is a smooth function on an

open domain in R"!,

After the change of coordinates in V'
y' =t
yTL xn
the equation of S in V' becomes y™ = 0 and, hence, S is a (n — 1)-dimensional sub-
manifold. m

Tangent space on a submanifold. Let S be a submanifold of M of dimension m
and £ be an R-differentiation on S at a point zy € S. For any smooth function f on
M, its restriction f|g is a smooth function on S. Hence, by setting

E(f) =& (fls) (1.31)

we extend ¢ to an R-differentiation on M at the same point z(. In other words, (1.31)

defines a linear mapping
T,,S — T, M. (1.32)

Lemma 1.9 The mapping (1.32) is injective and, hence, provides a natural identifi-
cation of T,,S as a subspace of Ty, M.

Proof. If £ € T,,,S is non-zero then there exists a smooth function h € C* (S) such
that £ (h) # 0. In the coordinate system z!,...,x™ that is used in the definition of a
submanifold, the function h depends on z',...,2™. Setting
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we obtain a smooth function f in a neighborhood of zy in M, such that f|s = h.
Therefore, for the extension of £ to T, M we have

§(f)=¢&(fls) =&(h) #0,
that is, £ is non-zero as element of T, M. Hence, the mapping (1.32) is injective. m

Let us describe the mapping (1.32) in local coordinates. Let z',...,2™ be local
coordinates in a chart U in M and y',...,y™ be local coordinates in a chart V on S.
In the intersection U NV we have the relations

rh=a' (yl,...,ym), i=1,...,n, (1.33)

that express the x-coordinates of any point of U NV via its y-coordinates.

m

Let xo be a point in U NV. Any smooth function f = f(z',...,2") in a neighborhood
of zo in M can be regarded also as a smooth function of ¢, ..., y™ using (1.33). By the
chain rule, we obtain

of _of oz’ 0x' Of
oyt Oxi Oy Oyk Ozt
which can be rewritten in the operator form as follows:
o oo
oyk — Oyk Ozt |

(1.34)

Note that {2; } is a basis in T}, M and {a%k} is a basis in 7},,.5, so that (1.34) identifies
explicitly 7,5 as a subspace of T, M.

0/0x’

Tangent space T;,S5 as a subspace of T, M
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Cotangent space on a submanifold. Any tangent covector w € T;; M as a linear
functional on 7,,,M can be restricted to the subspace T,,S thus yielding an element
of T;; S that will also be denoted by w. Hence, we obtain a surjective linear mapping
T; M — Ty S. Assuming that ', ...,2" and y', ..., y™ are the local coordinate systems
as above, let us compute dxi|TwOS in the basis dy’. Since by (1.34)

! i
0 g 0zt 0 8x5i ox

<dl’ ay > < ayj 8ﬂfl> a_y] 1= 8_Z/j’

it follows that the restriction of dz’ to T, S is given by

o

N By

(1.35)

Alternatively, (1.35) follows from (1.16) considering z’ as a function in the chart
1 m
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Riemannian metric on a submanifold. Let g be a Riemannian metric on M.
For any = € S, we can restrict g (z) to a bilinear functional on 7,5 thus obtaining a
Riemannian metric gg on S. The metric gg is called the induced metric of S.

Lemma 1.10 In the local coordinates x*,...,x" on M and y*,...,y™ on S we have the
identity

_ Oa¥ od
(gS)Z‘j = Gkl 8?/ 8_y7

(1.36)

where g are the components of g in the chart x',...,2™ and (gS)ij are the components
of gs in the chart y*,...,y™. In the matriz form, we have

gt =JVg"J (1.37)

where g* = (gn1), 95 = ((9s);;) and J is the Jacobi matriz of the change x = x(y), that

; J = (Jy) = (gf) . (1.38)

Note that, in the matrix J in (1.38), k = 1,...,n is the row index and i = 1, ..., m is
the column index, so that J is an n x m matrix. Hence, the right hand side of (1.37)
is the product of the three matrices of the following dimensions: m X n, n X n, n X m,
which results in a matrix m x m.

Proof. Restricting g = gidz*dz! to T,,S, we obtain by (1.35)

oxr .\ [ Oz OxF oxt .
gs = gudrtds’ :gkl((‘)yd )(3 de)—gkz@ 6Jd dy’
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Comparing with o
gs = (gS)ij dy'dy’
we obtain (1.36). Next, we have by (1.36) and (1.38)
(gS)qjj = JrigrJij = Jiglilj = (JTg‘”J)

whence (1.37) follows. m

i

In a particular case m = n, S is an open subset of M and the induced metric gg
coincides with the original metric g, so that (1.37) provides the relation between the
matrices ¢* and ¢¥ of g in two coordinate systems z*, ..., 2" and y', ..., y", respectively
(cf. Exercise 14).

Example. Consider in R"! the following equation
(x1)2 + ...+ (:16”“)2 =1,
which defines the unit sphere S™. Since S™ is the null set of the function
F(z) = (ml)z + ...+ (:Jc”“)z -1,

whose differential dF = (22!, ..., 22"™!) does not vanish on S™, we conclude that S™ is a
submanifold of R"*! of dimension n. Furthermore, considering R"*! as a Riemannian
manifold with the canonical Euclidean metric ggrn+1, we see that S™ can be regarded
as Riemannian manifold with the induced metric that is called the canonical spherical
metric and is denoted by gsn.

Let us compute gs1 using the following chart on S' (see also Exercise 17). The
upper semi-circle

U:=S'n{a? > 0)

is the graph of a function f (z') = 1/1 — (2!)* on the interval (—1, 1) and, hence, is a
chart on S' with the local coordinate y' = a!.

24

U=S'N{2%0}

The upper semi-circle

Clearly, the relations between the coordinates z!, 2% in R? and y' in S! are

o' =y' and 2% =4/1—(y1)*

It follows that
de' = dy' and da® = Ldyl.
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Since
gr2 = (alml)2 + (dm2)2
we obtain that ) )
(y") ne  (dyY)
) ayy =
1—(y") 1—(y")

Alternatively, the same follows from (1.36) as gs1 has only one component:

oxk ox' o \*  [922\” (") 1
1 — 2 = —_— - 1 - .
(9s1)11 = (gr2)1 Oyl Oy (@yl) + (ayl) + 1 _ (y1)2 1 — (y1)2

g0 = (')’ +

1.7 Riemannian measure

Let us recall the definition of the notion of measure. Let X be an arbitrary set. A
o-algebra A on X is a family of subsets of X such that A contains ), X and A is
closed under taking complement and countable unions (hence, also intersections). A
measure 4 on a o-algebra A is a mapping u : A — [0, 00] such that p () = 0 and pu is

o-additive, that is,
1 (,I_I1 Az-) = (A
= i=1

for all 4; € A. Given a measure u, one can define the notion of the integral [ < fdp
for a class of measurable functions.

The most famous example of a measure is the Lebesgue measure A defined on the
o-algebra L (R") of Lebesgue measurable subsets of R™. Recall that the Borel o-algebra
B (R™) is defined as the minimal o-algebra containing all open subsets of R", and the
elements of B (R™) are called Borel sets. It is known that B (R") C £ (R™) and that
any Lebesgue measurable set is a union of a Borel set and a null set (=a set of measure
7€ro).

Let M be a smooth manifold of dimension n. Denote by B (M) the smallest o-
algebra containing all open sets in M. The elements of B (M) are called Borel sets.
We say that a set E C M is measurable if, for any chart U, the intersection £ N U is
Lebesgue measurable in U. Obviously, the family of all measurable sets in M forms a
o-algebra, that will be denoted by L (M). Since any open subset of M is measurable,
it follows that also all Borel sets are measurable, that is, B (M) C L (M).

The purpose of this section is to show that any Riemannian manifold ( M, g) features
a canonical measure v that is defined on £ (M) and that is called the Riemannian
measure (or volume). This measure is defined by means of the following theorem.

For any chart U on M with the local coordinates z',..., 2", consider the matrix

g* = (gi;) where g;; are the components of the metric g in coordinates z?, ..., z™.

Theorem 1.11 For any Riemannian manifold (M,g), there exists a unique measure
1 n

v on L (M) such that, in any chart U on M with coordinates z', ..., x",

dv = +/det g* d, (1.39)
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where dx denotes the Lebesgue measure in U.
Furthermore, the measure v has the following properties: v (K) < oo for any com-
pact set K C M and v (2) > 0 for any non-empty open set Q C M.

Note that det g* > 0 by the positive definiteness of ¢g”. The condition (1.39) means
that, for any measurable set A C U,

I/(A):/A\/detgwdx, (1.40)

where A in the right hand side is regarded as a subset of R™. This identity implies
that, for any non-negative measurable function f on U,

/deV:/Udex.

Proof. We need to construct measure v with the domain £ (M) that satisfies (1.40)
in any chart U. Let us use (1.40) as definition of v on the o-algebra £ (U) of Lebesgue
measurable sets in U. We need to show that the measure v defined by (1.40) in each
chart, can be extended to £ (M) and, moreover, this extension is unique.

Step 1. Let us first prove that the measures that are defined by (1.40) in different
charts, are compatible. That is, if U and V are two charts on M and A is a measurable
set in W := U NV then the integral in (1.40) has the same values in the both charts.

Let 21, ...,2™ and y', ..., 4™ be the local coordinate systems in U and V', respectively.
Denote by ¢° and ¢¥ the matrices of g in the coordinates x!,...,2" and y!,...,y",
respectively. We need to show that, for any measurable set A C W,

/ v/ det g*dx :/ v/ det g¥dy,
Ay Ay

where dr and dy stand for the Lebesgue measures in U and V', respectively, and the

notations A, and A, mean that A is considered as a subset of U with coordinates

2!, ..., 2", and that of V with coordinates v, ..., y", respectively.

unv

A set A in the intersection of two charts (U, ) and (V).
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Let J be the Jacobi matrix of the change x = x (y), that is, J = <gzk> (cf. (1.38)).
By (1.37) we have
g'=J"g"J
which implies
det g¥ = det JT det g® det J = det ¢® (det J)>. (1.41)

Next, let us use the following formula for change of variables in the Lebesgue integral
in R™: if f is a non-negative measurable function in W then

. (x)dx = . f(x(y))|det J| dy. (1.42)

Applying this for f = 14+/det g® and using (1.41), we obtain

/ \/detgxdx:/ \/detgm|detJ|dy:/ \/ det g® (detJ)2dy:/ v/ det g¥dy,

which proves the claim.

Step 2. Let us prove that the measure v on £ (M) that satisfies (1.39) in all charts,
is unique.

By Lemma 1.1, there is a countable family {U;}2, of relatively compact charts
covering M and such that each U; is contained in a chart. Consider the sets

‘/1:U1,
‘/QZUQ\UleQme
Vs =Us\ Uy \ Uy = UsNU5s NUY

Vi=U;NU, N..OU?

Clearly we have
M=V

because for any point € M there is a (unique) minimal ¢ such that = € U; and, hence,
For any measurable set A on M, define the sets

A= ANV, (1.43)
Then we have A, € £L(U;) and A =| |, A;.

Splitting A into disjoint sets A;.
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Therefore, for any measure v, we should have

v(A)=> v(A). (1.44)

7

However, the value v (A;) is uniquely determined by (1.39) because A; is contained in
the chart U;. Hence, v (A) is also uniquely defined, which was to be proved.

03.05.24 Lecture 7

Step 3. Let us prove the existence of v. For that fix some covering {U;} as above,
and, for any measurable set A, define v (A) by (1.40), using the fact that v (4;) is
already defined. Let us show that v is a measure, that is, v is o-additive. Let { By}~
be a sequence of disjoint measurable sets in M such that

A=1|]B.
k

We need to prove that

v(A) = v(By). (1.45)

K
Defining the sets By; similarly to (1.43), that is,

By = BNV,

we obtain that
By = |_| By

as well as
Ai=ANV, =] (BxNV;) =| | Bk
k k

A= B,

Qﬁ
vV, vV, Vv
Sets A; and By;

Since v is o-additive in each chart U;, we obtain

v(A;) =) v(Bw)

k
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Adding up in 7 and interchanging the summation in ¢ and k, we obtain

v(A)EY v(A) = Z STuBu) =Y Z v(Br) =Y v (B,

k

)

which proves (1.45).

Step 4. Any compact set K C M can covered by a finite number of charts Us;.
Applying (1.40) in a chart containing U; and noticing v/det g is bounded on U;, we
obtain v (U;) < oo, which implies v (K) < oc.

Any non-empty open set {2 C M contains some non-empty chart U, whence it
follows from (1.40) that

v(Q)>v(U) :/U\/detgd)\ > 0.

* Remark The extension of measure v from the charts to the whole manifold can also be done
using the Carathéodory extension of measures. Consider the following family of subsets of M:

S = {A C M : A is a relatively compact measurable set and A is contained in a Chart} .

Observe that S is a semi-ring and, by the above Claim, v is defined as a measure on S. Hence, the
Carathéodory extension of v exists and is a complete measure on M. It is not difficult to check that
the domain of this measure is exactly £ (M). Since the union of sets U; from Lemma 1.1 is M and

v (U;) < oo, the measure v on S is o-finite and, hence, its extension to £ (M) is unique.

Since the Riemannian measure v is finite on compact sets, any continuous function
with compact support is integrable against v. Let us record the following simple
property of measure v, which will be used in the next section.

Lemma 1.12 If f € C (M) and

/ fedr =0 (1.46)
M
for all ¢ € C§° (M) then f = 0.

Proof. See Exercise 21. m

1.8 Divergence theorem

Recall that the divergence of a smooth vector field v (z) in R" (or in a domain in R™)
is a function defined by
"L O’
di = -
ivo (x) o

i=1

Divergence satisfies the following identity any smooth vector field v in R™ and a smooth
scalar function u with compact support in R™:

/(divv)udx:—/ v-Vudz,
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which can be deduced from the divergence theorem of Gauss. Alternatively, this iden-
tity is a consequence of Fubini’s theorem and the integration by part formula: for all
w € C*(R") and u € C§°(R"),

ow ou
/n dri /Rnw&vz ’ (1.47)
applied with w = v'.

For any smooth vector field v (x) on a Riemannian manifold (M, g), its divergence
div v (z) is a smooth function on M, defined by means of the following statement.

Theorem 1.13 (The divergence theorem) For any smooth vector field v (z) on a Rie-
mannian manifold (M,g), there exists a unique smooth function on M, denoted by
div v, such that the following identity holds

/M (dive) udy = — / (v, Va)dv, (1.48)

M

for allu e C§° (M).

Both gradient V and divergence div depend on the metric g. In the cases when this
dependence should be emphasized, we will use the extended notations Vg and divg.

The expression (v, Vu) = (v, Vu)g is the inner product of the tangent vectors v
and Vu. By (1.26), we have

ou
(v, Vu)g = (Vu,v)g = (du,v) = il

where (du,v) is the pairing of the tangent covector du and vector v.

Proof. The uniqueness of divwv is simple: if there are two candidates for div v, say
(divv) and (div v)” then, for all u € C§° (M),

/(divv)'udy—/ (div ) udy,
M M

which implies (divv) = (divv)” by Lemma 1.12.
To prove the existence of divwv, let us first show that divwv exists in any chart.
Namely, if U is a chart on M with the coordinates z?, ..., 2" then, using (1.26), (1.39),

and the integration-by-parts formula in U as a subset of R”, we obtain, for any u €
Co° (U),

/(U,Vu>dyz/(du,v)dl/
U U
:/a—u.vi\/detgd)\
U@x’
9 (.
= _/U@xi (v Vdetg)ud)\

1 0 ,
- —/U Jdets o (v%/detg) udy, (1.49)
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where g = (g;;) is the matrix of the metric g in U. Comparing with (1.48) we see that
the divergence in U can be defined by

1 0
Vdet g 0z?

If U and V are two charts then (1.50) defines the divergences in U and in V, which
agree in U NV by the uniqueness statement. Hence, (1.50) defines div v as a function
on the entire manifold M. Moreover, the divergence defined in this way satisfies the
identity (1.48) for all test functions u compactly supported in one of the charts.

We are left to extend the identity (1.48) to all functions u € C§° (M). Let {Q,}
be any family of charts covering M. By Corollary 1.4, any function v € C§° (M) can
be represented as a finite sum u; + ... 4 u,,, where each u; is smooth and compactly
supported in one of Q,. Hence, (1.48) holds for each of the functions ;. By adding
up all such identities, we obtain (1.48) for the function u. m

It follows from (1.50) that

dive =

(vdet gv') | (1.50)

i

, Jv ; 0
dive = o +v %ln v/ det g.

N’
ozt "

In particular, if det g = 1 then we obtain the same formula as in R™: dive =

Corollary 1.14 The identity (1.48) holds also if u (x) is any smooth function on M
and v (z) is a compactly supported smooth vector field on M.

Proof. Let K = supp v. By Theorem 1.3, there exists a cutoff function of K, that is, a

function ¢ € C3° (M) such that ¢ =1 in a neighbourhood of K. Then uyp € C§° (M),
and we obtain by Theorem 1.13

/Mdivvudz/:/Mdivv (up) du:—/M@,V(w»dy:—/ (v, Vi) dv.

M

* Alternative definition of divergence. Let us define the divergence div v in any chart by

.1 2 i
dive = N (\/detgv ) ) (1.51)

and show by a direct computation that, in the intersection of any two charts, (1.51) defines the same
function. This approach allows to avoid integration in the definition of divergence but it is more
technically involved (besides, we need integration and Theorem 1.13 anyway).

We will use the following formula: if a = (a}) is a non-singular n x n matrix smoothly depending

on a real parameter ¢ and (b}) is its inverse (where i is the row index and j is the column index) then

k
1 0ag

0

1

In the common domain of two coordinate systems z!,...,z™ and 3", ..., y", set

oy* . oxt
k _ —
7= e 2= e
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so that the matrices I and J are mutually inverse. Let g be the matrix of the tensor g and v* be
the components of the vector v in coordinates z',...,z", and let § be the matrix of g and 7% be the
components of the vector v in coordinates v, ...,y™. Then we have

i i

v =" = — =0

Oxt ox' Oyk

9 dy* 9 i ki
so that

Since by (1.41)
Vdetg = \/det g |det J| ",

the divergence of v in the coordinates y!,...,y" is given by

, 19 _ N detJ 0 7, .
dlvv:ma—yk(\/detgvk):\/(eieitglfc@(\/detgv’(det{]) 1Jf>

_ 19 i\ 73 7k 4 iTi 7k 9 “1 i OJF
= dets 0u7 (\/detgv)IkJi + ' J; detJ@ (det )™~ 4+ '} B
1 0 ; .o, . 0JF
= - (1/det gv* ) —v'— Indet I
\/detgaxz( egv) Y or " et +v kOxi”

where we have used the fact that the matrices J and I are mutually inverse and, hence, I i JF = 5{ .
To finish the proof, it suffices to show that, for any index ¢,

k

axij =0. (1.53)

0 .

By (1.52), we have
k

71 :Ij j. .
pye ndet J [

Noticing that
0Jf _ F ok oJf
Oxr'  Oxidzt  Oxidxi  OxI’

we obtain (1.53).

1.9 Laplace-Beltrami operator

Recall that the Laplace operator in R" is given by

A= ; o) (1.54)

It is also easy to see that

"0
Af:;aasi(

Having defined gradient and divergence, we can now define the Laplace-Beltrami
operator (frequently referred to simply as the Laplace operator) on any Riemannian

manifold (M, g) as follows:
A =divov]

0 :
&Ei) =div (V).
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Strictly speaking, one should use the notations Ag, dive and Vg but the index g is
usually skipped when there is no danger of confusion.
Hence, for any smooth function f on M, we have

Af =div (VF), (1.55)

so that Af is also a smooth function on M. In local coordinates, we have

ij of

oxI’

(Vf)'=g

where (¢¥) = (g;;)~", which yields

1 0 L Of
— vy
Af — (\/detgg xj) , (1.56)

For example, if (g;;) = id then also (¢”) = id, and (1.56) takes the form (1.54).
Hence, the classical Laplace operator in R™ is a particular case of the Laplace-Beltrami

operator. Since the matrix (¢g%/) is symmetric and positive definite, the operator A in
(1.56) is an elliptic second order operator in the divergence form.

Proposition 1.15 (The Green formula) If u and v are smooth functions on a Rie-
mannian manifold M and one of them has a compact support then

/uAvdV: —/ (Vu, Vu)dv = / vAudv. (1.57)
M M M

Proof. Consider the vector field Vv. Clearly, supp Vv C supp v so that either supp u
or supp Vv is compact. By Theorem 1.13, Corollary 1.14, and (1.55), we obtain

/uAvdV:/ udiV(Vv)dV:—/ (Vu, Vou)dv.
M M M

The second identity in (1.57) is proved similarly. m

10.05.24 Lecture 8

1.10 Weighted manifolds

Any smooth positive function D (x) on a Riemannian manifold (M, g) gives rise to a
measure ;1 on M given by du = Ddy and defined on the o-algebra £ (M). The function
D is called the density function of the measure pu. For example, the density function
of the Riemannian measure v is 1.

Definition. A triple (M, g, p) is called a weighted manifold (or manifold with density)
if (M, g) is a Riemannian manifold and p is a measure on M with a smooth positive
density function.
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The definition of gradient on a weighted manifold (M, g, 1) is the same as on (M, g),
but the definition of divergence changes. For any smooth vector field v on M, define
its weighted divergence divg, v by

1
divg, v = D divg (Dv)|. (1.58)

It follows immediately from this definition and (1.48) that the following extension of
Theorem 1.13 takes place: for all smooth vector fields v and functions u,

/ divg#vudu:—/ (v, Vu)gdp, (1.59)
M M

provided v or u has a compact support. Indeed, using (1.48) and (1.58), we obtain

1
/ divg , vudp :/ — divg (Dv) uDdv = —/ (Dv,Vu)gdy = —/ (v, Vu)gdp.
M m D M M

Define the weighted Laplace operator A, by

Ag, = divg, oVg],

that is,
1
Ag u= ) divg (DVgu).

The Green formulas remain true, that is, if © and v are smooth functions on M and
one of them has a compact support then

/uAg#vd,u:—/ <Vu,Vv>gd;z:/ VAg yu . (1.60)
M M M

In the local coordinates z, ..., 2" in a chart U, we have
dp = pdz,

where p = D+y/det g and dx is the Lebesgue measure in U. It follows from (1.50) and
(1.58) that

divg , v = o or (pv') (1.61)
and L8 3
Ag 0Oz (Pg axj) : (1.62)

Sometimes is it useful to know that the right hand side of (1.62) can be expanded as
follows: o L 0(pg") Of
i rg"
A =gV —=—+ - . -,
gnf =9 oxidxi ~ p Ozt OxI

Example. Consider the weighted manifold (R", g, ) where g is the canonical Eu-
clidean metric and dy = Ddz. Then by (1.62) or (1.63)

(1.63)

BN AN
Beuf = 5 (D55 ) = 7 + VD V).

Let (M, g, ) be a weighted manifold and D be the density function of measure p.
Define the induced measure pg on a submanifold S by the condition that pg has the
density function D|s with respect to the Riemannian measure of gg. Hence, we obtain
the weighted manifold (5, gg, 1g).
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1.11 Product of manifolds

Product of smooth manifolds. Let X,Y be smooth manifolds of dimensions n and
m, respectively, and let M = X X Y be the direct product of X and Y as topological
spaces. The space M consists of the couples (x,y) where z € X and y € Y, and a
base of topology in M is given by U x V where U is any open subset of X and V is
any open subset of Y. It is easy to see that M is a Hausdorff topological space with
countable base.

Besides, M can be naturally endowed with a structure of a smooth manifold. In-
deed, if U and V are charts on X and Y respectively, with the coordinates z!, ..., 2"
and y',...,y™ then U x V is a chart on M with the coordinates z*,..., 2™, y!, ..., y™.
The atlas of all such charts makes M into a smooth manifold of dimension n + m.

Lemma 1.16 For any point (zo,y0) € M, the tangent space Tiz, )M is naturally
identified as the direct sum T, X ©T,)Y of the linear spaces, that is,

Ty M =10, X Ty, Y. (1.64)

Proof. Any R-differentiation £ € T,,,X can be considered as an R-differentiation on
smooth functions f (z,y) on M at (xg,yo) by freezing the variable y = vy, that is,

§(f) =& m))-
This identifies T}, X as a subspace of T{,, ,,)M, and the same applied to T,,Y".

Any & € T4y 40)M has in the basis {%, ey 8%, 8%1, s 8@%} the components !, ..., "™
so that:
n i 9 m ot P
=2 gt 2y
Setting
—e en.x d e L epy
€X.—€%€ zo an gy—g a—yje yod s

we see that any § € T,,,y,)M splits into the sum
=&y + & where{y € T, X and &y € T}, Y.

T X

Such a decomposition is obviously unique, whence (1.64) follows. m
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Riemannian product. Let gx and gy be Riemannian metric tensors on the man-
ifolds X and Y, respectively. Define the Riemannian metric tensor gon M = X x Y
as as follows: for any two tangent vectors &,n € T(4,4,) M, set

(3 77>g(€v0,y0) = {&x nX>gX(360) + &y nY>gY(yo) :

In particular, we have

2 2 2
’5‘g(1‘07y0) = |€X‘gx(zo) + ‘€Y|gy(y0) ‘
Definition. The metric g is called the direct sum of gx and gy and is denoted by

g =8x +8y. (1.65)

The Riemannian manifold (M, g) with the metric (1.65) is called the Riemannian (or
direct) product of (X, gx) and (Y,gy).

1

In the local coordinates z?, ..., 2" 4, ..., y™, we have

g = (9x);; de'da? + (gy)y dy*dy/,
so that the matrix of g has the form

g— ( ) . (1.66)

Measure on Riemannian product, Let us first briefly recall the notion of the
product of measures. Given two measure spaces (X, Ay, p;) and (Y, Asg, 115) where p,
is a o-finite measure defined on the o-algebra A;, let us define a product measure

o= Hy X fhy

on the product set M = X x Y as follows. First we define p on the subsets of M of
the form A x B where A € A; and B € A, by

1(Ax B)=p (A)p, (B).

Observing that the sets of the type A x B form a semi-ring, one can extend then pu to
a o-algebra on M by using the Carathéodory extension theorem.

One of the most important properties of the product measure p is the Fubini the-
orem: if f (z,y) is a non-negative p-measurable function on M then

[ ran= [ ([ seman ) dno= [ ([ 76ndn) .

One writes this shortly as follows:

dp = dpy (x)dpg(y).

Lemma 1.17 Let (M,g) be the Riemannian product of (X,gx) and (Y,gy). Then
the Riemannian measure v of (M, g) is the product of the Riemannian measures vx
and vy of (X,gx) and (Y,gy), respectively, that is

’I/:I/)(Xl/y‘.
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Proof. Let U be a chart on X with coordinates z!,...,2" and V be a chart in Y with
coordinates y!,...,y™. Then we have

dvx = v/det gxdr and dvy = +/detgydy,

where dx and dy are Lebesgue measures in U and V', respectively. Let A be the Lebesgue
measure in the chart U x V| so that d\ = dxdy. Observe that (1.66) implies

det g = det gx det gy-. (1.67)
Then the Riemannian measure v of M is given by

dv = +/det gd\ = \/det gX\/det gydxdy = dvxdvy,

which was to be proved. m

Consequently, we obtain by Fubini’ theorem that, for any non-negative measurable
function f = f (z,y) on M,

[ o= [ ([ r@mas@)ar o= [ ([ £enarm) s,

Laplace operator on the product. We continue using setup and notation of
Lemma 1.17.

Lemma 1.18 We have

Ag = Ag + Ay, |, (1.68)

that is, for any f € C*(M),

Agf(r,y) = Dgy [(2,y) + Dgy [(2,9),

where Ag, acts on the variable x and Ag, — on the variable y.

Proof. It follows from (1.66) that a similar identity holds for the inverse matrices:

. gx'| 0
0 g;l

n ,,1

Denoting by 2!, ..., 2"*™ the coordinates z',...,2", y', ..., y™, we obtain the following

expression of the Laplace operator Ag on (M, g):

1 0 0
A= —0— |4/ g__
& detg 0z ( det g9 82J>

= L i v/ det gx det i i
~ /det gx det gy Ot IX CVIVIX G

+ ! i v/det gx det i i
Vdet gx det gy 0y gx b Iy gy oy’

1 0 f——— ;i O 1 0 ——— ;i O
Vdet gx 0x? ( ¢ gXQX@aﬂ) - Vdet gy 0y ( erIvIy 8y3)
= Agx +A

8y
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where we have used (1.67) and the fact that det gx depends only in x while det gy
depends only on y. =

Example. The Riemannian manifold (R"*™, ggn+m) is the Riemannian product of
(R™ grn) and (R™, ggm) because

grnem = (det)” 4 4 (de™)? + (da™™) + 4 (de"™) = ggo + g

Also, we see directly that

02 02 02 02
T (0n)? (0am)? " (0ant)? (Qantm)? — TR
13.05.24 Lecture 9

Warped product. There are other possibilities to define a Riemannian tensor g on
the product manifold M = X x Y. For example, if ¢ (x) is a smooth positive function
on X then consider the metric tensor

g =gx + ¢’ (z)gy. (1.69)

The Riemannian manifold (M, g) with this metric is called a warped product® of (X, gx)
and (Y, gy). In the local coordinates, we have

g = (gx); do'da? + 9% () (gv )y dy*dy'.

Product of weighted manifolds. Let (X,gx,uy) and (Y, gy, iy) be weighted
manifold. Setting

M=XXY, g=gx+8y, =y Xy,

we obtain a weighted manifold (M, g, ) that is the direct product of the weighted

manifolds (X, gy, py) and (Y, gy, py). If Dx () and Dy (y) are the density functions

on X and Y, respectively, then the density function of M is D (z,y) = Dx (x) Dy (y).
Similarly to (1.68) we obtain that

Agw = Agx,ux + Agy,uy .

Iyerzerrtes Produkt
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1.12 Polar coordinates in R",S", H"

Euclidean space. Every point x € R™\ {0} can be represented in the polar coordi-
nates as a couple (r,6) where
ro=|z| >0

is the polar radius and

g .= L st
|z

is the polar angle. Conversely, a couple (r,0) with r > 0 and # € S"! determines
x € R™\ {0} uniquely by z = r6.

The polar coordinates can be considered as local coordinates in R™. Indeed, let €2
be any chart on S"~! with coordinates 6',...,6"'. Then

U={zeR":r>0,0€Q} (1.70)

is a chart in R" with coordinates r, 0, ...,0" L.

A

A chart U in R®

Proposition 1.19 The canonical Euclidean metric ggn has the following representa-
tion in the local coordinates r, 0%, ...,0"  :

grn = d'r2 + TQWZ]dQZdGJ, (171)

where v,; are smooth functions of 6',...,0" ' Besides, the induced metric gsn-1 on

Sn=L s given by o
gsn1 = 7;;d0"de’ (1.72)

with the same functions v,;. Consequently, we have
an = dT2 + T2ggn71. (173)
Hence, we have the following relation between the matrices gg» and ggn-1:

1 0

an - O r2gSn— 1
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Proof. We start with the identity = = r@, which implies that the Cartesian coordinates

z', ..., 2" can be expressed via the polar coordinates r,6",...,0" ! as follows:

zt=rf (91, ...,9"_1) , i=1,...,n, (1.74)

where f* is the i-th Cartesian coordinate in R™ of the point § € S*~!. Clearly, f!,..., ™
are smooth functions of 6, ...,0" ! and

() + .+ (=1 (1.75)

Considering 2%, 7 and f? as functions in the chart U and using the product rule for d,
we obtain

det =d (rf’) = fidr + rdf*.
It follows that

(da')? = (f) dr? + (rdr) (fdf?) + (Fidf?) (rdr) + 12 (df)?. (1.76)
Applying d to the identity (1.75), we obtain

> fidft=o. (1.77)
Adding up the identities (1.76) for all i = 1, ...,n and using (1.75) and (1.77), we obtain

grn = Z (dxi)2 =dr* +1r? Z (dfi)2 .

7 7

Next, we have 4 .

_OF i — a—fkde’f
oe’ 06

; Af of* i

df)? = ZLZ_qpiag”,

)= 55 0

df?

which implies
S (df1)? = v;pdeldo*, (1.78)

(]

where

" ofiaf
k=D 007 0gF

i=1

(1.79)

are smooth functions of 6, ...,6" . Hence, we have proved the identity (1.71).

We are left to verify that 'yl-jdﬁide is the canonical spherical metric. Indeed, the
metric ggn-1 is obtained restricting of the metric gg» to S* . On S" ! we have r = 1
and, hence, dr = 0. Therefore, substituting in (1.71) » = 1 and dr = 0, we obtain
(1.72). Finally, (1.73) follows obviously from (1.71) and (1.72). m

Example. Consider the case n = 2, that is, the polar coordinates in R?. Then the
polar angle # € S of a point z € R?\ {0} can be identified with its angular measure
0 € (0,2n) provided z € R* \ {z : 22 = 0,2! > 0} . We have in this case

f1(0) = cosf and f2(0) = siné,
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OfI\?  [0f2\?
NONGE

gst = df? and gge = dr® + r?dH*.

which yields by (1.79)

and, hence,

Sphere. Consider now the polar coordinates on the n-dimensional sphere
S*:={z e R : |z| =1}.

For any x = (z!,...,2"*) € R"! set

that is, 2’ is the projection of x onto R" = {z € R"*! : "1 = 0}.

Let p = (0,...0,1) be the north pole of S™ and ¢ = —p be the south pole of S™. For
any point € S™\ {p, ¢}, define the polar coordinates of  on S" as a pair (r,6), where
r € (0,7) and § € S""! are given by

xl

T (1.80)

cosr =z and 6=

xn+ll\

Polar coordinates on S™

Since "™ = p -z, we have cosr = p-x so that r = arccos (p - ) is the angle
between the unit vectors x and p. Hence, r is the length of the arc between x and p
on the unit circle with the center at the origin that goes through = and p.

In fact, r can be regarded as the latitude of the point x measured from the pole.
The polar angle 6 gives direction in the hyperplane R™ and can be regarded as the
longitude of the point x.
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The geographical latitude ¢ and longitude § on the Earth considered as S?. In our

: T
notation r = 5 — .

As in the case of the polar coordinates in the Euclidean space, the polar coordinates
(r,0) on S™ can be regarded as local coordinates r, 6", ...,6" " in a chart

U={zeS":re(0,m), 0 Q},

where Q is any chart on S"~! with the local coordinates 6', ..., 6"

Rn+1

A chart U on S™

Proposition 1.20 The canonical spherical metric gs» has the following representation
in the polar coordinates:
gsn = dr® +sin® rggn-1. (1.81)

Proof. Let #',...,60" " are local coordinates on S*' and let us write down the metric
gs» in the local coordinates r, 0, ...,0" 1. Obviously, for any point = € S*\ {p, ¢}, we
have

|2'| = /1 — (z7+1)? = V1 — cos?r = sin 7

whence
z' = (sinr) 6.
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Hence, the Cartesian coordinates z', ..., 2" of the point z € S" \ {p,q} can be ex-
pressed as follows:

' =sinr f! (01, ...,9”_1) ,i=1,...n,

2" = cosr,

where f* are the same functions as in (1.74). We have for i = 1,...,n
dz' = f'cosrdr + sinrdf’

and
dz"tt = —sinrdr.

Hence, using (1.75), (1.77), and (1.78), we obtain
g = o = ()" + () (00’

— Z (f* cosrdr + sin 7“dfi)2 + sin? rdr?
=1

= Z [(fi)2 cos? rdr® 4 sinr cos rdr f'df* + f'df* sinr cosrdr + sin®r (d]m’>2}
i=1

+ sin® rdr?
= (cos®r +sin’r) dr® + sin®r i (ar')”
i=1
= dr® 4 sin®r 'yijdeidﬁj.
Since we already know that ’yijdGide is the canonical metric on S"~!, we obtain (1.81).

Hyperbolic space. The hyperbolic space H", n > 2, is defined as follows. Consider
in R"*! a semi-hyperboloid H given by the equation?

(x"+1)2 — (@) =1, 2" >0, (1.82)

where as above 2/ = (z!,...,2") € R". By Lemma 1.8, H is a submanifold of R"*! of

dimension n.
Consider in R*™! the Minkowski metric

gurink = (de')” + .+ (da™)? = (da")?, (1.83)

which is a bilinear symmetric form in any tangent space T,R™"! but not positive
definite. Hence, gsink is not a Riemannian metric; it is called a pseudo-Riemannian
metric. Nevertheless we can restrict gyine to H, so set

gH = ngk’H .

2For comparison, the equation of S® can be written in the form (x”+1)2 + (x’)2 =1.
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We will prove below that gp is positive definite so that (H,gy) is a Riemannian
manifold.

Definition. The manifold (H, gy) is called the hyperbolic space of dimension n and is
denoted by H". The metric gy is called the canonical hyperbolic metric and is denoted
also by gpn.

Our main purpose here is to introduce the polar coordinates in H" and to represent
gy~ in the polar coordinates. As a by-product, we will see that gy~ is positive definite.

17.05.24 Lecture 10

Consider the point p = (0,...,0,1) that is called the pole of H". For any point
x € H"\ {p}, define its polar coordinates as a pair (r,6) where r > 0 and § € S""! are
given by

x
coshr = 2" and 6 = Tl (1.84)

x
Since "' > 1, the equation coshr = 2" has a unique positive solution r =
cosh™! 2", The value of r is called the hyperbolic angle between the vectors x and p.

It is possible to prove that the area of the sector bounded by the arc of the hyperbola
between p and x and by the segments [o, p|, [0, z] is equal to r/2.

Polar coordinates on H"

Proposition 1.21 The canonical hyperbolic metric gu» has the following representa-
tion in the polar coordinates:

gin = dr? + sinh? rggn 1. (1.85)
Consequently, gun is a Riemannian metric.

Proof. Let 6',....,6" " be local coordinates on S"~'. Then 7,6, ...,0" " are the local
coordinates on H". Let us write down the metric gy~ in these coordinates. For any
point € H™ \ {p}, we have

2’| = /]2" 12 — 1 = V/cosh®r — 1 = sinhr,
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whence
2’ = (sinh7) 6.

Hence, the Cartesian coordinates x!, ..., "1 of the point x € H"\ {p} can be expressed
as follows:

2" = sinh r f* (91, ...,0”’1) ,i=1,..,n,

2" = coshr,

where f* are the same functions as in (1.74). Hence, we have, for i = 1,..., n,
dz’ = f' coshrdr + sinh rdf’

and
dz™ ! = sinh rdr.

It follows that
8Hn = gMink|]HIn = (dx1)2 + ...+ (dxn)Q _ (dxn—i—l)Q

= Zn: (f" coshrdr + sinh 7“dfi)2 — sinh? rdr?

=1

= Z [(f)? cosh? rdr? + sinh r cosh rdr fdf* + fidf* sinh r cosh rdr + sinh? r(df*)?]
i=1
— sinh? rdr?

= (cosh® r — sinh®r) dr® + sinh®r Z (alfi)2
=1

= dr” + sinh® r y,;df'd’ .

Since 7,;df"d’ is the canonical metric on S"~!, we obtain (1.85).

Let us verify that gy is a Riemannian metric. We see from (1.85) that the tensor
gun (2) is positive definite on T,H" for any x € H" \ {p}.

For the case x = p, let us use the local coordinates z*, ..., 2" on H". Since 2"*! as a
function on H" attains its minimum at p, we see that dz™*! (p) = 0 and the restriction
of grink, onto T,H™ becomes (dl’l)Q +..+ ((Jlﬂt’”)2 that is positive definite. m

1.13 Model manifolds

Definition. An n-dimensional Riemannian manifold (M,g) is called a Riemannian
model if the following two conditions are satisfied:

1. M itself is a chart and the image of this chart in R" is a ball
B, :={x e R": |z| < ro}

of some radius ¢ € (0, +00] (in particular, if ro = oo then B,, = R").
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2. The metric g in the polar coordinates (r,6) in the above chart has the form
g =dr’ +¢*(r)ggn1, (1.86)
where 9 (1) is a smooth positive function on (0, 79).

The number 7 is called the radius of the model M, and the function v (r) is called
the profile of M.

In particular, the model manifold M is homeomorphic to B,,. To simplify the
terminology and notation, we usually identify M with the ball B, . The origin o of
R™ is called the pole of M. The Euclidean polar coordinates (r,#) are clearly defined
in M\ {o}. If 6',...,0" " are the local coordinates on S"~! then r,6',...,0" " are the
local coordinates on M \ {o}. Since

gsn—1 = 7,;d0'd§’,
we obtain by (1.86), that the metric g is given in these coordinates by
g = dr? +* (r) y,;do"de’. (1.87)

Observe also that away from a neighborhood of o, 1 (r) may be any smooth positive
function. However, 1 (r) should satisfy certain conditions near o to ensure that the
metric (1.86) extends smoothly to o.

For example, the results of Section 1.12 imply the following:

e R” is a model with the radius ro = co and profile ¢ (1) = r;
e S™\ {q} is a model with the radius ro = 7 and profile ¢ (r) = sinr;

e H" is a model with the radius rp = oo and profile ¢ (r) = sinhr.

Measure and the Laplace-Beltrami operator on models.

Lemma 1.22 On a model manifold (M,g) with metric (1.86), the Riemannian mea-
sure v s given in the polar coordinates in By, \ {0} by

dv = (r)" " drdo, (1.88)

where dr denotes the Lebesgue measure on (0,79), do denotes the Riemannian measure
on S"7 Y, and drdo is the product measure.
The Laplace-Beltrami operator Ag has in the polar coordinates the form

N UL
A =Dy o T

& Or?
Remark. The formula (1.88) can be used to integrate functions over M using the polar
coordinates. Indeed, if f is any non-negative measurable function on M then by (1.88)

/M fav = /]\/[\{o} Jdv = /Or0 S fr,0)v (T)n_l drdo
:AM(WAfmwmevW*m.

Agn—l . (189)
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Proof. Let  be a chart on S*! with coordinates 6, ...,0"'. Then

U={zreM:re(0,ry), 0 Q}
is a chart on M with coordinates r,6',...,0" ' Let g = (gij)?j_:lo be the matrix of the
tensor g in the chart U, where the index ¢ = 0 corresponds to the coordinate 7 and the
index 7 > 0 corresponds to 6. It follows from (1.87) that

1 0 --- 0
! (1.90)
9= : ¥ (r) v ’ '
0
where 7,;(f) are the components of ggn—1 as in (1.72). In particular, we have
det g = 1?7V det v, (1.91)

where v = (fyij). By (1.39), the Riemannian measure ¢ on S"~! is given in the chart

Q by
do = \/det vdo*...d9" ",
Similarly, the Riemannian measure v on M is given in the chart U by

dv = \/det gdrdf*...do" ",

Using (1.91) we obtain that

dv = ¢"1\/det ydrdf*...do" (1.92)
=" tdrdo,

which proves (1.88). In fact, the identity (1.92) can be regarded as a detailed version
of (1.88).
It follows from (1.90) that

1 0 0
o 0
(gj) —gl= g o (1) ’ (1.93)
0

where (y7) = ('yij)_l. By (1.56), the Laplace-Beltrami operator Ay has the following
form in the local coordinates 6° = r,6',...,6" 1

A= 5 0 det 09 (1.94)
&~ detg 2~ 00 99" 067 ) - ‘
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Since ¢"° =1, g% = 0 for i > 1, it follows that

1 9 a9\ — 1 9 9
= —— | Vv —_— —— | . .
Pe Vdet g Or ( detg8r> +i]z:1 Vdet g 00* < det g9 893> (1.95)

Applying (1.93) and (1.91) and noticing that > depends only on r and v;; depend only
on #',...,0""!, we obtain

1 0 ~—0\ 1 0 ( ,,0
Jdetg or ( detg§> oy lor (w 87“)

02 ]. n—1 / a
iz T g (v )5
0?2 W 0

and

i,j=1 B,j=1
1
- A n—1
)
Substituting into (1.95), we obtain (1.89). m
24.05.24 Lecture 11

Example. The Riemannian measure in R" coincides with the Lebesgue measure that
will be denoted by \,. The induced Riemannian measure on S™ will be denoted by
0m. The measure o, on S™ is frequently referred to as an area.

Since in R™ we have ¢(r) = r, it follows from (1.88) that

d\, = " Ydrdo,_,, (1.96)

and from (1.89) that
? n—-10 1
= — — 4+ —Agn-1. 1.97
8r2+ r 8r+r2 s (1.97)
Consider the case n = 2. Denoting by 6 the angle on S', we have gg = d#* (cf.
Example in Section 1.12) and, hence,

ARn

62

doy =df and Agn1 = EYh

It follows that
doy = rdrdf

and
A 76_2+12+i8_2
R = or2 " ror 12 00>
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Example. In S", we have ¢ (r) = sinr. It follows from (1.88) that

do, =sin" ' rdrdo,_, (1.98)
and from(1.89) that
2 0
A n — —_ 1 t e A n—1 . 1
=53 +(n—1)co Tar s (1.99)

The formulas (1.98) and (1.99) can be iterated in dimension n to obtain full expansions
of do,, and Agn in the polar coordinates (see Exercise 35).

Example. In H", we have ¢ (r) = sinhr and, hence,
dvgn = sinh™ ' r drdo,_;
and
0? 0 1

Agn = — -1 thr— + ———Agn-1. 1.100
H or? +(n ) co Tar sinh?r s ( )

Example. Using (1.98) and Fubini’s theorem, we obtain

o, (S™) —/ do,, = / / sin" ' rdrde,_;
Sn Sn— 1
:/ sin™ rdr/ do,_1
0 sn-1

= 0,1 (S"_l) / sin” ! r dr.
0

Set
wy = 0,1 (8", (1.101)

that is, w,, is the total area of the unit sphere on R™. Hence, we obtain the inductive
formula

Wil = wn/ sin” ! rdr. (1.102)
0

For n = 2 we know that gs: = d#* and, hence, do; = df, which implies that

2w
LUQ:/ df = 2.
0

w3 = 27T/ sinrdr = 4m,
0

Hence, using (1.102), we obtain
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The area function. Let us explain the meaning of the term "' (r) in (1.88).
Consider for any R € (0,7¢) the sphere

Sgp={x €R":|z| = R}

as a submanifold of M of dimension n — 1. Any chart  in S*~! with coordinates
6, .., 0™ " gives rise to a chart Qp in Sg, also with coordinates 6, ..., 0" !

Qpr={x=(r0)eR":r=R, 0€Q}.

Setting in (1.86) » = R, we obtain that the induced metric on Sg in the coordinates
6, ...,0" " is given by
2 i 10j
(gSR)ij =¥ (R) Vij (0) do*de’.
Denoting as before by o the Riemannian measure on the unit sphere S"~! and by op
the induced Riemannian measure on Sg (that is also called area), we obtain

dog = \Jdet (1 (R)? 73, (0))d0 = o (R)" ™ \/det7dd = (R)"" do.

It follows that
or(Sr) =¥ (R)" " o(S"") =wap (R)". (1.103)

Definition. The function

S(R) := or(SR) = wpp(R)" 1

is called the area function of the model.

The are function determines uniquely the profile ¢)(R) and, hence, the model metric
g. Let restate the results of Lemma 1.22 in terms of the area function.

Corollary 1.23 On a model manifold (M,g) with metric (1.86), we have

dv = LS(r)drda, (1.104)

Wn

and 0?2  S'(r)o 1
r
A, = — —
& Or2 + S(r) or + ? (r)
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The volume function. For any R € (0,ry) consider the Euclidean ball
Br={x e R": |z| < R}.

as a subset of M. It follows from (1.104) that

v(Bgr) = / S(r drda—/ S (r
Wp sn—1

Definition. The function
R
V (R) := v (Bg) = / S (r) dr- (1.106)
0

is called the volume function of the model manifold.

For example, in R™ we have ¢ (1) = "', which implies
S(r) =w,r"?

and w
V(R) = WnR”. (1.107)
Weighted models. Finally, we discussed models in the class of weighted manifolds.

Definition. A weighted manifold (M, g, u) is called a weighted model if (M ,g) is a
Riemannian model as above, and the density function D of the measure p depends
only on the polar angle r.

Lemma 1.24 On a weighted model manifold (M, g, i) with metric (1.86) and the den-
sity function D (r), the measure p is given in the polar coordinates by

dp= D (r)¢" (r)drdo. (1.108)
The weighted Laplace operator Ag,, has in the polar coordinates the form

0* d 0
= In (Dy" ) —
gn 62+d n( w )87’+1/12(T)
Proof. The identity (1.108) follows immediately from dy = Ddv and dv = ¢"~" (r) drdo
of Lemma 1.22 (cf. (1.88)).
By definition of the weighted Laplacian, we have

Dguf = divg, (Vf) = 1 divg (DV]) = Agf + 5 (VD, V )

— Agf+(VInD,Vf).

A

Using the notation #° = r and the matrix (g/) given by (1.93), we obtain

-1

Z ;0lnD of _alnDaf "Zf ;0D of

=00 00 o 90" 00
dlnD Of

T dr or

(VInD,Vf) =
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because E)C})LHZD = 0 for all ¢ > 1. Using the representation of Ay from Lemma 1.22, we
obtain o Lo of
dIny"™ 1 dIn D
A — - A n— - .
R T A

Observing that
Iny" " +InD =In(Dy" ),

we obtain (1.109). m

Let (M,g, ) be any weighted manifold with the density function D. For any
submanifold S of M, we have defined the induced Riemannian metric gg on S. Let us
define the induced measure g as the measure on S with the density function D|g with
respect to the Riemannian measure vg of S. Then (5, gg, pg) is a weighted manifold.

If (M, g, ) is a weighted model as above then the sphere

Sgp={z €R":|z| = R}

where R € (0,7p), is a submanifold, so we obtain the induced metric gg, and the
corresponding Riemannian measure ox as above, as well as the induced measure jug,
that we denote simply by up and refer to as a weighted area. Since on Sk we have
D = D (R), it follows from the definition of p, that

In particular, the total weighted area of Sg is given by
i (Sp) = D (R)or (Sg) = w.D (R) % (R)",

which gives a geometric meaning to the term D" ! that appears in (1.108) and (1.109).
The function

S(r) = pugr(Sr) = w,D (r) Pt (r) ], (1.110)

that coincides with pp (Sg), is called the area function of the weighted model (M, g, u).
Using (1.110), we can rewrite (1.109) as follows:

9 S o 1
Ag# — _87'2 S (7“) E wQ (r) Agnfl . (1111)
27.05.24 Lecture 12

1.14 Length of paths and the geodesic distance

A path and its velocity. Let M be a smooth manifold.

Definition. A path (or parametric curve) on M is any continuous mapping v : [ — M
where [ is any interval in R.

In the local coordinates ', ..., 2™, the path is given by its components x’ = ~* (t).

If 4% (t) are C* functions of ¢ then the path v is also called C*.
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Definition. For any C! path v : I — M and for any t € I, define the velocity + (t) as
the following R-differentiation at z = v (1):

A(t): C* (M) —R

§(0)(F) = 57 (1 (1)) for any [ € C (M) (1112

Indeed, it is easy to see that the mapping % (¢) defined by (1.112) satisfies the
definition of an R-differentiation at the point & = v (¢): it is linear and satisfies the

product rule, because so does the ordinary derivative 4 (see Exercise 8). Hence,

dt
0% (t) € Tw(t)M-
Let us express the tangent vector 4 () in the local coordinates ', ..., z™. Applying
the chain rule, we obtain

YO ) =ZF (0" 1) = 557 =355 (1.113)
where using the notation .
g
T
Rewriting (1.113) in the operator form as follows
.0
y =9 — 1.114
V=Yg (1.114)

we see that 4 (¢) has in the basis {2} the components 4" (¢).

As one of the consequences of (1.114), we obtain that any tangent vector £ € T, M
can be represented as the velocity of a path; for example, one can take the path
7(t) =t g

The length of a path. Let now (M,g) be a Riemannian manifold. Recall that
length of a tangent vector £ € T, M is defined by [{], = \/(, {)g-
Definition. For any C' path v : I — M, define its length (g () by

le(7) = / 5 (1) d. (1.115)

If the interval I is bounded and closed then clearly ¢ () < oco. If the image of v is
contained in a chart U with coordinates !, ..., 2" then

5 Ol = V9 (7 ()4 (£)4 (1)

and hence
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Assume in what follows that the interval I is bounded and closed, say, I = [a, ],
and extend the definition of /4 () to piecewise C! paths .
Definition. A path v : [a,b] — M is called piecewise C' if it is continuous on [a, b]
and there is a finite partition a =ty < t; < ... <ty = b of the interval [a,b] so that v
is C'! on each of the intervals [t, tgy1].

For a piecewise C'! path v, the velocity # (t) is defined for all ¢ # t;, and the integral
(1.115) still makes sense. Hence, the length 4 () is well defined for piecewise C! paths
and, moreover, is finite.

Geodesic distance. Let us use the paths to define a distance function on the man-
ifold (M, g). We say that a path ~ : [a,b] — M connects points = and y if v (a) = =
and v (b) = y.

Definition. The geodesic distance d (x,y) between any two points x,y € M is defined
by

d(z,y) = inf {Eg (7) : v is a piecewise C'-path connecting z and y} . (1.116)

If the infimum in (1.116) is attained on a path ~ then v is called a shortest (or a
minimizing) geodesics between x and y. If there is no path connecting = and y then,
by definition, d (z,y) = +o0.

For example, consider R™ with the canonical metric gg». Then the geodesic distance
of (R, ggn) coincides with the Euclidean distance |z — y|, and the straight line segment
[z, y] between z,y € R™ is the shortest geodesic (see Exercises).

Our purpose is to show that the geodesic distance is a metric® on M, and the
topology of the metric space (M, d) coincides with the original topology of the smooth
manifold M (see Theorem 1.28 below). We start with the following observation.

Lemma 1.25 The geodesic distance satisfies the following properties.
(i) d(z,y) € [0,+00] and d (z,z) = 0.
(11) Symmetry: d(z,y) = d(y,z).

(13i) The triangle inequality: d(z,y) < d(z,z) 4+ d(y, 2).

Proof. (i) That d(z,y) € [0,00] is obvious from (1.116). Given z € M, consider a
constant path 7 : [0,1] — M defined by v () = z. Clearly, ¥ (¢) = 0 and ¢y (y) =0
whence d (z,z) = 0 follows.
(23) If 7y : [a, b] — M connects x and y, that is, 7y (a) = x and v (b) = y then consider
a path
(1) =7 (a+b—1)

3We allow a metric d (z,y) to take value +o0. It can always be replaced by a finite metric

7 L d(.’lﬁ,y)
d(z,y) = m7

which determines the same topology as d (x,y).
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that is also defined on [a, b]. Clearly, 7 (a) =y and 7 (b) = « so that 7 connects y and
x. It is obvious from the definition that ¢ (3) = ¢(v), which implies by (1.116) that

d(z,y) = d(y, ).

(ii1) Consider any piecewise C' path 7, : [a1,b;] — M connecting z and 2, and a
piecewise C'' path 7, : [ag, bs] connecting z and y. By a shift of the variable ¢, we can
always assume that b; = a. Define the path 7 : [ay, bs] connecting = and y, as follows:

l(t), t e [(Zl,bl],
V(t):{ 12(25), £ € [as. o).

The path ~ is continuous because by = as and 7, (by) = z = 7, (az2), and piecewise
C! because so are v, and 7,. It follows from (1.116) that

d(z,y) <l(y) =L(71) +L(72)-

Taking infimum with respect to 7, and v,, we obtain
d(z,y) <d(z,z) +d(z,y),

which finishes the proof. m

We still need to verify that d(z,y) > 0 for all distinct points z,y. A crucial step
towards that is contained in the following lemma.

Lemma 1.26 For any point p € M, there is a chart U 5 p and C > 1 such that, for
all x,y € U,
where |z — y| is the Euclidean distance in U.

Proof. Fix a point p € M and a chart W around p with local coordinates !, ..., 2".

Let V' be the Euclidean ball B, (p) of radius r centered at p where r > 0 is so small
that V. C W.
For any € V and any tangent vector & € T, M, its length [¢| ¢ in the metric g is
given by
[€lg = gij () €€,

Denoting for simplicity the Euclidean metric gg-» in W by e, we have
2 i) 2
€le=2_ ()"
i=1

Since the matrix (g;; (x)) is positive definite and continuously depends on z, there is a
constant C' > 1 such that
n

O (E) < Y Ee <), (1.118)

ij=1 i=1
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for all z € V and ¢ € T, M. Indeed, the function
Y g @), zeV, (es!
ij=1

is continuous and positive, which implies that, in the compact domain V x S, its
maximum is finite and minimum is positive, whence (1.118) follows.
It follows from (1.118) that, for all £ € T, M and = € V,

C7 el < [Elg < Ol
Consequently, for any piecewise C' path v in V, we have
C e (7) S Llg(7) < Cle (). (1.119)

Connecting two points x,y € V by a straight line segment v and noticing that the
image of v is contained in V' and /e () = |z — y| we obtain

d(x,y) < lg (7) < Cle(y) =C |z — 1y,

which proves the upper bound in (1.117).
In order to prove the lower bound in (1.117), we have to reduce V as follows.
Define now the set U by U = B%r (p) and prove that, for any piecewise C! path v on

M connecting points z,y € U,
lg(v) = C Mz —yl. (1.120)

If v stays in V' then we have (e () > |z — y|, which together with (1.119) gives (1.120).

Path v connecting the points x, y intersects AV at a point z.

Assume that v does not stay in V. Then v intersects the boundary 9V at some
point z (indeed, the image of v is a connected set, and if it does not intersect OV
then it is covered by two disjoint open sets V and V°, which is not possible as  has
non-empty intersection with each of them).
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Denoting by 7 be the part of + that connects in V the point x to the point z € 9V,
we obtain

lte(1) 26 (7) 2C o — 2] 2 C‘%?‘ >C 7o —yl,

where we have used (1.120) for the path 7 and that |z — y| < 27
Hence, (1.120) holds for all paths 7 connecting = and y, which implies

d(x,y) > Oz —y|.

31.05.24 Lecture 13

Proposition 1.27 We have d (z,y) > 0 for all distinct points z,y € M. Hence, the
geodesic distance d (x,y) satisfies the axioms of a metric and (M,d) is a metric space.

In fact, if the manifold M is connected then the metric d is finite: d (z,y) < oo for
all z,y € M (see Exercise 50).

Proof. Fix a point p € M and let us prove that d(p,z) > 0 for any z # p. Let U
be a chart around p as in Lemma 1.26. By reducing U, we can assume that U is a
Euclidean ball B. (p) of some radius € > 0. If z € U then by (1.117)

d(p,x) >C'p—az|>0.

Assume that x ¢ U. Then any path v connecting p and = must intersect the boundary
OU, say at a point z, which implies by (1.117) that

lg(7) 2 d(p,z) > C7 p—2z|=C'e.

If x ¢ U then any path ~ connecting p and x contains a point z € OU

Taking inf in all such v, we obtain d (p, ) > C~'e > 0, which finishes the proof. =

The topology of the geodesic distance. As any metric, the geodesic distance
induces a topology on M.

Definition. For any x € M and r > 0, denote by B (x,r) the geodesic ball of radius r
centered at x € M, that is

B(z,r)={ye M :d(x,y) <r}.
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In other words, B (x,r) are the metric balls in the metric space (M, d). By definition,
the topology of any metric space is generated by metric balls, which form a base of
this topology.

Note that the metric balls are open sets in this topology.

Theorem 1.28 The topology of the metric space (M,d) coincides with the original
topology of the smooth manifold M.

Proof. Recall that the topology of M inside any chart U coincides with the Euclidean
topology of U that is determined by the Euclidean distance function. Denote by T},
the original topology of M and by T, — the topology of the metric space (M, d). To
prove the identity of the two topologies, it suffices to prove that their local bases at
any point are equivalent.

A local base of Ty at a point p € M is given by the geodesic balls B (p,r) with
small radii 7 > 0, and a local base of T); at p is given by the Euclidean balls B, (p) in
any chart U containing p, also with small enough r > 0.

Hence, in order to verify the identity of the two topologies, it suffices to prove the
following: for any p € M there is a chart U containing p and C' > 1 such that, for any
small enough r > 0,

Be-i, (p) € B (p,r) C Ber (p) - (1.121)

Fix a point p € M and let U be a chart constructed in Lemma 1.26, where (1.117)
holds, that is,
Clao—yl<d(x,y) <Clz—vy| forall z,yeU. (1.122)

By reducing U, we can assume that U coincides with the Euclidean ball B; (p) of some
radius € > 0. Then we will prove the inclusions (1.121) for any r < C~'e, where C is
the constant from (1.122).

Indeed, if © € Bg-1, (p) then x € U and

d(z,p) < Cle—p| <,

whence z € B (p,r).
To prove the second inclusion in (1.121), let us first verify that B (p,r) C U.

If x ¢ U then any path ~ connecting x and p intersects OU
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Indeed, if = ¢ U then any path v connecting p and x contains a point z € dU. By
(1.117), we obtain

lg () >d(z,p) >C |z —p|=CTle >,

whence d (z,p) > r and x ¢ B (p,r).
Therefore, if © € B (p,r) then z € U and, hence,

|z —p| < Cd(z,p) < Cr,

which implies € B, (p). =

1.15 Smooth mappings, push-forward and pullback

Smooth mapping. Let X and Y be two smooth manifolds of dimension n and m,
respectively. A continuous mapping

Y - X

is called smooth if it is represented in any charts of X and Y by smooth functions. More
precisely, this means the following. Let z!,...,2™ be the local coordinates in a chart
U C X, and y',...,y™ be the local coordinates in a chart V' C Y, and let ® (V) C U.
Then the mapping ® in V' is given by n equations

"Ijl = ®Z <y17 "'7ym) Y

where all functions ®? are smooth?.

The mapping ® : Y — X allows to transfer various objects and structures either
from Y to X, or back from X to Y. The corresponding operators in the case “from Y
to X7 are called “push-forward” operators, and in the case “from X to Y” they are
called “pullback” operators.

Definition. For any function f : X — R define the pullback function ®,f : Y — R by
q)*f = f © (Pa

that is
(.f) (y) = f(®(y)) forany y € Y.

Clearly, if f is smooth then ®,f is also smooth. For example, pulling back the
coordinate function z° in chart of X, we obtain

O.2' = 2" o ® = P

1By the continuity of ®, for any y € Y and for any chart U in X containing z := ® (y), there
is a chart V in Y containing y such that ® (V) C U. Hence, the mapping ® can be written in the
coordinate form in a neighborhood of any point y € Y.
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Tangent map. Now fix a point b € Y and set a = ® (b) € X.

Definition. Define the push-forward map d® : T,Y — T, X as follows: for any tangent
vector £ € T,Y, define d®¢ as an R-differentiation at a by

(dBE) () = € (B, f) for any f € C™ (X). (1.123)

dd

Clearly, d®¢ is a linear mapping from C* (X) to R. The fact that d®¢ is an
R-differentiation at a is stated in the next lemma.

Lemma 1.29 For any & € T,Y, its push-forward d®¢ is an R-differentiation at a € X,
that is, d®¢ € T,X. In the local coordinates z*,...,z™ on X and y*,....y™ on Y, we
have

0P
oy’

(dD€)" = Z—(b)¢’ | (1.124)

Proof. For any f € C*°(X) and for any tangent vector £ = fj - € T,Y, we have

(@9 (1) = £ (@.1) =€ 5 (2.
y=b
- L Of 0%
=€ 5 CW)|  =egi@gr0.
It follows that . 5
dP¢ = fjayj()axw

in

a
the basas { o

Counsider the Jacobi matrix

} in T, X are given by (1.124). m

o
1= (&)
oy’
where ¢ = 1,...,n is the row index, 7 = 1,...,m is the column index. Denoting by &

the column vector with components ¢',...,£™ and understanding (d®¢),_., similarly,
(1.124) can be written in terms of matrix multiplication as follows:

(dPE) o = J (D)Ecor (1.125)
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Definition. The push-forward map
do - T,Y — T, X (1.126)

is called the tangent map of ® at b or the differential of ® at b.

03.06.24 Lecture 14

Recall that, for a smooth mapping ® : R™ — R, the differential d®(b) at a point
b € R™ is defined as a linear mapping R™ — R" such that

D (b+¢) — D (b) =dR(b)§ +o([¢]) as & — 0,
and it is expressed through the partial derivatives as follows:

0P

(d2(0)0)" = 550,

which matches (1.124)

Cotangent map. Now let us define a dual notion to tangent map. As above, let
® .Y — X be a smooth mapping of smooth manifolds X and Y.

Definition. Fix some b € Y and let a = ®(b) € X. For any tangent covector v € T X
define its pullback ®,v € T;Y by the following duality relation:

(D,0,8) = (v,dDE) V& €T,Y. (1.127)
The pull-back mapping
"X — 1T,
v = P
is called the cotangent map of ® at a.

Remark. A natural notation for the dual map of d® would be (d®)*, which, however, is
not commonly used, giving preference to ®,. One of the reasons for that is the identity
(1.128) below.

T

TADE

A

The pullback objects are red, the push-forward objects are blue.
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Lemma 1.30 For any f € C™ (X),

O.df =d(0.f)] (1.128)

In the local coordinates x',...,x™ on X and y',....,y™ on'Y, we have for any v € TFX,

P
5,70

(P.v); = v; (1.129)

Proof. For any £ € T,Y we have by

(1.127) (1.123)

which proves (1.128). Setting here f = x* we obtain

o A
gyj (b)dsy’ . (1.130)

D.da’ = d (P.z') = dP' =

Hence, for any covector v € v;dz’* € T) X,

O by,

v v xXr Uay]

whence (1.129) follows. m

Denoting by vy the row vector with components (vy,...,v,) and understanding
(®,v).,.,, similarly, we obtain from (1.129) the matrix identity

row

(P,v). = VrowJ (D).

row

Push-forward and pullback of composition. Suppose that we have three mani-
folds XY, Z and two smooth mappings

J—Y =X

so that their composition
PoV: 7 — X

is well defined and is a smooth mapping.
The pullback of any function f € C°(X) satisfies the following identity

(@oW). f =1, (D.f) (1.131)

because
(PoW), f=fo(PoW)=(fod)oW =0, (].f).

The push-forward operation for tangent vectors on Z satisfies the identity

d(®oW)E =dd(dVE)| VEeT.z,
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because for any f € C* (X), we have

(1.123) (1.131)

d(@oW)E(f) ="E((@oW), f) =" (V. (D.f))

(1.123)

=Y (qwe) (. f) "2 dd (av€) (f) .

Fix c€ Z and a = ® o ¥(c) € X. Then we have the following identity for pullback of
tangent covectors on X:

(PoVW) v=",(dv)| YweTrX,

because for any ¢ € T,.Z we have
(o), v,8) = (v,d(PoW)E) = (v,dP (dVE)) = (B0, dVE) = (Vu(Py0,8) .

Observe that the push-forward of a composition is the composition of push-forwards,
while the pullback of composition is the composition of pullbacks in the opposite order.

Pullback of a Riemannian metric. Returning to the case of one smooth mapping
® : Y — X, assume that we are given a bilinear form g on 7, X where a = ® (b) for
some b € Y (for example, g can be a Riemannian metric). Then define its pullback
®.g as a bilinear form on T,Y by

D,g (¢,1) = g (dDE, ddn) for all €1 € THY. (1.132)

If g is symmetric then also ®,g is symmetric. If g is positive definite then ®,g is
non-negative definite as

0.g (£, €) = g (dPE, dPE) > 0.

Clearly, ®.g is positive definite if and only if the tangent map d® : T,Y — T,X is
injective because in this case

£ £ 0= dPE #£ 0 = g (dPE, dDE) > 0.

Lemma 1.31 Let m = dimY < n = dim X. Assume that the Jacobi matrix J of
® Y — X has at all points of Y the maximal rank m. Then, for any Riemannian
metric g on X, its pullback ®.g is a Riemannian metric on Y.

Besides, the matrices g° of g and (®.9)" of ®.g in the local coordinates z', ..., x
on X and y*,...,y™ on'Y, respectively, satisfy the following identity:

n

(@,9)Y = JTg"J|. (1.133)

Note that g* = (g;;) is an n X n matrix and (®,g)" = ((®.g),,) is an m x m matrix.

Proof. Let us fix the bases {a?ci} in T, X and {%} in T,Y, respectively, where
a = ®(b). In these bases the tangent map d® : T,Y — T, X is given by (1.125) by

multiplication by the Jacobi matrix
CI)Z'
- (o).
oy’
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where ¢ = 1, ...,n is the row index and j = 1, ..., m is the column index. Since rank J =
m, the image of d® is an m-dimensional subspace of T, X, which implies that d® is
injective. Consequently, ®,g is positive definite and, hence, is a Riemannian metric on

Y.
In the local coordinates, using g = g;;da‘da?, we obtain

; -\ (1.130) i g 0%’ 0P
.g = gi 0. (do') B (d2?) "= g;5d®'dPT = g;; oy* K 3_Z/ldy ’
whence opi  Obi
(sg)y = a_ykgijﬁ_yz’ (1.134)

which is equivalent to (1.133). =

Diffeomorphism and isometry. Assume from now on that Y and X have the same
dimension n. A mapping ® : Y — X is called a diffeomorphism if it is smooth and
the inverse mapping ®~! : X — Y exists and is also smooth. In this case, the tangent
maps

d®: T,Y - T,X and d(97'):T,X - T,V

are also mutually inverse because

dPodd ! =d(®Pod!)=id,

which implies that the tangent map d® is injective. Consequently, the pullback ®,g of
a Riemannian metric g on X is a Riemannian metric on Y.

Definition. Two Riemannian manifolds (X, gx) and (Y, gy) and are called isometric
if there is a diffeomorphism ® : Y — X such that

d,.gx = gy.

Such a mapping ® is called a Riemannian isometry.

The relation “isometric” is denoted by the symbol 2. It is easy to see that the
relation = between Riemannian manifolds is reflexive (the identity map is isometry),
symmetric (because if @ is an isometry then also ® ! is an isometry) and transitive
(since the composition of two isometries is isometry). Hence, the relation 2 is an equiv-
alence relation between Riemannian manifolds. Two manifolds that are isometric have
exactly the same properties as Riemannian manifolds and frequently can be regarded
as the same manifold.

* Remark. Two weighted manifolds (Y, gy, py) and (X, gx, puy) are called isometric
if there is a Riemannian isometry @ : Y — X such that

O, Dx = Dy,

where Dx and Dy are the density functions of py and py-, respectively.
Let ® : M — M be a diffeomorphism of a smooth manifold M. Then & is an
isometry of a weighed manifold (M, g, 1) provided

b,g=g and ¢,D=D.
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The first of these conditions can be rewritten in the local coordinates in terms of

matrices as follows:
J'gJ =g. (1.135)

The set of all isometries of (M, g, u) is called the group of isometries of (M,g, p),
because this set forms obviously a group with respect to operation of composition.

* Example. Any translation ® () = z + a in R" is an isometry of the Riemannian
manifold (R™, ggn), because the Jacobi matrix of the translation is id. Consider the
orthogonal group O (n), that is, the set of all n x n matrices A such that ATA = id
(in particular, this includes all the rotations in R"). If A € O (n) then the orthogonal
transformation ® (x) = Az of R has the Jacobi matrix J = A. Since gg» = id,
we see that (1.135) is satisfied, so that the orthogonal transformation is an isometry
of (R", ggn). Consequently, the Laplace operator in R™ commutes with orthogonal
transformations.

Since A is invariant on S"!, we see that the orthogonal transformation is also an
isometry of (S"7!, ggn-1).

* Example. Let (M,g, ) be a weighted model with polar coordinates (r,6) (see
Section 1.13) and let ® be an isometry of S*~*. Then ® induces an isometry of (M, g, 11)
by @ (r,0) = (r, ®(0)) .
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Chapter 2

Weak Laplace operator and
spectrum

2.1 Regularity theory in R"

Consider in a domain 2 C R™ an operator
Lu = Z 0; (a;;05u) + Z bj0;u + cu, (2.1)
ij=1 i=1

where the coefficients a;;, b;, c are C* smooth functions in 2. Assume that (a;;) is uni-
formly elliptic with the ellipticity constant A and that the coefficients b;, ¢ are bounded
in , say, also by .

Definition. For any v € W2 (Q) and f € Lloc (Q), we say that the equation Lu = f
holds weakly in Q if, for any ¢ € D (Q2) := C§° (),

/Zawﬁuﬁmdx—l—/Zb8u<pdm+/cud:c—/f<pda:

i,7=1

The following theorem was proved in EDFE, Theorems 2.1, 2.8, 2.10.

Theorem 2.1 Let L be the operator (2.1). If u € W (Q) and Lu € W22 (Q) then
ue Wht?? (Q) . Moreover, for any open set U € €,

loc

lilyeszay < € (lullyragey + Houllprae)) (2:2)

where C'= C(U,Q,n, \).

07.06.24 Lecture 15

Consider a more general operator

;050) +Zb0u—|—cu, (2.3)

ljl

65



66 CHAPTER 2. WEAK LAPLACE OPERATOR AND SPECTRUM

where a;;, b; and c are as above and p is a smooth positive function in 2. The motivation
to consider the operator (2.3) is because the Laplace-Beltrami operator A4 has in any
chart the form

1 n y 1 u
Agu = ; 2::1@ ( det gg ](’3ju> = m,; 9; (a;;05u)

etgij

where p = y/det g and a;; = v/det gg”/.Consider also an auxiliary operator

Lu = Z 0; (a;;05u) + Z pb;0;u + pcu,

4,j=1 Jj=1

where all the terms are obtain by multiplying those of Lu by p.
Definition. We say that the equation Lu = f is satisfied weakly, if Lu = pf weakly.

Corollary 2.2 Let L be the operator (2.3). If u € W22 () and Lu € W2 () then
u e Whte? (Q). Moreover, for any open set U € (2,

loc

lllyeszay < € (lullyragey + Eullpra)) (2.4)

where C' = C (U, Q,n, k, \, p).

Proof. If Lu = f where f € VV;Zf then also Lu = pf € W2 Applying Theorem 2.1

loc

to the operator E, we conclude that u € VV/ZZ’Q’Q (©2). Choose an open set V' such that
U eV e Q. Applying (2.2) to the operator L in V| we obtain

ullysssaqy < € (Nallgra + 1o lheeq) (25)
Since the function p and all its derivatives are bounded in V| it follows that

pr”wk,Q(V) < c’ HfHW’“ﬂ?(V) ’

where C” depends on [|p[|cx(yy < 00. Substituting into (2.5), we obtain

[ullyieza e < C° (HUHWW(V) + Hf”WW(V)) )

whence (2.4) follows. m

In what follows we use the notation

LFu:= L(L(...Lu)).
k ti L

Of course, the operator LF is well-defined on functions u € C*(M).
Definition. Assuming v € W2 (Q) and f € L}, (9), let us define by induction in

loc
k € N what it means that Lfu = f weakly in Q. If k = 1 then L*u = f is the same as
Lu = f that was defined above. If k > 1 then L*u = f means that
LF e W2 (Q) and L (LF ') = f,

loc
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where L' is defined by the inductive hypotheses.

For example, L?u = f means that Lu € W,.?(Q) and L (Lu) = f.

For any k > 1, the equality L*u = f assumes that all the functions u, Lu, ..., LF~'u
belong to W, (Q), and L (LF~1u) = f.

For k =0, set L* =1id.

Corollary 2.3 Let L be the operator (2.3). If
u, Lu, ..., L*u € I/Vllof (Q)

then
= W2k+1,2 (Q) ]

loc

Moreover, for any open set U € (,

k
HuHW%+1’2(U) < CZ HLjunl,Q(Q) ) (26)
=0

where C' = C (U, Q,n, k, A, p).

Proof. Induction in k. If £ = 0 then the statement is trivial.
Induction step from k& — 1 to k, where & > 1. Set v = Lu. Then we have
v, Lv, ..., L* v e W2 (Q),

loc

and by the inductive hypothesis we conclude that v € Wfoﬁflz (). Moreover, choosing
an open set V such that U € V' &€ (), we obtain

k—1 k
HU”WWLZ‘(V) < CZ ”Lj”HWlﬂ(n) - CZ “LjuHW“(Q) '
j=0 Jj=1

Therefore, Lu = v € W% (Q), and by Corollary 2.2 we conclude that u € W% (Q)
and

k
HUHW%+L2(U) <cC (HUHWL?(V) + HUHW%*L?(V)) < CIZ ||L]U||W1,2(Q) ;
=0
which was to be proved. m

Corollary 2.4 Let L be the operator (2.3). If
u, Lu, ..., L*u € I/Vlf)f (Q)
and, for some non-negative integer m,

2k+1>g+m,

then
ueC™(Q).
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Moreover, for any compact set K C €0,

k
HuHCm(K) S CZ HLjunl,z(Q) ) (2'7)

J=0

where C' = C (K, Q,n, k,m,\, p).

Proof. Recall the Sobolev Embedding Theorem (PDE, Theorem 4.17): if U is an open
subset of R™ and

[ > +n
m —
2

then
we W2 (U)=ueC™(U).

loc

Moreover, if u € W% (2) then, for any compact K C U,
[ullom(zey < Cllullyre - (2.8)

Since u € VVZQO/IZJFL2 (2), applying the first statement with [ = 2k + 1 and U = 2, we

obtain u € C™ (2). Now let U be any open neighborhood of K such that U &€ 2. By
(2.6) we have

k
lullwaenawy < C Y1 yraqy
=0
which together with (2.8) implies (2.7). =

2.2 Weak gradient and Sobolev spaces

Let (M, g, 1) be a weighted manifold. Denote by L? (M, 1) the space of all measurable
vector fields' v (z) on M such that |v|, € L*(M, p).

Similarly we define L2_ (M, 1) as the space of all measurable vector field v(z) on
M such that |v], € Li,.(M, ).

loc
In what follows we write for simplicity Vg = V and divg, = div. The space

L2 (M, 1) admits an inner product
(v,w) 2 = / (v, w), dpu,
M
and the corresponding norm is

2 2
o2 = /M ol dp

It is easy to prove that L2 s complete with respect to this norm and, hence, is a Hilbert
space.

LA vector field v on M is called measurable if all the components of v in any chart are measurable
functions.
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Denote for simplicity by D (M) the space C° (M) and by D (M) the space of
smooth vector fields on M with compact supports.

Definition. Fix a function v € L} .. A weak gradient of u is a vector field v € L

(denoted also Vu) such that, for any ¢ € D,

2
loc

/ udivey dp = —/ (v, 9)g dp. (2.9)
M M
Or, equivalently, Vu is defined by the identity

(u7 div 77D>L2 == (vu7 ¢)E2 :

It follows from this definition that the weak gradient is uniquely defined. Note u is
a smooth function then the classical gradient v = Vu satisfies (2.9) by the divergence
theorem, so that in this case the weak gradient exists and coincides with the classical
gradient.

Definition. Define the Sobolev space W!(M) by
W (M) = W (M, g, ) = {u € L* (M, 1) : Vu € L* (M, 1)}

and the inner product in W1:

(w, V) = (4, 0) 2 + (Vu, Vo) p, = /

uvdu+/ (Vu, Vu)g dpu. (2.10)
M M

The associated norm given by

lalZr = ulZa + [Vl = /M P+ /M Va2 dp. (2.11)

Lemma 2.5 W' (M) is a Hilbert space.

10.06.24 Lecture 16

Proof. It follows from (2.11) that the convergence wuy, W win W1 (M) is equivalent
to

(o L and Vg, 2, V. (2.12)
Let {ux} be a Cauchy sequence in W' (M). Then the sequence {u} is Cauchy also
in L? (M) and, hence, converges in L?>-norm to a function u € L* (M). Similarly, the
sequence {Vug} is Cauchy in L? (M) and, hence, converges in L2-norm to a vector
field v € L2 (M). It follows from the definition of the weak gradient that Vu = v and,
hence, (2.12) is satisfied. m

Since any open set U C M is itself a manifold, we can define all the above spaces

L? and W' also in U.
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If U is in addition a chart, then we can define the spaces L? and W' considering
U as a subset of R”, that is, using the Euclidean metric e = gg» and the Lebesgue
measure \. Denote these spaces by L2 and W], respectively.

We say that a chart U on M is precompact if U as a set is precompact and U is
contained in a larger chart.

Lemma 2.6 Let U be a precompact chart in M. Then we have the following.
(a) For any measurable function u on U,

HUHL2(U) = ”UHLg(U)-
Consequently, L*(U) = LZ(U).
(b) For any measurable vector field v on U,

”U“E?(U) >~ [|(v1; ..oy Un)HEg(U)

where v; are the covector components of v. Hence, L2 (U) = L2 (U).
(¢) Let uw € W (U) and let v = Vu be the weak gradient of u. Then % = v; weakly
in U where v; is the covector component of v.

(@) WH(U) =W, (U) and [[ully @y = [wllywa -

The sign ~ between two expressions means that the two expressions are comparable,
that is, their ratio is bounded from above and below by positive constants.

Proof. (a) In the chart U we have

dp = D+/det gd\ = pd\

where A is the Lebesgue measure in U and D is the density function. Since the function
p = D+/det g is bounded between two positive constants in U, we see that

el 2oy == Ml oy
and, hence, L (U) = L2 (U).

(b) Let v be a measurable vector field on U. Denote by v’ be the coordinates of v
in the basis { 0 } Let also v; = gijvj be the covector coordinates of v. We have

Ox?
[0]| 7 :/ |U!§d,u:/gijvivjpd)\.
U U

Since the matrix (pg®/) is uniformly elliptic? in U, we obtain that in U

gy 2 2
pPg- Vv, =V + .+ vy,

2If (a;j(w)) is a positive definite matrix for any x € V (where V is an open subset of R") and
if a;; € C(V) then (a;;) is uniformly elliptic on any compact subset K C V. Indeed, as the trace
>, ;i is uniformly bounded on K, it follows that the maximal eigenvalue of (a;;) is also uniformly
bounded on K. Applying the same argument to the inverse matrix (aij)_l, we obtain that its maximal
eigenvalue is also uniformly bounded from above, which implies that the minimal eigenvalue of (a;;)
is bounded from below by a positive constant, whence the uniform ellipticity follows.
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whence
||U||2E2 ~ /U (v 4 ... +02) dX = ||(v1, 7Un)||2ﬁg

Hence, identifying each vector field v in U with the Euclidean vector field (v, ..., v,),
we obtain the identity . .
L*(U) =L (U).
(c) Let w € W' (U) and let v = Vu be its weak gradient. By (2.9) we have

/Mudivwdu——/M@,w)gdu

for any vector field ¢ = 1" a?:i €D (U). In the local coordinates, we have

. 10 ; B 0 :
/Mudlvwdp = /Uu;axl (pw ) pd\ = /Uu(%i (pw)d)\
and
/ <U7¢>g dﬂ = / QUU]@/)Zpd)\ = / Uﬂ/)lpd/\7
M U U
whence

/U“aii (p0') dX = —/Uvi (pv') dA. (2.13)

Fix ¢ € D(U) and an index i. Choose the vector field ¢ as follows: ¢, = ¢/p and
Y, =0 for all j # 4. It follows from (2.13) that

/ w22 in = / vipdA,
v Or U

that is, the function v; satisfies the definition of the the weak derivative g; (inU C R"),
so that
ou

ozt

(d) As above, let v € W' (U) and v = Vu. We have u € L*(U) = LZ(U).

Since v € L*(U), it follows that {v;} € L2(U). Since 2% = v; by (c), it follows that
u e WL(U). By (a) and (b) we obtain

= V;.

2 2 2 2 2 2
lullwy = llullzz + [{villzz = llullze + l[ollze = llully: -

Conversely, if u € W (U) then {24} € L2 (U) and, for any 1) € 7—)>(U),

ox
/ ou
u
U

0 , ,
. ) d\ = — 4 YY) dA.
gz () /U gz ()
Comparing with (2.13), we see that the vector field v with covector components
_ Ou
-~ Oxt
belongs to L2 (U) and yields the weak gradient Vu, which implies u € W1 (U). We
conclude that

(%

W (U) =W (U).
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2.3 Weak Laplacian

Here we write for simplicity Ag , = A.
Definition. Let u € W}l (Q) and f € L2 (). We say that the equation Au = f is

loc

satisfied weakly in Q, if, for any ¢ € D (),

/ (Vu, Vo), du = —/ fedu, (2.14)
Q Q
that is,
(Vu, Vo) = = (f,¢) 12 -
Of course, if u is a smooth function and Au = f is satisfied in the classical sense,
then it is also satisfied in the weak sense, as it follows from the Green formula.

Theorem 2.7 Let k,m be non-negative integers such that
2k+1>m+ g

Let Q be an open subset of a weighted manifold M and assume that
u, Au, ..., AP € WL (Q). (2.15)

Then uw € C™ (). Moreover, for any compact set K C €2, that is contained in a chart,

K
lullemey < CZ”AjuHWl(Q)’ (2.16)
=0

where C' = C (K, Q,n,k,m,g, D).

14.06.24 Lecture 17

Proof. Let us choose a precompact chart U such that K c U & €. Let 2, ...,2™ be
the coordinates in U. Consider in U the following differential operator

10 0
L=-—(pgi-=
p Oz’ (pg 8:159) ’

where p = Dy/det g. We know that Lu = Au for all u € C*°(U). Let us show that
Lu = Aw holds also for u € W (U) when L and A are understood weakly.
By Lemma 2.6,

L*(U)=L:(U) and W' (U)=W2!(U).

Let u € WY (U) and f € L*(U). By definition, the equation Lu = f weakly in U
means that

0 0
ij_~ ) :
o (pg 8xj> pf weakly in U,
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that is, for all ¢ € D (U),

/ > pg05u dipdA = —/ pfod). (2.17)
U U

i,j=1

By (2.14) the equation Au = f weakly in U means that, for all ¢ € D (U),

/ (Vu, V), dp = —/ f edp. (2.18)
U U
Since ou B
_ _ iy du 0p
<vu7 v¢>g - <du7 d¢>g - g J ax] axz
and

dpp = pdA,

we obtain that (2.18) is equivalent to

. Ou Op
U T\ = — d.
/U P9 o o /U pfe

that is, to (2.17), which proves that the weak operators Au and Lu are the same.
If (2.15) is satisfied then

u, Au, ..., AFu e W (U),

whence also

u, Lu, ..., L*u € WE(U) .

Since 2k + 1 > % 4 m, we obtain by Corollary 2.4 that v € C"™ (U) and

k
[P CZ | L7 (2.19)

J=0

W) -
Since 2 can be covered by charts like U, we conclude that u € C™ (€2). The estimate
(2.19) and [|*[lyya 1y = Il ) (cf. Lemma 2.6) imply (2.16). m

Remark. In the case m = 0 the norm
lull oy = sup [ul
K

makes sense for any compact set K, not necessarily contained in a chart. In this case
the estimate (2.16) holds also for any compact set K, because the latter can be covered
by a finite number of precompact charts, and in each of them we can apply Theorem
2.7.

As an example of application of Theorem 2.7, let us prove the following statement.
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Corollary 2.8 Let a function u € W (Q) satisfy in Q the equation
Au = au

in a weak sense, where « is a real number. Then u € C* (). Moreover, for any
compact set K C € that is contained in a chart, and for any non-negative integer m,
we have )

[ull gy < C (LA 1al)2 572 Jlullyr gy » (2.20)
where C' = C(K,Q,n,m,g, D).

Proof. Since u € W1 (Q), we have also Au = au € W (Q). It follows that also
A%y = o*u € W (Q) and, by induction, for any positive integer j, we obtain

Ay =alue WHQ).

By Theorem 2.7 with arbitrarily large m, we conclude that u € C* ().
By the estimate (2.16) of that theorem, we have, for any non-negative integers m, k
such that

2% + 1 >m+g, (2.21)
that
k
ltllomey < C D | A]| gy
=0
Since

[A7ul|y = lal [Jullyp

it follows that
k
j k
[ullom iy < C D lal [[ullyr < C 1+ |a)* [fully -
=0

Choose k to be the smallest integer such that (2.21) holds. Then
U —1<m+ g

and, hence,

E<—+4+—+

Y

m
2

~3
DO | =

whence (2.20) follows. m

Example. Consider the equation Au = au in Q = (0,27). It becomes u” = au and if
a < 0 then one of the solution is u () = sin Sz where § = y/—a. In this case

2w 2m
ul|7, = / sin? Brde =7, ||u/|%. = 52/ cos? Brdr = 31 = |a|m
0 0

and
[l = (1+ |a])'? 7'/,
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Assume that |a] > 1 and, hence, 5 > 1. Then the functions |sin Sz| and |cos fz| attain
their maximum value 1 on (0, 27). Since

uY (z) = £37sin fr or =+ [ cos Bz,
it follows that

||u||Cm(0 27!') — Sup Sup ‘u(.]) — Sup ﬁ] — ﬁm — |a|m/2 ~ (1 + |Oé|)m/2
’ 0<j<m (0,27) 0<j<m

It follows that
m/2—1/2
||U||cm(0,27r) ~ (14 [af) 2y Jully s

m/2

which shows that the term (1 + |a])"”” in (2.20) is an optimal one.

2.4 Compact embedding theorem
Let © be an open subset of M. Clearly, D (©2) € W (Q). Define
W, (M) = the closure of D () in W' ().

Theorem 2.9 (Compact embedding theorem) If 2 is a precompact open subset of M
then the identical embedding
W (Q)— L*(Q)

1S a compact operator.

Proof. In the case when M = R” this theorem is known (Theorem 4.8 from PDFE),
and we will use it in order to prove that on an arbitrary manifold.

We need to prove that, for any bounded sequence {f;} in W (Q), there is a subse-
quence { fi, } that converges in L? (Q2). Since D () is dense in W, (£2), we can assume
without loss of generality that all the functions f; are in D (). Since Q@ C M is
relatively compact, there is a finite family {Uj};.v:l of precompact charts such that

— N
Qcl ] U
Jj=1

By Theorem 1.3, there exists a partition of unity at € subordinate to {U,}, that is,
non-negative functions ¢; € D (U;) such that Zjvzl @, =11in Q.

Let us prove that, for any 7, the sequence { fkcpj}zozl is bounded in W (2). Indeed,
suppressing indices k, j, we have

1fepllz < suplol [ fll 2 < NF1e < I Fllw

and

IV (fo)llz2 = eV f + [Vl
<supp ||V £z +sup [Vl || f]l -
<N fllwe
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where C'= 1+ sup |Vg| < co. It follows that
ka@ijl(Q) < fillwrgy »

which implies that, for any j, the sequence { fkgpj}lzl is bounded in W1 (Q). Tt follows
that this sequence is bounded also in W' (U;) = W (Uj). Since frp; € D(U;) C
W4 (U;), we can use the compact embedding theorem in R™ and conclude that there is
a subsequence {fki%'}j; that converges in L2 (U;) = L? (U;). By extending the limit
function by 0 outside Uj, we obtain that {fkigoj}zl converges in L? ().

Applying this procedure successively for each j = 1, ..., N, we obtain a subsequence
{fx,} such that {fh%pj}zl converges in L? () for any j. Since Zjvzl @, =1in Q, we
conclude that {fi,} converges in L?(Q), which finishes the proof. =

2.5 Resolvent operator

Fix an open set {2 C M and consider the following Dirichlet problem

{ Au—au=—f in €, (2.92)

u e Wi (Q),

where « is a real parameter and f is a given function from L? (). A function u €
Wi (Q) is called a weak solution of (2.22) if Au = au + f weakly in Q; equivalently,
this means that, for any ¢ € D (),

(Vu, Vo) o +a(u,9) 2 = (f,0) 2 - (2.23)

Theorem 2.10 (The resolvent operator)
(a) For any >0 and all f € L? (), the problem (2.22) has a unique solution wu.
(b) Define the resolvent operator R, by

Ry : L* () — L*(Q)
Rof = u,
where w is the solution of (2.22). Then the operator R, is linear, bounded with the

norm estimate ||Ro|| < a7, injective, positive definite, self-adjoint operator in L? ().
(c) If Q is precompact then the operator R, is compact.

Proof. (a) All terms in (2.23) are bounded linear functionals of ¢ € W1 (Q), because

[(Fro)l < N llzellelize < (I f1zz Nl lln
and similarly
|(Vu, Vo) pa| < [[Vull 2 [Vl g2 < flully ([l -

Hence, all terms in (2.23) are continuous in ¢ € W' (Q). If (2.23) holds for all ¢ €
D (Q), then it holds also for all ¢ € Wy (Q) because D () is dense in Wy (Q).
Denote the left hand side of (2.23) by [u, ¢],,, that is,

[, ] = (Vu, Vo) po + v (u, 9) 12
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and observe that [-, -], is an inner product in Wj. If @ = 1 then [+, ], coincides with
the standard inner product in Wi. For any o > 0 and u € W{, we have

min (o, 1) Jullfr < [u, u], < max (o, 1) [lu][F,
or shortl
Y 2
[, ul,, = [lully -

Therefore, the space Wy with the inner product [-,+], is complete.
Rewrite the equation (2.23) in the form

[u, 0y = (fr0) Vo € Wy (). (2.24)

Since the right hand side ¢ — (f, ¢);2 is a bounded functional of ¢ € W, the equation

(2.24) has a unique solution u € Wy () by the Riesz representation theorem?.

(b) Substituting ¢ = u in (2.23) we obtain
IVullz + allullf: = (f.w) . (2.25)
It follows that
allullze < I fllzzllullzz,

which implies |Jul|z: < a7 f||z2 and, hence,

R,
|Ra|l := sup [1Ra 1l <a < oo

rervgor Sl

Hence, R, is bounded.

If u = R,f = 0 then we obtain from (2.23) that (f,¢);. = 0 for all ¢ € D (Q).
Since D () is dense in L*(Q), it follows f = 0. Hence, R, is injective.

It follows from (2.25) that if f # 0 then

(Raf, )z = (u, )2 = VU2 + allull7> > 0,

because u # 0 by the injectivity. Hence, R, is positive definite.
Since R, is a bounded operator, in order to prove that it is self-adjoint it suffices
to prove that it is symmetric, that is

(Rafa g>L2 = (fa Rag)L2 for all fvg € L2 (Q) .
Setting R.f = u, R,g = v, and choosing ¢ = v in (2.23), we obtain
(Vu, vv)ﬁ +a (u7 U)LQ = (fv Rag)L2 .

Since the left hand side is symmetric in u, v, we conclude that the right hand side is
symmetric in f, g, which implies that R, is symmetric.

3The Riesz representation theorem says the following: if [ is a bounded linear functional on a
Hilbert space H, then the equation

(u, o)y =1(p) Vo€ H

has a unique solution u € H. The proof of this theorem amounts to construction of a vector orthogonal
to the null space of [.



78 CHAPTER 2. WEAK LAPLACE OPERATOR AND SPECTRUM
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(¢) Consider an operator R, defined by

Ry : L* () — W3 (Q)
Rof =u
It follows from (2.25) that
lullfpr < C NN ze llull 2

where C' = max (1,a™!). Since |Jul|,» < a™'||f||;2, we obtain that

lully: < CHI Al 2 s

where €' = (Ca~")"?, and

~ Rof|lwr
Bl = sup  Mllellw

" < (< .
rerzngor I fllz2

Therefore, }N%a is a bounded operator. The operator R, can be represented as the
following composition

2@ B w2 @

where [ is the identical embedding. Since E% is a bounded operator and [ is compact
by Theorem 2.9, we conclude that R, = I o R,, is compact. m

2.6 Eigenvalue problem

Consider in an open set {2 C M the following weak eigenvalue problem:

{ Av+ v =0 weakly in €, (2.26)

v e Wy ()\{0},

where A € R is a spectral parameter. Any solution v to (2.26) is called an eigenfunction
of A in 2, and the corresponding value of A — a (Dirichlet) eigenvalue of A in €.
If X is an eigenvalue of A in €2, then consider the eigenspace

Ey={veW;(Q):Av+=0}.
Clearly, E) is a subspace of W (2). The equation Av 4+ Av = 0 means that, for any
p €W (Q)
(Vu,Vo)r = A(v,9)2 - (2.27)
The both sides of this equation are continuous functionals of v € Wy (£2), which implies

that F) is a closed subspace of Wy (2). The multiplicity of X is defined as dim E) (finite
or 00).
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Theorem 2.11 Assume that € is precompact. Then the following statements are true.

(a) There exists an orthonormal basis {vy},—, in L* () that consists of eigenfunc-
tions of A in €.

(b) The eigenvalue A\ of vy, is a non-negative real, and the sequence {\;} is mono-
tone increasing and diverges to +o00 as k — oo.

(c) v, € C®(Q) for all k.

(d) The sequence {vy.},-, is an orthogonal basis also in Wy ().

(e) The sequence {A\x}r., contains any eigenvalues A\ of A in Q exactly m times
where m is the multiplicity of A. In particular, any eigenvalue has a finite multiplicity.

Proof. (¢) Any eigenfunction of the Laplace operator is C* by Corollary 2.8, in par-
ticular, v, € C* ().
(a) Let v be an eigenfunction of A in © with the eigenvalue A. Rewrite the equation
Av + Av = 0 in the form
Av—v=—(14+N)w.

By Theorem 2.10, this equation for v € Wy () is equivalent to
o= R((1L+\)0).,

where R = R;. If 1 + X\ = 0 then it follows v = 0 which contradicts to the definition of
an eigenfunction. Therefore, 1 + X # 0, which implies

1

Rvo— — .
T

Hence, if v is an eigenfunction of A in {2 with an eigenvalue A then v is an eigenfunction

of the operator R in L () with the eigenvalue .

Conversely, if v € L? () is an eigenfunction of R with an eigenvalue «, that is,
Rv = awv,

then v # 0 by the injectivity of R, which implies v = éRv € W3 (). Hence, v is an
eigenfunction of A in ) with the eigenvalue A that is determined by 1%\ = «, that is,
A=1-1

Recall the Hilbert-Schmidt theorem: if H is a separable oo-dimensional Hilbert
space and A is a compact self-adjoint operator in H, then there exists an orthonormal
basis {vy},o, in H that consists of the eigenvectors of A, the corresponding eigenvalues
ay, are real, and the sequence {ay} goes to 0 as k — oc.

Since R is a self-adjoint, compact operator in L? (€2), by the Hilbert-Schmidt theo-
rem there is an orthonormal basis {vy},—, in L* () that consists of the eigenfunctions
of R, and if oy, denotes the eigenvalue of vy then ap — 0 as k — oo.

It follows that vy is an eigenfunction of A in  with the eigenvalue

M= 1, (2.28)

g
(b) Since R is positive definite, we obtain that «j > 0, because

0 < (Rug, vg) 2 = o ||Uk||i2 :
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Any sequence of positive reals that goes to 0 can be rearranged to become monotone
decreasing. Hence, by rearranging the sequences {v;} and {ay}, we achieve that {ay}
is monotone decreasing.

By (2.28), {\x} is monotone increasing and A\ — 400 as k — oc.

Let us show that Ay > 0. Indeed, if v is an eigenfunction of A in €2 with an
eigenvalue A, then it follows from Av = —)\v that, for any ¢ € Wy (),

(Vu,Vo)r: = A(v, )2 | (2.29)

Substituting ¢ = v, we obtain

L _ Vol

- >, (2.30)
[0]]7

Let mention for the future the following consequence of (2.30):

ollir = (A + 1) floll: | (2.31)

(d) Let us verify that the sequence {v;} is orthogonal in Wy (). Setting in (2.29)
v = v and @ = v;, we obtain, for all k # [,

(Vvk, V'UZ)EQ = )\k (Uk,’l)l)Lg = O,

which implies
(Uk7vl)W1 =0.

In order to show that {v},—, is a basis in Wy (), it suffices to show that, for any
© € Wy (Q), if (vg, )y = 0 for any k > 1, then ¢ = 0. Indeed, by (2.29) we have

(V’Uk;, VQO)EQ = )\k: (Uka SO)L2

whence

(Vk, @)y = (Vur, Vo) o + (Uk, ) 2 = (M + 1) (Vg, 0) 12 -
Since (vg, @)y = 0, it follows that also (vg, ¢);» = 0. By the completeness of {v;} in
L? () we conclude that ¢ = 0.

(e) Before we prove the remaining claim about the multiplicity of eigenvalues, let
us verify that if v and w are two eigenfunctions with distinct eigenvalues A and p, then
uw and w are orthogonal in L? () and W' (). Indeed, setting ¢ = w in (2.29), we
obtain

(Vu,Vw)z = A(v,w) ;2 (2.32)

and in the same way
(V'U, vw)fﬁ =K (U7 w)L2
whence
(A = p) (v,w) . = 0.

Since A # 1, we conclude that (v,w);. = 0. It follows from (2.32) that also (u, w)y =
0.
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Assume that A is an eigenvalue of A with multiplicity m, that is, dim E\, = m.
In the next argument we regard E)\ as a subspace of W} (Q) and use only W' inner
product. Assume that A occurs [ times in the sequence {\;},-,, say, at (necessarily
consecutive) positions ¢ + 1,...,4 + [. Since Ay — 0o, we have | < co. The functions
Vit1, -, Vir; belong to E) and are linearly independent, which implies [ < m. Let
us show that [ = m. Assume from the contrary that [ < m. Then there is a non-
zero element w € FE) that is orthogonal to span{v;i1,...,v;1;}. We claim that w is
orthogonal to all vi. Indeed, w is orthogonal to v;i1,...,v;1; by construction, and w is
orthogonal to all other vy because their eigenvalues are different from A. However, a
non-zero element of Wy (€2) cannot be orthogonal to all vy because {v;},;~, is a basis

in Wy (). =

In what follows we denote by {A; (Q)},—, the sequence of the eigenvalues of A in
() in the (non-strictly) increasing order, that is, Ax (2) < Agy1 (92).
Remark. The sequence {\, (Q)},—, contains certain information about the domain
Q (and about the metric tensor g in ). There was a famous question of Mark Kac
stated in 1966 as follows:

“Can one hear the shape of a drum?”
The point is that if we consider {2 as a drum then the frequencies of vibration of
the drum when hit are exactly /A (Q2) (provided the metric tensor g is properly
chosen depending on the material of the drum). Therefore, hearing all the overtones
of the drum allows (at least theoretically) to recover the sequence {\; (€2)}, and the
question arises whether this sequence contains enough information to restore {2 and
g, up to isometry. In general the answer is negative (even for domains  C R™), but
constructing counterexamples is not easy.

2.7 The bottom eigenvalue

As before, let 2 be a precompact open subset of M. The value \; (£2) is called the
bottom eigenvalue of €2.

Theorem 2.12 Let (M, g, 1) be a connected weighted manifold. If Q@ C M is a non-
empty relatively compact open set such that M \ Q is non-empty then A\ (2) > 0.

In general A; (©2) = 0 is possible, for example, if M is a compact manifold (say, S™)
and 2 = M. Indeed, in this case v = 1 € D(Q) is an eigenfunction of Q with the
eigenvalue A = 0 so that A; (©2) = 0. This example shows also that the condition that
M \ Q is non-empty is essential for the positivity of A; (2).

The assumption about the connectedness of M is also essential. Indeed, let M
consist of two disjoint copies of S", so that M is disconnected Let 2 be one of the
copies of S". Then M \ € is non-empty but still \; () = 0 because again ¢ = 1 is an
eigenfunction of €2 with the eigenvalue A\ = 0.

Recall that if  is a bounded domain in R™ then A; (2) > 0 can be proved by using
Friedrich’s inequality. On a general manifold this tool is not available, so we have to
use a different argument.
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Proof. Assume that A\ (2) = 0 so that there is an eigenfunction v of A in  with the
eigenvalue 0, that is, v € W} (Q) and Av = 0 weakly in Q. By Corollary 2.8 we have
v e C™ (). We will prove that v = 0 in 2 which will contradict to the fact that v is
an eigenfunction. It suffices to prove that v = 0 in any connected component. Hence,
we can assume without loss of generality, that {2 is connected.

By (2.30) we have [|[Vv| 7. = 0 that is, Vo = 0 in Q. Since 2 is connected, we
conclude that v = const in Q. If v Z 0 in Q then we can assume without loss of
generality, that v = 1 in Q.

The set K := Q is closed and non-empty, and its complement K¢ is non-empty by
hypothesis. The sets K and K¢ are closed and their union is M. Since M is connected,
these sets cannot be disjoint. Hence, there is a point xy that belongs to both K and
Ke.

Let U be a precompact chart containing zy. By shrinking U, we can assume that
U is a ball in the local coordinates, in particular, U is connected. Note that, by the
choice of xg, the set U intersects both Q and M \ Q. Consider the set Q' = QU U that
is a connected open set. Note that, by construction, Q' \ © is non-empty.

Since v € W (), we can extend v to Q' by setting v = 0 in '\ Q and obtain that
v e Wy (). Since v =0o0n '\ Q, we have also Vo =0 in Q' \ Q a.e. (EDFE, Lemma
1.5). Since also Vv = 0 in €2, we conclude that Vv = 0 in Q' a.e.. This implies that

(Vo, Vo) =0 Yo € D(Q),

that is, Av = 0 weakly in ©'. It follows that v € C* (). Since Vv = 0 in ', we
conclude that v = const in ', which contradicts to the facts that v = 1in Q and v =0
inY\Q. m

Corollary 2.13 Let 2 C M be a non-empty relatively compact open set such that

M\ Q is non-empty. Then the Dirichlet problem

Au = f weakly in €0,
u e W),

has a unique solution for any f € L*(9).

Proof. By Theorem 2.12 we have A;(€2) > 0, and the unique solvability of the Dirichlet
problem follows from Exercise 60. m



Chapter 3

The heat equation

As before, (M, g, i) is a weighted manifold and A is the weighted Laplace operator on
M.

3.1 Caloric functions

Let I be an interval in R. Consider in I x M the heat equation

ou
— = Au
ot ’
where u = u (¢,x) is a function of ¢t € I and x € M. This equation can be understood
in the classical sense: the function wu (t,z) is differentiable in ¢, is C? in z, and, for all
(t,x) € I x M, 2% (t,x) = Au(t,x).

However, we will understand the heat equation in a weak sense, and the solution u

will be regarded as a path in L2. Let us fix an open set  C M.

Definition. For a function u : I — L? (), define its L%-derivative u’ (t) € L*(2) at
t el by

where the limit is understood in the norm of L? (2), that is,

u(t+s)—ul(t)

—u' (#)|] —0ass—0.

L2

Notation for the L2-derivative: u’ (t) or 4.
Notation for function wu: for any ¢ € I, u () is an element of L? (Q), so that u () (z)
makes sense. For simplicity, we use instead the notation w (¢,2). Then u (¢,-) has the

same meaning as u ().
Definition. A function u: [ — L* () is called caloric in I x Q if

1. w is L2-differentiable at any t € I;

2. for any t € I, we have u (t) € W' (Q) and Au (t) € L? (), where A is understood
in the weak sense;

83
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3. for any t € I, we have u/(t) = Au(t).
In this case we also say that the heat equation v’ = Aw is satisfied weakly in I x 2.
Example. Assume that v € W (Q) satisfies weakly in Q the equation
Av+ v =0

for some A € R. Then the function u (¢,7) = e v () is caloric in R x €. Indeed, u
can be regarded as a mapping

u:R— L*(Q)
u(t) = e v
Since v does not depend in ¢, we obtain
u (1) = —e Mo,
On the other hand, since Av = —Av, we have
Au = e MAv = — e My,

whence v’ = Aw follows.

3.2 The mixed problem

Let € be an open subset of a weighted manifold M. Consider the following initial-
boundary problem (shortly, mized problem) in Ry x

u' = Au weakly in R, x €2,
u(t,-) € Wy (Q) for any ¢t > 0, (3.1)
u(t,')L—if as t — 0+,

where f € L?(Q) is a given function. In other words, we look for a caloric function
in R, x ) that satisfies the appropriately understood boundary condition v = 0 on
R, x 0 and the initial condition u|;—g = f.
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Theorem 3.1 The mized problem (3.1) has at most one solution.

Proof. Assuming that u solves the mixed problem, consider the function

J(t) = fu(t, ) |72 = (u(t),u(t))

and prove that it is monotone decreasing in t € (0, +o00). For that, we use the following
product rule for L?-derivatives: if u (¢) and v (t) are L*-differentiable functions then
the numerical function ¢ — (u(t),v(t)) is differentiable and

d / /
%(uvv) = (uav>+(u7v)7

which is proved in the same way, as the usual product rule for scalar functions (see
Exercises). In particular, we obtain that the function J (¢) is differentiable on (0, +00)

and

J(t) = % (u,u) = 2(u',u) = 2 (Au,u) .

By the definition of Au, we have, for any ¢ € Wy (),
(Au, ) = — (Vu, Vo) .
Since u € Wy (), setting here ¢ = u we obtain
(Au,u) = — (Vu, Vu) <0,

whence J' (t) < 0 follows. Hence, J (t) is a monotone decreasing function.
To prove the uniqueness of the solution is suffices to show that f = 0 implies u = 0.

Indeed, if u (t) L0 ast — 0+ then also J (t) — 0. Since J (t) is non-negative and
decreasing, we conclude J (t) = 0 for ¢t > 0 and wu (t) = 0, which was to be proved. m

Now we prove the existence of solution of (3.1) in precompact domains using the
method of separation of variables.

From now on, let © be a precompact open subset of M. Let {v;},-, be an or-
thonormal basis in L? () that consists of eigenfunctions of A in Q, and {\},—, be
the sequence of the corresponding eigenvalues, in the increasing order.

Theorem 3.2 For any [ € L*(Q), consider the eigenfunction expansion

o
F=Y " aw
k=1

and, for anyt >0, set
u(t) = Ze_)‘ktakvk.
k=1

Then u (t) solves the mized problem (3.1).
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Remark. If
N
f = Z AUk
k=1
for some finite N then

N
u(t) = Z e M aguy,
k=1

is obviously a caloric function, u(t) € W} () and u (t) — f as t — 0 so that u solves
(3.1). The difficulties in the case of N = oo are all in justifications of these claims.

The next two lemmas will allow us to make these justifications.

Lemma 3.3 Let {ay},-, be a sequence of reals. Assume that

> ap < o0 (3.2)
k=1
so that f:=> 1" apv € L*(Q).
(a) If
Az < 00, (3.3)
k=1

then the series Y., ayvy, converges in W' () and, hence,

fews (Q).
Besides,
1151 = ]; (A + 1) ai. (3.4)
(0) If
3 Aa; < oo (3.5)
k=1
then .
Af = — Z ALQRpUL € L2 (Q) . (36)
k=1

Remark. Since A\, — oo, the condition (3.3) implies (3.2), while (3.5) implies (3.3).

Remark. By Exercise 58, the condition (3.3) is also necessary for f € W/ (Q), and
(3.5) is also necessary for Af € L?(Q).

24.06.24 Lecture 20

Proof. We use the fact that if {h;} is an orthogonal sequence in a Hilbert space H
then the series ), hj converges in H if and only if

;HW < 0.
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(a) The sequence {v} is orthogonal in L?(Q) as well as in W, () and, by (2.31),
el = i+ 1) loll7e = Ae + 1.

It follows that

Sllarvellin = 3 af A+ 1) = 3 afhe + Y af < oo. (3.7)
k=1 k=1 k=1 k=1

Consequently, the series > 7, agvy converges in W'(f2), and its sum f belongs to
WE(€). Finally, we obtain by the Parseval identity that

0 00
£l = > ko2 = k;ai e+ 1).

which proves (3.4).
(b) By (a) we have f € Wj (Q). By (3.5) we have

g .= Z ALV € L2<Q)
k=1

We need to prove that A f = —g weakly. For that, consider first the partial sums

N N
N = Z apvp and gy = Z A Qg U,
k=1 k=1

Using that Av, = —\ vk, we obtain
N N
AfN = Z akAvk = — Z )\kakvk = —gN-
k=1 k=1
Hence, for any ¢ € Wy (Q2), we have
(VN Vo)pe = (gn. 9)re - (3.8)

1 2
Letting N — oo and using that fy v, f and gn L g, we obtain

(VI Vo) =(9:9) 12

that is, Af = —g, which was to be proved. m

Lemma 3.4 (A version of the dominated convergence theorem) Consider a sequence
of functions {7, (t)},—, defined on some interval I containing 0. Assume that all 7, (t)
are continuous at t = 0 and that the sequence {7} is uniformly bounded on I, that is,

C :=supsupy, (t) < oo.
keN tel

Let > 77 | hy be a convergent orthogonal series in a Hilbert space H. Then

Zyk (t) hy — ka (0) hy ast — 0,
k=1 k=1

where the convergence is in the norm of H.
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We will apply this lemma for H = L? and for H = W.

Proof. The convergence of ) hy is equivalent to

o0
> [lhwl? < oo
k=1

Since all functions +, (t) are uniformly bounded, we obtain that

ka * Al < oo,

which implies that the series

=37 (t)

converges for any ¢ € I. We need to prove that w (t) — w (0) as t — 0. We have

w ( Z (0)) hi,

k=1
whence by the Parseval identity
lw (8) = w ()72 = > (3 (£) = 7, (0))* |||
k=1

To prove that this quantity goes to 0 as ¢t — 0, let us fix some £ > 0 and choose N so

big that
> el <e.
k=N
We have
N
lw (8) = w O)]7 = > (e (8) =7, (0)” [
k=1

+Z (0))° [l

The first (finite) sum goes to 0 as t — 0 by the continuity of all 7, at 0. The second
sum is bounded by

> 20 |l —402Z||h I < 4C%.
k=N k=N

It follows that
lim sup ||w (t) — w (0)||* < 4C%.

t—0
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Since ¢ is arbitrary, we obtain that ||w (f) —w (0)|| — 0 as ¢ — 0, which was to be
proved. m

Proof of Theorem 3.2. Let
f= Zakvk € L*(9).
k=1

We need to prove that the function

o0
= E e”\’“takvk
k=1

satisfies the boundary condition u(t) € Wy (2) for any ¢ > 0, the initial condition

u(t) =R fast — 0, as well as compute Au(t) and «'(t) and verify that «/(t) = Au(?)
for all t > 0.
Boundary condition. Fix t > 0. By Lemma 3.3(a), in order to prove that

o0

u(t) =Y e May, € W (),

k=1

it suffices to verify that

o0

E 2)\kt2<oo

k=

Indeed, the latter is true because

[e.9]

Zai < 00
k=1
and . |
sup Ape M < sup he M = 7 Sup () e M = 7 Sup e < 0. (3.9)
k A>0 A>0 £>0

Computation of Au. Let us show that Au(t) € L?(Q) for any ¢ > 0. By Lemma
3.3(b), it suffices to verify that

Z)‘Q —20t, 2

and the latter is true because similarly to (3.9)

sup Me M < 0.
A>0

Besides, we obtain by (3.6) that

E )\ke CLk’l)k
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2
Initial condition. Let us show that w (t) L, fast — 0. Indeed, since

e S last—0

and all functions e *

Lemma 3.4

#t are uniformly bounded by 1 for all k£ and ¢ > 0, we conclude by

o0 9 o0
u(t) = Zake”\’“tvk L Zakvk = f.
k=1 k=1

Time derivative. Let us compute u/(t) at any ¢ > 0 and verify that «/(t) = Au.
Observe that

ut+s)—ut) = o=e Ml et
k=1
e —8)\k _ 1
= Ze—e_’\’“takvk. (3.10)
s
k=1

Fix t > 0 and consider the functions

Clearly, we have as s — 0
70 (8) =~ =5, (0).

In order to be able to apply Lemma 3.4, we need to verify that the functions v, (s) are
uniformly bounded for all £ and for all s near 0. This is equivalent to the following:
there is € > 0 such that

sup sup ——e " < 00.
A>0 se[—¢g] §

In fact, we will take £ = ¢/2. Let us apply the inequality
|e€ — 1| < 10| elfl.

that is valid for any 6 € R and that follows from

o
e’ —1] = '/ efdﬁ‘ < 10] €.
0
Setting here 6 = —\s, we obtain
e — 1] < Als] el
whence, for all s € [—t/2,t/2],

—As
:e—w\ < e MeAlsl — \e—AtlsD) < e /2

S
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Therefore, we have

—As 1
sup  sup ¢ A < sup e ™M? < . (3.11)
A>0 se[—t/2,t/2] S A>0
Returning to (3.10), we obtain
u/'(t) = L*-lim u(t+s) Z e agu, = Au(t)
s—0 ’

which finishes the proof. m

3.3 The heat semigroup

As before, let €2 be a precompact open subset of M. Define for any ¢ > 0 the operator
PR L2 (Q) — L*(Q) as follows: if

f = Zakvk < L? (Q)
k=1

then -
Pef = Z e M lauy. (3.12)
k=1

By Theorem 3.2, the function ¢ — Pff is the unique solution of the mixed problem in
Q. We start with the following simple properties of the operator PS.

Theorem 3.5 The operators P have the following properties:
a) ||P?|| <1 (contraction property);

(b) P® —id ast — 0+ in the strong operator topology (strong continuity);
(c) PRP® = P2, (the semigroup identity );
(d) P2 is self-adjoint and non-negative definite.

This family {P?},_
theory of semigroups, {Ptﬂ} >0 is an one-parameter strongly continuous contraction
semigroup. -

Proof. (a) For any f =>"7 axvy € L* (), we have

o0
2
1z =D ai
k=1

is called the heat semigroup in . In the terminology of the

and
o

P27, = e a2 < Zak = If12%.,

k=1
whence || P?|| < 1.
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Remark. If \; > 0 then we obtain similarly that

o0

1P2F e < e D ak = e | £13
k=1
and, hence,
1P| < =™

(b) We already know that P f U f for any f € L* (), which exactly means that
P — id in the strong operator topology (but not in the operator norm).
(¢) We have, for any f as above,

PPR]f =P (Z 6_’\'“5(119?%)

k=1

o
— § e—Akte—AkSakvk
k=1

o0
— E e—)\k(t-i-s)akvk
k=1

::fﬁisf7

which proves the claim.
(d) For f =357 axv, € L* () and g =Y oo, byvx € L* (), we have

[e.9] o0

(PPf.9) 2 = Z (e ™ap) by =Y ar (e ™) = (f, Plg) 125

k=1 k=1

which means that P! is self-adjoint. Finally, P is non-negative definite because by
the previous identity we obtain for f =g

o0

(PPf.f) e =Y are™ >0,
k=1
[ |
28.06.24 Lecture 21

Our next purpose is to prove that the function P f () is smooth in z for any ¢ > 0.
We start with a lemma that is an extension of Lemma 3.3.

Lemma 3.6 Let f =" apv, € L? (Q). If, for some non-negative integer j,
> AHa} < 00 (3.13)
k=1
then -
Nf=(=1)"Y " Magor € Wy (),
k=1
where the series converges in W1 (Q).



3.3. THE HEAT SEMIGROUP 93

Proof. The case j = 0 is equivalent to Lemma 3.3(a).
Inductive step from j to j + 1. Assume that

Z /\zj a2 < o0
and prove that A/t f € W (Q). By the inductive hypothesis, we have

g = A] Z/\]akl)k = Zbkvk S WO
where o
bk = (—1)J )\iak
Since ,
DX =) A < oo,
k=1
we obtain by Lemma 3.3(b) that

— Z Apbrug € L? (Q) .

k=1

Moreover, since

Z e (br)® = Z ANIT302 < oo,

k=1
we obtain by Lemma 3.3(a) that Ag € W, (2). It remains to observe that

Aj+1f _ Ag j+1 Z )\]—Hakzvk,
which finishes the inductive step. m

Theorem 3.7 Let Q be a precompact open subset of M. For any f € L* () and t > 0,
we have
PlfeC™(Q).

Moreover, for any compact set K C ) and any t > 0,
1\ 241
1P f oy < €A+ N £lle (3.14)
where C' = C (2, K,g,D,n).

Proof. Let f =37, ayvy, so that

t):= Pth = Z e M agup.
k=1
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By Lemma 3.6 we obtain that, for any non-negative 7,
Ay Z e Mg, € WiE(Q), (3.15)

because -
Z A+ (e’A’“tak)2 < 00, (3.16)

and the latter is true because Y ai < oo and, for any q > 0,

C
sup Ne M = sup t7 (M) ™M = t7Tsup e = L < 0. (3.17)
A>0 A>0 £>0 4

By Theorem 2.7, we conclude that u (t) € C* () for any t > 0.
Let us prove the estimate (3.14). By Lemma 3.3 we have

o0

||AJUH?/‘/1 = Z (/\k -+ 1) (/\?;@—Aktak)Q .

k=1
Since 3" a? = || |32 and by (3.17)
< Cojr1 | Oy < Ci(1+t)

G o—At\2 2541 _—2xt 25 —2Xt
sup (A + 1) ()\ e ) <supA\Te + sup A“e < o T 2 ,

A>0 A>0 A>0
we obtain

C’(1+t N

|47 1£11Z -

u”wl <

By Theorem 2.7, we have the following est1mate

k
lullogey < C Y 1A gy
j=0

provided 2k +1 > . Since

k 1/2

1+t
Z [P I e Pl ceu i

7=0

1 k
Cer) sl (1+1)

k+1/2
PNl

IN

_c(4tY)
it follows i1
1\ ke
lull gy < C (1471 112 -
Choosing the minimal k with 2k 4+ 1 > n/2, we obtain 2k — 1 < n/2 and, hence,

k=<2,

4

N | —

whence (3.14) follows. m
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3.4 Weak maximum principle
So far we have studied the following properties of the weighted Laplace operator:

e spectral properties, that is, eigenvalues and eigenfunctions;

e smoothness properties (for example, smoothness of solutions of mixed problems)

In this section, we consider properties of different kind, related to the mazimum
principle.

The spectral properties of more general differential and integral operators are stud-
ied in the spectral theory. The smoothness properties are characteristic to a larger
class of hypoelliptic operators. Finally, the properties based on the maximum principle,
are typical for Markov operators that are generators of Markov processes.

The Laplace operator is especially important as it belongs to the intersection of
these areas of Mathematics.

Definition. A function u : [ — L*(Q) is called subcaloric in I x € if

1. wis L*-differentiable at any t € I;

2. for any t € I, we have u (t) € W' (Q) and Au (t) € L? (), where A is understood
in the weak sense;

3. for any t € I, we have
u'(t) < Au(t). (3.18)

In the same way, u is called supercaloric if

u'(t) > Au(t).

Definition. For functions u,v € W (Q) we write
u < vmod Wy (Q) (3.19)

if there is a function w € W{ () such that u < v+ w in Q.

Clearly, the relation (3.19) is transitive. It can be regarded as a weak version of
“u < v on 0.

Theorem 3.8 (Weak parabolic maximum principle) Let u be a subcaloric function in
(0,7) x Q such that

(1) for anyt € (0,T),
u (t) < 0mod Wy (2). (3.20)

(i) u(t), =20 ast —0.

Then u(t) <0 for allt € (0,7).
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The condition (i) can be regarded as a weak version of “u (t) < 0 on 92" and (i7)
is a weak version of “u (0) < 07.

Theorem 3.8 can be reformulated as the minimum principle for supercaloric func-
tions as follows: if u (¢) is supercaloric in (0,7) x € such that

(i) w(t) > 0mod Wy () for any t € (0,7 ;

. L?
(17) u(t)_ = 0ast— 0
then u () > 0 for all ¢ € (0, 7).

Example. Assuming that €) is precompact, let u (t) be a solution of the weak mixed
problem (3.1) in © with the initial function f € L?(€2). The function u is caloric in
R, x © and, hence, supercaloric. Moreover, we have u (t) € Wy () for all ¢ > 0, that

is, u (t) = 0mod Wy (). We also know that u (¢) R fast— 0. In particular, if f >0

then u (t)_ Eoast— 0. Hence, by the minimum principle we conclude that u (t) > 0
for all ¢ > 0. Similarly, if f < 0 then u (¢) < 0. Consequently, if f = 0 then u = 0,
which recovers the uniqueness result of Theorem 3.1.

For the proof of Theorem 3.8, we need the following lemma.
Lemma 3.9 Ifu € W' (Q) then the relation
u <0 mod W, () (3.21)
holds if and only if uy € Wy ().
Proof. In the proof we use the following facts:

o if v € W () then also vy € W () (EDE, Lemma 1.4).

o if v, € Wy (Q) and vy, Yve W () then also (vy) L (EDE, Exercise 26).

+

If uy € Wy (Q) then (3.21) is satisfied because v < wu,. Conversely, we need to
prove that if u < w for some w € Wy () then uy € W, (Q).

Assume first that w € D (Q2), and let ¢ be a cutoff function of supp w in Q2. Then
we have the following identity:

up = (- @) w+ pu), . (3.22)

w

N9

It

Functions u,w, ¢
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Indeed, if ¢ = 1 then (3.22) is obviously satisfied. If ¢ < 1 then w = 0 and, hence,
u < 0, so that the both sides of (3.22) vanish. Since pu € Wi () and (1 —p)w €
D (), it follows that
(1—p)w+pue Wy (Q).

By (3.22) we conclude that u, € W (Q).
For a general w € Wy (), let {wy} be a sequence of functions from D () such

1
that w;, W, w. Then we have

ug = u+ (wy —w) < wg,

1
which implies by the first part of the proof that (uy), € Wy. Since uy T, w, it follows

1
that (ug), Y, u., whence we conclude that u. € Wi m

01.07.24 Lecture 22

Proof of Theorem 3.8. We need to prove that if u(t) is a subcaloric function in
(0,7) x Q and if u(t) < 0mod W} (Q) for all t € (0,7) and u(t), 2 0ast — 0 then

u(t) < 0in Q for all ¢ € (0,T). Recall that if u(t) = 0mod W2 (Q) and u(t) 2 0 as
t — 0 then u(t) = 0 by Theorem 3.1. The present proof is a modification of the proof
of Theorem 3.1.

The inequality «'(f) < Aw in the definition of subcaloric function (cf. (3.18))
means that, for any fixed ¢ € (0,7") and any non-negative function v € D (),

(', v) 2 < = (Vu,Vo)z, . (3.23)

Clearly, (3.23) extends to all non-negative functions v € W (Q).

Let us explain first the idea of the proof that is similar to that of Theorem 3.1.
By Lemma 3.9 we have u, (t) € W3 (2) for any ¢t € (0,7). Substituting v = u, into
(3.23), we obtain

(W uy) s < = (Vu, Vg )z = — ||[Vuy||* <0,

where we have used that Vu, = 1g501Vu. In the other hand, we have uy = v (u)
where 1 (t) = t;, whence we obtain, using the product and chain rules,

Dot = & wons)e = & o)
= (o, 9) + (0, () )
= (v, uy) + (Lpsopu, )
= (v, us) + (us, )
=2 (v uy),

which implies that

d
T lui | < 0.
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Since ||u(t)4| — 0 as t — 0, it follows that ||uy(¢)|| = 0 whence u(t) < 0.

However, there is a problem in this argument: the function () is not differentiable
at t = 0 and, hence, the above application of the chain rule to %w(u) is invalid. To
correct this, we need to replace the function v (t) = ¢, be a smooth approximation.

Let a function ¢ € C*° (R) be such that

o (s) = s <0,
v(s)>0 s> 0, (3.24)
0<¢' (s )Sl, s € R.
o(s)
0 S

Since u (t), € Wy () and ¢ is Lipschitz and vanishes at 0, we obtain that, for any
€ (0,7,
p(u(t) = (u(t),) € We(Q)
and
Vi (u) = ¢ (uy) Vuy = ¢’ (u) Vu,
where we drop the argument ¢ for simplicity (EDFE, Lemma 1.6). Setting in (3.23)
v=(u(t))

we obtain
(W, (1) < = (Vu, @' (u) Vu)p, = — /Q ¢ (u) |[Vul* dp < 0. (3.25)

Let ¢ € C*° (R) be another function satisfying (3.24). Using the product rule and the
chain rule for L? derivatives (Exercises70, 71), we obtain

d

dt (u, 9 (1)) o = (U, (0)) 2 4 (w9 (u) ') 12

= (u', (0 (u>>L2 + (u', Y’ (u) U>L2
(v, (u) + o' (w)u) . (3.26)

Now choose 9 from the condition that
U(s)+' (s)s=p(s) VsER,
that is, (¢ (s) s)’ = ¢ (s), which gives

)= [e0a=3 [ eedeo = [wega @
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It is easy to see from (3.27) that ¢ € C*°(R) and that 1 satisfies (3.24). Indeed, we
have

o) = [ oo = [ e 0 de

whence 0 < ¢'(s) < 1.
By (3.26) and (3.25) we obtain

d ,
2 (.0 () 2 = (W0 () 2 0.

Hence, (u,® (u));» as a function of ¢ is decreasing in (0,7"). Since by (3.24) ¢ (s) <'s
for any s > 0, we obtain that

(u, (U))Lz = (U+7¢(u+))L2 < (U+,U+)L2 = |‘U+Hi2

By hypothesis, [|uy| ;. — 0 as t — 0. Hence, the function ¢ — (uy, ¥ (u));. is non-
negative, decreasing on (0,7") and goes to 0 as ¢ — 0. It follows that (uy, ¢ (uy));. =0
for all ¢ € (0,7), which implies that uy (t) = 0 for all ¢t € (0,7). Therefore, u (t) < 0
for all ¢t € (0,T), which was to be proved. m

Using the maximum/minimum principle, we prove further properties of the heat
semigroup Pff, for any precompact open set  C M.

Corollary 3.10 (Positivity-preserving property) If f > 0 then P f > 0.

Proof. The function u (t) = P f is caloric. It satisfies u (t) = 0 mod W3 (Q) because

u(t) € W (), and u (t)_ 0 as t — 0 because u (t) = f > 0. By the minimum
principle we conclude that u (t) > 0, that is, P®f > 0. =

Corollary 3.11 (Minimality property of PS) Let u be a supercaloric function on
(0,7) x Q such that

(1) w(t) > 0mod W] () for any t € (0,T);
(1) L*img_ou(t) > f for some f € L*(Q).

Then, for allt € (0,T),
u(t) > P2 (3.28)
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Proof. The function v (t) = P2f — wu(t) is obviously subcaloric in (0,7) x € and
satisfies the conditions:

(i) v(t) < 0mod Wi (), because P f = 0mod W{ () and u > 0mod W () for
t e (0,7);

(i) v (t), L 0ast — 0, because L2-lim v (t) = L?lim PR f— L:-limu (t) < f—f = 0.
By Theorem 3.8, we conclude that v () < 0 whence (3.28) follows. m

Corollary 3.11 implies the following minimality property of Pf: if f > 0 then
the function u (t) = P2f is the minimal non-negative caloric function that satisfies

the initial condition w (t) LR f. Indeed, this function is non-negative, caloric and
satisfies the initial condition by Corollary 3.10 and Theorem 3.2. If u (¢) is any other
function with these properties then by Corollary 3.11 we have (3.28), which means the
minimality of Pf.

Corollary 3.12 (Submarkovian property) If f < 1 then P f < 1. Consequently, for
any f € L® (), we have P f € L™ (Q) and

122 f || e < Ml - (3.29)

Proof. If f <1 then consider the function u () = 1 that is caloric and satisfies all the
conditions of Corollary 3.11. It follows that 1 > P2 f, which was to be proved. For the
proof of (3.29) it suffices to assume that || f||; = 1. Then f < 1 implies P f <1,
and f > —1 implies P f > —1. Consequently, PthHLOO <1l. m

In the next statement we compare Pf in different domains. Any function f €
L?(Q) can be considered as an element of L? (M) by setting f = 0 outside Q. In the
same way, extend the function P f to the whole M by setting P*f = 0in M \ Q.

Corollary 3.13 (Monotonicity property) If Q1 C Qy then P2 f < P2 f in M for any
non-negative f € L* () and t > 0.

Proof. Consider the function u (t) = P{® f that is non-negative and caloric in R x Q.

2
Then it is also non-negative and caloric in Ry x ;. Since wu (¢) L8 f, it follows that

also w (t) LG f. We conclude by Corollary 3.11 that w (t) > P f in Q. Since

outside €, we have P f = 0 < P f_if follows that P f < P f in M, which was
to be proved. m
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3.5 The heat semigroup as integral operator

We start with the following improvement of Theorem 3.7.

Theorem 3.14 Let Q be a precompact open subset of M. For any f € L?(Q) and
t>0,

1P flloggy < € L+t T 1 f oy (3.30)
where C = C (Q,g,D,n).

The estimate (3.30) is an improvement of the estimate (3.14) of Theorem 3.7 where
the norm in the left hand side was taken in C(K) for a compact subset K C (.
In contrast to that, the estimate (3.30) provides the pointwise upper bound for P f
uniformly in the entire domain €2. As we will see from the proof, the constant C
depends on a small open neighborhood of €.

Proof. For the proof, let us first choose a precompact open subset V' of M that covers

Q (for example, one can take for any = € ) a precompact open neighborhood V,
then choose from {V,} g a finite family V., ..., V,, that covers 2 and set V' = UV},).
Extend f to V by setting f = 0in V' \ Q. Applying the estimate (3.14) of Theorem

3.7 in the domain V and with K = (), we obtain that

1P Fll oy <C A+l gy

where C' = C' (V,Q,g,D,n). Assume further that f is non-negative. By Corollaries
3.10 and 3.13, we have
0<Pf<Pf

whence it follows that
1P Nl oy < € (L) T 1 gy -
If f is signed then f = f, — f_ and
HPtQ”C(Q) - ”Pth+ - Ptﬂf*HC(Q)
< HPth"‘HC(Q) + ”Pth_”O(Q)
<O+ (Il ey + 152y
<20 (14+47) 7 11l

which finishes the proof. m

The estimate (3.30) allows us to prove that the operator Pf! is an integral operator.

Theorem 3.15 (Existence of the integral kernel of P{). For anyt > 0 and x € €,
there exists a function q,, € L* () such that

PR (z) = / doe (9) £ (9) dus () (3.31)

for all f € L*(2). Besides, we have
lgrall,. < C (14T = @ (1), (3.32)

where C' is the same constant as in Theorem 3.14.
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The function ¢, . (y) is called the integral kernel of the operator Pf.

05.07.24 Lecture 23

Proof. Fix t > 0 and x € Q2 and consider a linear mapping

L?(2) - R

f= Pf(@) (333)

By (3.30) we have
[Pf (@) <@ @) 12 (3.34)

Hence, the mapping (3.33) is bounded and, by the Riesz representation theorem, there
is a function ¢, , € L* (Q) such that

Pth (ZU) = (Qt,aza f)L2 5

which proves the first claim. Setting here f = ¢;, and observing that

PP (@) = [ o= el
Q
we obtain from (3.34) that

2
lgt.2llz> < @ () [lgrell,2

whence (3.32) follows. m

Our purpose in what follows is twofold:

1. Using the integral kernel ¢, ., we will prove that the function P f(x) is smooth
jointly in ¢, x.

2. We will show that the function ¢ ,(y) has a version that is smooth jointly in
t, x,y — this will be called the heat kernel.

3.6 The trace of the heat semigroup

Next, we need the notion of trace of operators. Let A be a non-negative definite
operator in a Hilbert space H, that is, (Au,u) > 0 for all w € H. Let {hy},-, be an
orthonormal basis in H. Define the trace of A by

trace A = Z (Ahg, hy) .

k=1

The right hand side here is a series with non-negative terms, so its sum is always defined
as an element of [0, 00]. It is a general fact that the value of trace A does not depend
on the choice of a basis. We do not prove this in general because in our specific case
of A = P this will be done by a specific argument.
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Lemma 3.16 For any precompact open set @ C M and any t > 0,

trace Py, = / IGe.2 |7 2dp () < oo. (3.35)
Q
Besides, we have
trace P! = Z et (), (3.36)
k=1

Consequently, the series (3.36) converges.

Proof. Recall that the operator P§} is non-negative definite by Theorem 3.5. To prove
the identity in (3.35), choose any orthonormal basis {hy},—, in L?. Using (3.31) with
f = hy, we obtain

trace Py} = > (Psthi,hi) = > (P hy,, PPhy,)
=X [ (e @) dua)
=3 [ @ ). (3:37)

Applying the Parseval identity in the basis {hy}, we obtain

Z (¢,2, hk)2 = HQt,xH%% (3.38)

k

Hence, (3.37) and (3.38) yield

trace ng :/ Gt l|72dpe ()
Q

which proves the first part of (3.35). In particular, we see that trace P§! does not
depend on the choice of the basis {hy}.
The second part of (3.35), that is, the finiteness of the trace, follows from (3.32) as

2

frace P2 < / () du(x) = @ (07 (Q) = C(1L+ ) (@) <00 (3.39)

Q

Finally, let us compute the trace of P! in the orthonormal basis {vk}re, of the eigen-
functions of A in 2, that is,

[e.o]

trace P = Z (Ptﬂvk, Uk)Lz .
k=1

Observe that by the definition (3.12) of the operator P, we have

Ptﬂvk = e_t)"“(mvk.
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Hence, we obtain

o0 0o o
trace PtQ = Z (e_w‘k(mvk, Uk)L2 = Z e~ tk(©) ||Uk||i2 _ Z e—tx\k(ﬂ)7
k=1 k=1 k=1

which finishes the proof. m

As a by-product of the proof, we obtain from (3.39) (by changing 2¢ to t) the
following useful inequality:

ﬂ+2

trace P;* < C (1+t71)27 pu(Q).

3.7 Smoothness of the heat semigroup in ¢,

We know that, for any ¢ > 0, the function P f(z) is smooth in z € Q. Here we prove
that P f(z) is smooth jointly in ¢ and .

Theorem 3.17 Let Q be a precompact open subset of M. For any f € L*(Q), the
function u (t,x) = P2 f (x) belongs to C*° (Ry x Q), that is, u (t,z) is smooth jointly
in (t,x). Consequently, u satisfies in Ry x ) the heat equation Oyu = Au in the classical
sense.

Proof. We know that if
f = Z A V-
k=1
then

Z e Mlagu(x (3.40)

where the series converges in L? () for any ¢ > 0. Let K be a compact subset of
that is contained in a chart. We claim that, for any ¢ > 0 and any positive integer m,

Z Hef)"“takvk <x>Hcm([5,oo)><K) < 00,

which will imply that the series in (3.40) converges in C™ ([e,00) x K), whence u €
C™ ([e,00) x K). Since € > 0 and m are arbitrary, this will imply that « € C* (R x Q).
Indeed, since Avp = —Aivg, we obtain by Corollary 2.8

m_ny 1
[Vl gm gy < C (A +1)2 I okl g -
Since by (2.31)
1/2 12
ol iy = O+ D gl 2@y = e + 1Y

it follows that
vkl gmry < C (A + 7, (3.41)
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where o = % + § + 1. For any partial derivative 030, where a is an n-dimensional
multiindex and 7 is a non-negative integer such that

la + v < m,

we have

aaa“/ ( *)\kt Uk (l’)) — (_)\k)v 67)\”3??% (l‘) )
It follows from (3.41) that

sup [959] (e oy (2))| < ONJe™ (A +1)7 < Ce™™= (N, + 1)

[e,00)x K

Since (A + 1)77™ < C.e*/? for all A > 0, it follows that

sup |929] (e My, (z))| < CeMwe/?
le,00)x K
whence
He_)\ktvk HCm ([e,00)xK) — < C e_/\ka/z (342)

By the Cauchy-Schwarz inequality and (3.42), we obtain

1/2
Cm([e,00) X K) = (Z ak) <Z He
00 1/2 00
<C. (Z ai) Ze‘k’“a < 00,

k=1 k=1

Z He akvk ‘

1/2
Cm([s oo)xK))

where the first series converges by the Parseval identity, while the second series con-
verges by Lemma 3.16. m

3.8 The heat kernel in precompact domains

By Theorem 3.15, the operator Pf* in L?(2) has an integral kernel ¢;, € L*(Q2), that
is, for any f € L? and all t > 0, = € Q,

PR (x) = / Gem () £ (0) .

Definition. Define the heat kernel p$* (z,y) of A in Q by the identity

P (2,y) = e (y) -

So far pi*(z,y) is defined as an L-function of y, for any ¢ > 0 and = € 2. The next
theorem shows that it has a smooth version of ¢, x, y.
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Theorem 3.18 (Eigenfunction expansion of the heat kernel) Let Q be a non-empty
precompact open subset of a weighted manifold M. Let {vy},—, be an orthonormal basis
in L* () that consists of the eigenfunctions of A in Q, and { i}, be corresponding
eigenvalues. Then heat kernel p* (x,y) admits the following eigenfunction expansion

P (e y) =D e Mo (@) v (y) (3.43)

where the series converges absolutely and uniformly in (t,z,y) € [e,00) X Q x Q, for
any € > 0.

Besides, the series (3.43) converges in C™ (le,00) x K x K), for any positive in-
teger m, for any € > 0 and any compact subset K C § that is contained in a chart.
Consequently, p* (x,y) € C*° (R x Q x Q).

Proof. By Lemma 3.16, we have, for any ¢ > 0,

o0

D e < oo, (3.44)

k=1
As above, let {v;} be an orthonormal basis in L? () that consists of eigenfunctions of
A in Q. Let us first prove that the series

o0

Z e~y (2) vy (y) (3.45)

k=1
converges absolutely and uniformly in the domain ¢t > ¢, x € Q,y € Q. By the Weier-
strass M-test, it suffices to prove that

oo

sup | v () vy (y)| < oo (3.46)

1 t>e,x,yefd

Recall that, by Theorem 3.14, for any f € L?(Q) and ¢ > 0,

sup [P (@) < C (1L + )T | £l e,

ze
Applying this to f = vy and using that by (3.48)
Ptﬂvk = e My,
and ||vg|| ;2 = 1, we obtain

sup |e~ Moy, (z)] <C(1+ 75_1)%+1 : (3.47)

€

whence

sup |up(z)| < C (14 25’1)%rl et
e

In particular, setting here t = £/4, we obtain

sup |vg(z)| < CeMve/4,
xeQ)
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It follows that

sup }e‘t)\’“vk (x) vy (y)| < Ce (M2 = e Mel?,
t>e,x,yefd

and (3.46) follows from (3.44).
Now let us prove that the sum of the series (3.45) is equal to p(z,y). Using the
notation ¢;, as above and noticing that

(Gter Vk) 2 = Py (z) = e My (2), (3.48)

we obtain the following expansion of ¢, in the basis {v}:

Gra = e M () vk, (3.49)
k=1
that is,
() =) e Mo () v (y)
k=1

where the series converges in L? (2) in variable y, for any fixed x € Q and ¢ > 0. Since
this series converges also in C'(2) in variable y, it determines a continuous function of
y that is a continuous version of the L? function of y. Hence, we see that p (z,vy) is
defined for all £ > 0 and x,y € €2, and it is jointly continuous in ¢, z,y by the previous
argument.

08.07.24 Lecture 24

Finally, let us show that the series (3.45) converges in C™ ([e,00) x K x K'), which
will imply that the heat kernel pi}(x,y) is C°° smooth jointly in ¢ > 0 and z,y € Q.
Again, it suffices to prove that

Z e v () v (y)HCm([s,oo)xKxK) < 0. (3.50)
k=1

By Corollary 2.8 and (2.31), we have
mn 1 o
||Uk||cm(K) <C (/\k + 1) AERE ||Uk||W1(Q) =C ()‘k + 1) ) (3'51)
where o = 3 + 7 + 1. For any partial derivative
8;‘85 9y,
where «, # are n-dimensional multiindices and v is a non-negative integer such that
lal + 18l +v < m,

we have

02070) (e Moy, (x) vk () = (=) e 0% v () OJu ().
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It follows from (3.51) that

sup |8§858? (e v (2) v (y)) | < CAJe™ = (A, + 1)%.
t>exeKyeK

Since v < m < 20, we obtain

sup |8§858t7 (e—/\ktvk () vg (y))| < Qe e (O + 1)40 < C’ae_’\’“a/z,
t>e,xeK,yeK

whence
He_)"ctvk (x) vg (y)HCm([wO)X[(X[{) < CLe Me/?, (3.52)

Hence, (3.50) follows from (3.44). =

Remark. If the boundary 012 is smooth, for example, a C'-submanifold, then one can
show that v, € C (ﬁ) and vg|aq = 0 (similarly to the proof of Theorem 4.5 in EDFE).
The fact that the series in (3.40) and (3.43) converge absolutely and uniformly in
(t,z,y) € [g,00) x Q x Q, implies that Pf () = 0 when x € 9Q and also p; (z,y) =0
when one of the points x,y belongs to 0.

Example. Let M =R and © = (0, 7). The eigenfunctions of A in (0, ) are {sin kz},,
with the eigenvalues \, = k2, where k = 1,2, .... Since

s 1 ™
/ sin? kxdr = —/ (1 —cos2kx)dx = z,
0 2 Jo 2

the normalized eigenfunctions are vy(x) = \/g sin kz. Hence, we obtain

2 2
Q E k=t _: :
Py (T, = (& sin kx sin ky.
t ( y) T " Yy

1.0 T
08T
0.6 T
04T

02T

0.0
00 02 04 06 08 10 12 14 16 18 20 22 24 26 28 3.0
X

The graphs of the functions = — p;(z,y) for y = /2 and for three different values of
t.

Example. If M is compact then we can set 2 = M and, hence, obtain the heat kernel
pe(z,y) on the entire manifold M that is given by

pe(,y) =Y e M () v (y) (3.53)

k=1
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where {v;,} is an orthonormal basis in L? (M) that consists of eigenfunctions of A in
M and {\;} are their eigenvalues.

Let us compute the heat kernel on M = S'. By Exercise 52, the eigenvalues of A
on S' are given by the sequence {m?} ~_ where the eigenvalue 0 has the eigenfunction
const and the eigenvalue m? with m > 1 has two independent eigenfunctions cos mé

and sin m@. Since o
/ df = / df =27
st 0

2 2m
/ cos> mbdf = / cos’mbdf = 7, / sin? mldf = / sin? mfdf = 7,
st 0 st 0

and

we obtain the following orthonormal basis in L? (S') that consists of the eigenfunctions

of A: , )
1 cosz sinz cosmz sinmx

with the eigenvalues

By (3.53) we obtain

S 1 —
e (z,y) = o + = e cos ma cos my —+ = Z e~ sin ma sin my
= m=1
1T I~ 2
=—+= e " cosm(x—vy).
2r 7 mZ=1 ( v)

3 2 -l

The graphs of the heat kernel p;(x,0) on S! for t =1, ¢ =1/2 and ¢t = 1/4

3.9 Further properties of the heat kernel

As above, let 2 be a precompact open subset of M. In the previous section, we have
constructed the heat kernel p* (z,y) that is a C*-function of (t,z,y) € Ry x Q x Q
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given by the series (3.43). This function is the integral kernel of P{, that is, for all
fel?(Q),ze€Qandt >0 that

PRf() = [ 32w f W) dn (o), (3:54)
Q
Further properties of the heat kernel are stated in the following theorem.

Theorem 3.19 In any precompact domain 2 C M, the heat kernel has the following
properties.

(a) Positivity: p$* (z,y) >0, for all x,y € Q and t > 0.

(b) Submarkovian property: for all x € Q and t > 0
[ @ ndnt) <1 (3.59)
Q

(¢) Symmetry: pit (x,y) = p* (y, ), for all x,y € Q and t > 0.

(d) The heat equation: for any fivzed y € §, the function (t,z) — p; (x,y) is caloric
in Ry x Q; moreover, it solves the heat equation O,u = Au also in the classical
sense.

(e) The boundary condition: pi* (-,y) € Wi (Q), for ally € Q and t > 0.

(f) The semigroup identity: for all x,y € Q and t,s > 0,
pLe) = [ o @200 ) du (o). (3.56)

(9) Monotonicity: if Q1 C Qy then pi* (x,y) < pi2 (x,y) for all x,y € Qy and t > 0.

Proof. (a) Assume from the contrary that py, (zo,v0) < 0 at some (o, xo,%). By
the continuity of the heat kernel, there is an open neighborhood U of 3y such that
Pty (0, y) < 0 for all y € U. Choose a non-negative non-zero function f € D (U). Then
we have

P2 (20) = / P2 (20,9) f (4) dp () < O,

while by Corollary 3.10 we must have P{f (o) > 0. This contradiction shows that

to
2 (Q?, y) > 0.
(b) By Corollary 3.12, f < 1 implies P f () < 1 for all z € M and t > 0. Taking
f = 1q, we obtain

/Qp? (z,y)du (y) <1,

which was to be proved.
(¢) The symmetry follows trivially from the eigenfunction expansion (3.43).
(d) + (e) Fix y € Q. As follows from the proof of Theorem 3.18, the series

w(t) == p (y) =Y e M (y) v, (3.57)
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converges in L? () for any ¢ > 0. Indeed, (3.57) is obtained from (3.49) by switching
the variables z and y and using the symmetry of the heat kernel. For any t > s > 0,
we obtain using (3.40) that

u(t) = Z e My (y) v = Z e Ak(t=s) (e vy (y)) ve = P u(s). (3.58)
k=1 k=1

Since u (s) € L*(Q), by the properties of the heat semigroup (Theorem 3.2) we obtain
that u (t) is caloric in the domain ¢ > s and u () € Wy (Q) for any ¢ > s. Since s is
arbitrary, we the same properties hold for ¢t > 0.

Since the function u (t, z) = p* (z,y) is C*-smooth, its L?-derivative %u coincides
with the classical derivative and the classical Laplacian Awu coincides with the weak

Laplacian, whence it follows that u satisfies the classical heat equation Oyu = Au. Al-
ternatively, the latter can be seen by computing d;u and Au by means of differentiating
the series (3.57) term-by-term, which is possible because that series converges in any
cm.

(f) Rewriting the identity (3.58) by using (3.54) and the definition (3.57) of the
function u, we obtain

P2 (2,y) = / P2, (2, 2)u (s, 2) dp (2) = / P2 (2, 2) P2 () s (=),

which is equivalent to (3.56).
(9) For all t > 0 and z,y € Q4, set

@ (z,y) = (x,y) — pi* (2,y).

By Corollary 3.13, for any non-negative f € L* () we have

/Q @ (ey) £ () dye (y) = P2 f (2) — PP () 2 0.

Arguing as in the proof of (a), we conclude that ¢, (x,y) > 0, which finishes the proof.
n

3.10 * The initial condition
As we know, for any f € L? (), we have
Pef A f ast—0.
Here we show that the convergence is “better” if the function f is “better”.

Theorem 3.20 Let Q) be a precompact open subset of M.
(a) For any function f € D (), we have

Pef — fast— 0, (3.59)



112 CHAPTER 3. THE HEAT EQUATION

where the convergence is in C™ (K), for any positive integer m and any compact set
K C Q that is contained in a chart.
(b) For any open set U C Q and for any x € U, we have

/ P (2, y) dp(y) — 1 ast — 0, (3.60)
U

where the convergence is local uniform in U.
(¢) For any f € Cy(Q), the convergence (3.59) is locally uniform in 2, that is, in
C (K) for any compact subset K C €.

Proof. (a) If f € D (Q) then also A f € D (Q) C Wy () for any non-negative integer
J. Hence, if f =37 apvy, then

Z )\kakvk

(cf. Exercise 58), where the series converges in W' (Q2). On the other hand, we have

NPPf = (=1 Me ™ ay, € Wy (Q)
k=1

(see By Lemma 3.6 and the identity (3.15) in the proof of Theorem 3.7). By Lemma
3.4 (with H = W} (Q) and v, (t) = e=*!), we obtain

1 e .
Z /\] a0 ) Z N.agv, ast — 0,

k=1

that is
N (PF— )"0 ast 0,

By Theorem 2.7 we conclude that

PQf f O ast — 0, (3.61)

which was to be proved.
(b) Let f be a cutoff function of {2} in U, that is, f € D(Q2), f =1 in a neighbor-
hood of z and 0 < f < 1. Then by (a)

/U P2 () dpi (y) > / P2 (2,9) f () dye (y) = POf () — f () =

as t — 0, where the convergence is local uniform in z. Since also

/ P2 (2, y) dp () < 1,
U

the convergence (3.60) follows.
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(c) We have

PRf(x) — f(z) = / P2 (2,9) (f () —  (2)) du (9)

By (b) we obtain that

( [ ) - 1) F@) =0 (3.62)

as t — 0, where the convergence is local uniform in . Choose an open set U containing
x and such that |f (y) — f (z)| < e for any y € U, where € > 0 is prescribed. Then we
have

[ w —f<x>>du<y>] <

[ 5@ () -1 @) dn <y>'

+

[ @ - s @) <y>\

QU

< e / 22 (2, ) du(y) + 25w |f] | o (@ y) duu(y)
U Q\U

< e+ 2sup|f] (1—/Up?(x,y)du(y)>-

As t — 0 we obtain using (b) that

lim sup
t—0

[ @ ) - f @) <y>\ <.

Since ¢ is arbitrary, it follows that

/Q P2 (2,9) (F (4) — £ (2)) dpa (y) — 0

as t — 0. Combining with (3.62), we obtain Pf () — f(z) as t — 0. Finally, it
remains to observe that the above argument yields also the local uniform convergence
inr. m

Remark. The convergence (3.59) implies that, for any y € M,

/Qp?u,y)f(x)du(x)ef(y) as t— 0,

which means that p{* (-,y) — &, where §, is the Dirac delta-function, and the conver-
gence to 9, is understood in the sense of distributions.

Remark. Recall that, for any f € L? (2), the function

u(t,x) = P'f ()
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solves the heat equation in R, x €2 in the classical sense and with the initial condition

2
u(t,-) L—(?)f ast — 0.

If f e C,(Q2) then by Theorem 3.20 we have also that

u(t,-) Cg()f as t — 0.

If in addition the boundary 0§ is a C L_submanifold then wu (¢, ) extends continuously
to 2 and vanishes on 0f), for any ¢ > 0. Hence, we conclude that in this case the
function wu solves the classical mixed problem:

Ou = Au,
u (t7 ) |8Q = 07
u(t,x) — f(x) ast — 0,

where the convergence to the initial function is locally uniform in €.



Chapter 4

* Global heat semigroup

In this Chapter we construct the heat semigroup {P;} and the heat kernel p; (z,y) on
the entire weighted manifold M.

4.1 Convergence issues

Let us first observe the following consequence of Theorem 2.7.

Proposition 4.1 Let {u} be a sequence of smooth functions on a weighted manifold
M, each satisfying the same equation

Auy, = f’
where f € C* (M). If, for some u € W} (M),

WL (M)

up —— u ask — oo,

then the function u is C°°-smooth in M and satisfies the equation Au = f.

Proof. For any indices k,! we have A (u; —u;) = 0 and, hence, A7 (up —u;) = 0,
where j is any positive integer. This implies by Theorem 2.7 that

Huk - ulHC’m(K) S C ||uk - ul”wl(Q) )
where () is any precompact open neighborhood of K. Since
| — ul||W1(Q) — 0 as k,l — oo,

it follows that also
lue — wllgmey = 0 as k, 1 — oo.

Hence, {uy} converges in C"™ (K), and the limit is necessarily u. Since m is arbitrary,
this implies that u € C*° (M) and u satisfies Au= f. m

In this Chapter we accept without proof the following theorem that extends Propo-

sition 4.1 to the heat equation and relaxes the W -converges to that of Lj.,.

115



116 CHAPTER 4. * GLOBAL HEAT SEMIGROUP

Theorem 4.2 ([3], Theorem 7.4) Let I be an open interval in R and M be a weighted
manifold. Let {uyx} be a sequence of smooth functions on the manifold N := I x M,
each satisfying the same equation

ur — Auy = f,
where f € C* (N). If, for some u € L}, (N),

loc

Lijoe(N)

Up — u ask — oo
then the function u is C*°-smooth in N and satisfies the equation
8tu — Au = f

The proof of this theorem requires the regularity theory for the parabolic equations,
that is similar to that of the elliptic equations.

4.2 The heat semigroup on M

Given a non-negative function f € L2 (M), let us construct a function P, f for any

t > 0 as follows. For any precompact open set @ C M and t > 0, define Pf as a
function on M as follows:

ap_ [ P*(flg) inQ
Rt = { 0, outside €.

Fix an ezhaustion sequence {Q},-, of M by precompact open subsets.

Lemma 4.3 If f > 0 then the sequence of functions {Ptﬂ’“f} 1S monotone increasing
in k. Moreover, the limit limy,_..o P\ f () does not depend on the choice of {0}

Proof. Let us show that Ptﬂ’“ f > Ptﬂ’“’1 f. Outside 2,_; this is obvious because
Ptﬂ’“f >0= PtQ’“‘lf. In ©4_; we have, using Corollaries 3.10 and 3.13, that

P f =P (fla) = B (flage, ) + P™ (fla, ) = B (Flo, ) = P S

If these is one more exhaustion sequence {2} } then for any Qj there is 2/, D ) which
implies
P f <P f

and, hence,

lim P f < lim P % f.

k—oo k—oo
Since the opposite inequality is true by the same argument, we obtain the identity of
the two limits. m

For any non-negative function f € L} (M) and for all ¢ > 0 and = € M, set
Pf (z) := lim P f ().

In general, P, f (z) may take values in [0, 0o] .
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Lemma 4.4 If B.f € L?_ (R, x M) then the function P,f is C* smooth and solves

loc

the heat equation in Ry x M.

Proof. Indeed, by the dominated convergence theorem, we obtain that

L2 (RyxM)
—_—

PRxf P,f.
2

Since each of the functions (¢, z) — P/ f solves the heat equation in Ry x € and L2 -
convergence implies that in L} . it follows from Theorem 4.2 that P, f is C*°-smooth
in R, x €; and solves in this domain the heat equation. Since €2; can be chosen

arbitrarily, we obtain that the same properties of P, f are true in R, x M. m

Lemma 4.5 Let u(t,x) be a non-negative smooth solution to the heat equation in
R, x M such that

2

w(t,) 25 foast -0, (4.1)
for some f € L (M). Then P,f (x) is also a smooth solution to the heat equation in

loc

R, x M, satisfying the initial condition (4.1), and
u(t,z) = Pf(x), (4.2)
forallt >0 and x € M.

Proof. For any precompact open set Q0 C M, the function w (t,z) is non-negative
2
and caloric in R, x €2, and satisfies u (¢, ) g f. By the minimality property of Pf
(Corollary 3.11), we conclude that
u(t,x) > PRf (),

whence (4.2) follows by letting Q2 — M (that is, by considering Q = Qj for an ex-
haustion sequence {2} and letting k& — o0). Hence, the function P,f belongs to
L? (R, x M), and by Lemma 4.4 we conclude that P, f is smooth and satisfies the

loc
heat equation.

Finally, P, f Liog f ast — 0 follows from

PO pry<pp<u) g

ast—0. m
If f is a signed function from L? (M), then consider P, f, and P,f_. If they both

loc
are in L? (Ry x M) then we define

Bf="Pf—-PRf-
In this case P, f also solves the heat equation in Ry x M.

Theorem 4.6 For any f € L* (M), the function P,f belongs to L?_ (R, x M) and,

loc
hence, is C*°-smooth and solves the heat equation in Ry x M. Besides, for any t > 0,

1B F 2y < Wl 22y (4.3)

and ,
P e ¢ st 0. (4.4)
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Proof. If (4.3) is already proved then it implies P,f € L2 _ (R, x M). Hence, we

need only to prove (4.3) and (4.4). Assume first that f > 0. Then we have, for any
precompact domain 2 C M, that

Hence, letting Q@ — M, we obtain (4.3).
In order to prove (4.4) for a non-negative f, observe that we have the following
conditions:

P f < Pf

2
¢ LEAOD il
L2(M)
k—oo

Using Lemma 4.7 to be stated and proved below, we conclude that P, f LQE{I) f as
t— 0.

Let now f be signed. Then f = f, — f_ where both f, and f_ belong to L? (M).
Hence, we conclude that

Pt.f:Ptf-i-_Ptf—

isin L2 (R, x M). To prove (4.3), we have

IPfl3: = |IPify — Pof-|3
1P fillfe + 1P 72 — 2(Pofs, Pof) 12
1P fill7e + 1 Pf-172

2 2 2
122 + Mz = (1112 -

And for (4.4) we have, as t — 0,

IAINA

Pf=Pf,—Pf 5 f—f =+

Now we prove the lemma used in the above proof.

Lemma 4.7 Let {ug} be a double sequence of non-negative functions from L* (M)
such that, for any k,

uikL—ikaLz(M) as i — 0o

and
ka—>f€L2(M) as k — oo.

Let {u;} be a sequence of functions from L* (M) such that, for all ik,

wip < uiand [Jul| 2 <[] 2

L? .
Then u; = f as 1 — o0.
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Proof. All the hypotheses can be displayed in schematic form in the following diagram:

Uik, < u;
oo 112 ) <Pz
f . f
k—oco

2
where all notation are self-explanatory. We need to prove that also u; 5 fasi— oo.
Given ¢ > 0, we have, for large enough &,

1f = felle < e.

Fix one of such indices k. Then, for large enough 7, we have

e — wirllze < €

so that
If — w2 < 2e. (4.5)

Let us show that, for such 1,
If = will7: < @ (e), (4.6)

with some function ® such that ® (¢) — 0 as ¢ — 0, which will settle the claim.
Set

g = (f—ui)+ and h = (f —u;)_,
and estimate the L?-norms of g and h separately. By condition wu;; < u;, we have
J—ui < f —ui
whence
9= (f - ui)+ < (f - uik>+

and by (4.5)
lgllr2 < 2e. (4.7)

In order to prove a similar estimate for ||h||zz2, let us first prove the following inequality,
any any r € M:
h* <wui+2fg— f> (4.8)
Indeed, in the domain {f > u;} we have h =0, g = f — u;, and (4.8) follows from
B 2fg— fP o 2 (f =) — f2 = — 2w+ [ = (w— )’ > 0= B2,
In the domain {f < u;} we have g =0, h = u; — f and (4.8) follows from
uf +2fg = f2 =i = 7= (it f) (s = f) 2 (wi = )" = 1.

Integrating (4.8) over M and substituting [Ju;||,;» < || f]|;2 and ||g]l;2 < 2e (cf. (4.7)),
we obtain

Iallze < Nuillze +2(fo9)2 = 1FII72 < 2(F,9)z2 < 201F 2 gll e < 4ellfl2 -

It follows that
2 2 2
If = willfe = llglZe + A2 < 4<% + 4|12

which proves (4.6). m
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4.3 The global heat kernel

For any precompact open set Q C M, extend the heat kernel p{ (x,%) from z,y €
Q to 2,y € M by setting p (z,y) = 0 if one of the points x,y is outside Q. For

any exhaustion sequence {4}, the sequence P (x,y)} is monotone increasing by
Theorem 3.19 and, hence, has the limit

pe (@) = lim i (z,y),
that is independent of the choice of {24} (the proof is similar to that of Lemma 4.3).

Definition. The function is called the heat kernel of A in M.

Theorem 4.8 The heat kernel has the following properties.

(a) Finiteness and smoothness: p; (x,y) € C (Ry x M x M)
(b) Positivity: py (x,y) > 0;

(¢) Submarkovian property:

/Mpt (z,y)dp(y) <1

(d) Symmetry: p, (x,y) = p; (y,x) -

(e) The heat equation: for any fived y € M, the function u (t,x) = p; (x,y) solves
the heat equation Oyu = Au in Ry x M.

(f) Approzimation of identity: for any open set U C M and for any x € U,

/pt (x,y)du(y) — 1 ast — 0, (4.9)

U

where the convergence is locally uniform in x. Moreover, for any f € C, (M),
Pf(x)— f(x) ast—0,

where the convergence s locally uniform in x.

(9) The semigroup identity:
Peys (T,y) = / pe (2, 2) ps (7, y) dp (2) -
Q

(h) The heat semigroup kernel: for all non-negative f € L3 (M) (and for all f €
L* (M),

Pif () = /M pr(2) £ () dp () (4.10)



4.3. THE GLOBAL HEAT KERNEL 121

Proof. (b) + (¢) + (d) + (g) follow immediately from the corresponding properties of
P (z,y) by letting Q — M. Note that at this moment we allow p; (z,y) to take the
value oo which will be excluded in (a).

(a) The submarkovian property implies that p; (z,y) € L},.(Ry x M x M). Con-
sequently, the pointwise convergence

Pt (z,y) — pe(2,y) (4.11)

. . 1
is also in L,

the function

(Ry x M x M). Consider the weighted product M x M and observe that

u(t, (z,9)) =i’ (.y)

solves in R, x €2 x Q the following equation
200 = Aqu+ Ayu = A yyu

where A, and A, denote the Laplace operators on M with respect to the variables z,y
while A(, ) denotes the Laplace operator on M x M (see (1.68).

Hence, up to the time change 2t — t, the functions p?’“ (z,y) satisfy the heat
equation in Ry x Qf x Q. By Theorem 4.2, we conclude that the limit p, (x,y) is
C*°-smooth on R, x M x M.

(e) Now apply the same argument with a fixed y. Since the function (t,z) —
pt (,y) is smooth, it is in L} (R, x M) and, hence, the convergence (4.11) is also
in L} (R, x M), whence we obtain by Theorem 4.2 that p; (x,y) satisfies the heat
equation in R, x M.

() If f € L2, (M) then, for any precompact open set 1 C M, we have f € L*(Q2)
and, hence,

PR (2) = / 2 (@, 9) £ (v) du (9).

If f is non-negative then passing to the limit as Q@ — M, we obtain (4.10) by the
monotone convergence theorem.

If f € L? (M) is signed then we have by the above argument the identity (4.10) for
f+ and f_. Since by Theorem 4.6 the functions P,f, and P,f_ are finite (moreover,
they are smooth), it follows that P, f is well define and satisfies (4.10).

(f) Without loss of generality, we can assume that U is precompact. Let {2 be any
precompact open set containing U. Then we have by Theorem 3.20

/pt(%y)du(y)Z/p?(x,y)du(y)%l as t — 0,
U U

while

/Upt (z,y)du(y) <1,

whence (4.9) follows. The second claim is proved in the same way as that in Theorem
3.20. m
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4.4 Fundamental solutions

Definition. A C*™-function u (¢, z) of t > 0 and x € M is called a fundamental solution
(of the heat equation) in M at y € M if

(1) Ou = Au in Ry x M;

(1) for any f € D (M),

[ wtto) @) dn) - ) ast—o
M
that will be shortly written as

u(t,-) =6, ast — 0.

If in addition u > 0 and, for all £ > 0,

/Mu(t,x) dp (z) <1, (4.12)

then wu is called a regqular fundamental solution.

Example. It is known that the following Gauss-Weierstrass function in R" is a regular
fundamental solution at 0:

Lemma 4.9 Let u(t,z) be a smooth non-negative function on R, x M satisfying
(4.12). Fizy € M. Then the following conditions are equivalent:

(a) u(t,”) =9, ast — 0.
(b) For any open set U containing y,
/ u(t,)dp —1 ast — 0. (4.13)
U
(¢) For any f € Cy (M),

/J\4u(t,-)fdu—>f(y) ast — 0. (4.14)

In particular, if u is a regular fundamental solution at y, then u satisfies (b) and

().

Proof. The implication (¢) = (a) is trivial because u (¢, -) — J, is equivalent to (4.14)
for all f € D(M).
The rest of the proof is practically identical to the proof of Theorem 3.20(b) , (c) .
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(a) = (b). Let f € D(U) be a cutoff function of the set {y} in U. Then (4.14)
holds for this f. Since f (y) =1 and

/MU(t,-)fdué/UU(tw)duél,

(4.13) follows from (4.14).
(b) = (c). For any open set U containing y, we have

/Mua,a:)f(x)du(x) - /M\Uua,x)f«c)du(x)
n / w(t,2) (f (@) — £ () da (2)
) / w (b, ) dp ()

The last term here tends to f (y) by (4.13). The other terms are estimated as follows:

\ / u(tw)f(x)du\gsup\fr u (t,2) dyt () (4.15)
M\U M\U
and
/U(t,x)(f(:v)—f(y))du‘ < sl |/ (t, ) du (=
U zelU
< 8161[[])|f( x) — (4.16)

Obviously, the right hand side of (4.15) tends to 0 as t — 0 due to (4.12) and (4.13).
By the continuity of f at y, the right hand side of (4.16) can be made arbitrarily small
uniformly in ¢ by choosing U to be a small enough neighborhood of y. Combining the
above three lines, we obtain (4.14). =

Remark. As we see from the last part of the proof, (4.14), in fact, holds for arbitrary
f € L> (M) provided f is continuous at the point y.

4.5 Heat kernel as a fundamental solution

Theorem 4.10 For anyy € M, the heat kernel p; (x,y) is the minimal reqular funda-
mental solution of the heat equation at y.

Proof. The heat kernel is a regular fundamental solution by Theorem 4.8.

Let u (¢, z) be another regular fundamental solution at y. Fix s > 0. The function
t,x — u(t+ s,x) satisfies the heat equation in R, x M and, hence, u (t+ s,z) can
be considered as a non-negative solution to the Cauchy problem in R, x M with the
initial function f(x) = w(s,x). Since u is a smooth function, we have f € L2 (M)

and
2

L
u(t+s,-) =5 f ast— 0.
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By Lemma 4.5, we conclude that, for all t > 0 and x € M,

MHm@ZRﬂwzﬂm@@U@@W@% (4.17)

Fix now t > 0, € M and choose an open set {2 € M containing y. Then p; (z,-) €
Cy (2) and, by Lemma 4.9 in (,

LmW&M@JMM@H%@w)MS%O

Hence, letting s — 0 in (4.17), we obtain wu (¢, z) > p; (z,y), which was to be proved.
|

Theorem 4.11 Let u (t,x) be a reqular fundamental solution to the heat equation at
y€e M. Ifu(t,x) — 0 as x — oo where the convergence is uniform in t € (0,T) for
any T >0, then u(t,x) = p; (x,y).

Proof. By Theorem 4.10, we have u (t,x) > p; (x,y) so that we only need to prove the
opposite inequality.

Fix some € > 0. By the hypothesis u (t,z) — 0 as  — o0, there is a compact set
K such that u(t,z) < e forall z € M\ K and t € (0,7"). Choose any precompact
open set {2 containing K. Fix also some s > 0, set

f(z)=u(s ),
and consider function
v(t,x) =u(t+sx)— PLf(x) —c.

The function (¢,z) — u(t+ s,z) solves the heat equation in (0,7 —s) x M which
implies that it is caloric in (0,7 — s) x §2. Since the latter is true also for P f (z) and
for the constant function e, we see that v (¢, z) is caloric in (0,7 — s) x Q.

For each t € (0,7 — s), we have

v(t,z) <0 Vre\K,
which implies that supp v (¢,-) C K and, hence, v (t,-), € W (), that is,
v (t,-) < 0mod Wy ().

As t — 0, we have

which implies that also

Since also
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it follows that
2
o(t,) "

and, hence,
2
v(t,-)+L—(§2)0 ast — 0.

By Theorem 3.8, we conclude that v (t,z) <0 for all ¢t € (0,7 — s) and = € .
It follows that in 2
U(t+8,') < Ptﬂu(s>')+€

whence, for any z € (Q,
u(t+s,z) < /pt (x,z2)u(s,z)du(z) +e.
Q

Letting here s — 0 and applying Lemma 4.9 in Q with function f = p, (x,-) € C, (),
we obtain that

/Q pe (2, 2)u (s, 2) da (=) — pi (2,9)

and, hence,
u (t,il?) S Pt (l’,y) + &,

for all x € €. Since € is arbitrary, this inequality holds for all x € M. Finally, since
e > 0 is arbitrary, we conclude u (t,z) < p; (x,y), which finishes the proof. m

Example. As we know, the Gauss-Weierstrass function

pe(z,y) = %exp <_ |z — | ) (4.18)

(4mt)"™! 4t

is a regular fundamental solution of the heat equation in R™. By Theorem 4.11, we
conclude that p; (x,y) is the heat kernel on R"™ because p; (z,y) — 0 as * — oo
uniformly in ¢.

4.6 Heat kernel and isometries

Lemma 4.12 Let ® : Y — X be an isometry of two weighted manifolds (X, gx, ttx)
and (Y, gy, ity ). Then the following is true:

(a) For any non-negative measurable function f on X,
[ @)y = [ fang. (4.19)
Y X

(b) For any f € C>(X),

where Ay and Ax are the weighted Laplace operators on'Y and X, respectively.
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Remark. The identity (4.19) can be rewritten as follows:

/f ) dpy (x /f ) dpy (y)

and in this form it can be regarded as change of variables + = ® (y) in integration.
Note that this identity does not contain the determinant of the Jacobi matrix like in
the classical formula (1.42) because the determinant is hidden in the definitions of the
measures [y and fiy-.

Proof. Because of a partition of unity, it suffices to prove the both identities (4.19) and
(4.20) when f is supported in a chart U on X. Let ¢ : U — R"™ be a homeomorphism
from U onto an open set W C R™ that exists by the definition of a chart. Denotlng by
a2t ..., 2" the Cartesian coordinates in W, we obtain the local coordinates x!,..., 2" in
U.

Consider the set V' =&~ (U) C Y. Since both mappings
viutw

are homeomorphisms, we obtain a homeomorphism V' YW where ¥ = po® sothat
the Cartesian coordinates z', ..., 2" serve also as local local coordinates in V.

Mappings @, ¢, ¥

Using in the both charts the coordinates !, ..., 2" we obtain that the mapping

® : V — U in these coordinates is identical. Indeed, if a point p € V has coordinates
x', ..., 2" then ¢ (p) has in W the same coordinates, which implies that the point
01 (¥ (p)) = @ (p) has in U the same coordinates.

Hence, the Riemannian metrics gx and gy in the local coordinates z!, ..., 2" are
identical, and so are the density functions. Then both equalities (4.19) and (4.20) are
trivially satisfied. m

Theorem 4.13 Let J : M — M be an isometry of a weighted manifold (M,g, 11).
Then the heat kernel of M is J-invariant, that is, for allt >0 and z,y € M,

Dt (‘]‘Ta ‘]y) =Dt (ZL‘, y) (421)
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Proof. Let us first show that the function u (¢, z) = p; (Jz, Jy) is a regular fundamental
solution at y. Indeed, by Lemma 4.12, for any smooth function f on M,

(Af) (Jx) = A(f (Jz)).
Applying this for f = p, (-, Jy), we obtain

ou 0

so that u solves the heat equation.
By Lemma 4.12, we have the identity

/M £ () dp () = /M £ (2)du(2), (4.22)

for any non-negative function f. It follows that

[ utt)dnt) = [ wamaut <1

and, similarly, for any open set U containing ,

/Uu(t,x)du(x):/ pe(z,Jy)du(z) = 1 ast — 0.

JU

Therefore, u is a regular fundamental solution. By Theorem 4.10, we conclude that

U,(t,ﬂf) Z Pt (:E,y) )
that is,
pe (Jx, Jy) > pi (2,y) .

Applying the same argument to J~! instead of J, we obtain the opposite inequality,
which finishes the proof. =

Example. By Exercise 56, for any four points z,y,z’,y’ € H" such that
d(zy) =d(z,y),

there exists a Riemannian isometry J : H" — H" such that Jz’ = z and Jy' = y. By
Theorem 4.13, we conclude

Dt (xla Z//) =Dt (‘7;7 y) .

Hence, p; (z,y), as a function of z,y, depends only on the distance d (z,y).
The same applies to the heat kernel on S™.
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4.7 Heat kernel on model manifolds

Let (M,g, ) be a weighed model as in Section 1.13. That is, M is a ball B,, =
{|z| < ro} in R® (with ro € (0, 00]) with a metric g = dr? + 1* (r) gsn1 (where (r,6)
are the polar coordinates) and a density function D = D (r). Let S (r) be the area
function of (M, g, i) that is, S (r) := w,¥" ' (r) D (r), and let p, (x,5) be the heat
kernel.

Let (M, g, 1) be another weighted model based on the same smooth manifold M,

and let S (r) and p; (z,y) be its area function and heat kernel, respectively.

Theorem 4.14 If S(r) = S(r) then p; (z,0) = p: (y,0) for all z,y € M such that
|z = lyl.
Note that the area function S (r) does not fully identify the structure of the weighted

model unless the latter is a Riemannian model. Nevertheless, p; (x,0) is completely
determined by this function.

Proof. Let us first show that p, (x,0) = p; (y,0) if |x| = |y| . Indeed, there is a rotation
J of R" such that Jx = Jy and Jo = o. Since J is an isometry of (M, g, 1), we obtain
by Theorem 4.13 that p; is J-invariant, which implies the claim.

By Lemma 4.9, the fact that a smooth non-negative function u (t,z) on Ry x M is
a regular fundamental solution at 0, is equivalent to the conditions

(O = Au,
Jutndn@ <1
M (4.23)

/ u(t,z)du(x) -1 ast—0,
\ €

for all 0 < ¢ < 79. The heat kernel p; (z,0) is a regular fundamental solution on
(M, g, 1) at the point o, and it depends only on ¢ and r = |z| so that we can write

pe(x,0) =u(t,r).

Using the fact that u does not depend on the polar angle, we obtain from (1.111)

oS00
or2 S (r) or’

For 0 < & < rp, we have by (1.108), (1.101), (1.110)

/ud,u——/ /S (t,7) S )d&dr:/osu(t,r)S(r)dr.

Hence, we obtain the following equivalent form of (4.23):

(Ou _ Pu  S'(r)0u

ot o2 S(r) or
T0

/ u(t,r)S(r)ydr <1, (4.24)
0

Au =

/u(t,r)S(r)dr—>1 ast — 0.
" Jo
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It is important that all the conditions in (4.24) depend on the geometry of M only via
the area function S (r). Since by hypothesis S (r) = S (r), the conditions (4.24) are
satisfied also with S replaced by S , which means that w (¢,r) is a regular fundamental
solution at 0 also on the manifold (M,g, ). By Theorem 4.10, we conclude that
u(t,|z|) > pi (x,0), that is,
pi (2,0) > py (2,0).

The opposite inequality follows in the same way by switching p; and p;, which finishes
the proof. m

4.8 Heat kernel and change of measure

Let (M, g, h) be a weighted manifold. Any smooth positive function h on M determines
a new measure [ on M by

dn = h*dp, (4.25)
and, hence, a new weighted manifold (M, g, it). Denote by A and p: respectively the
Laplace operator and the heat kernel on (M, g, ).

Theorem 4.15 Let h be a smooth positive function on M that satisfies the equation
Ah+ ah =0, (4.26)

where a is a real constant. Then the following identities holds

~ 1
A:Evoh—i-Ozid, (4.27)

ot Dt (2,9)

pi(z,y) =e L) (0) (4.28)

forallt >0 and z,y € M.

The change of measure (4.25) satisfying (4.26) and the associated change of operator
(4.27) are referred to as Doob’s h-transform.

Proof. By the definition of the weighted Laplace operator, we obtain, for any smooth
function f on M,

Zf = L divg,y(hQVf) = divg ,(Vf) + %<Vh2’ Vil

2
Vh

= Af+2=- Ve (4.29)

On the other hand, using the equation (4.26) and the product rule for A, we obtain

%A(hf) — 1(hAf+2<Vh,Vf>g+fAh)

h
h Ah
= A2V T

h
= Af—af.
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Hence, we have proved the identity

Af:%A(hf)—f—O!f, (4.30)
that is equivalent to (4.27). We have proved this identity for smooth f, but similarly
it holds when A is understood in the weak sense.

In order to prove (4.28), it suffices to prove the same identity for the heat kernels
Pt and pf for any precompact open set Q C M. If v is an eigenfunction of A in Q with
an eigenvalue A\ then we have

&(%) :%(A—l—a)v:(—)\—ka)%

that is, 7 is an eigenfunction of A with the eigenvalue A — a (of course, the same holds
for the weak eigenfunctions). Observe that the mapping

u
U +— —

is an isometry from L2 (Q, u) to L? (2, 1) because for any u € L*(Q, u),

Cals _ UN? o, 2 72
Hh L2(.]0) _/Q(h) h d’u_/Qu dp = HUHLQ(Q%)

Therefore, if {v;,} is an orthonormal basis in L? (£2, ;1) that consists of the eigenfunctions
of A with eigenvalues {\;}, then the sequence { %} is an orthonormal basis in L? (£, z)

that consists of the eigenfunctions of A with eigenvalues {\; — a} . Therefore, we obtain

P (ny) = ije—<%-a>”;f((f)>7;f(<j))
_ —eat e My (z) v = —eatp? (z,y)
N h(x)h(y)zk: ) = R )

which was to be proved. m

Example. The heat kernel in (R', g1, 1) with the Lebesgue measure p is given by

pe(z,y) = ! exp <_M> (4.31)

(4mt)"/? 4t

Let h be any positive smooth function on R! that determines a new measure fi on R!

by dji = h%*du. Then we have A = % and

~1d[(,d\ & _Wd
A= —— ([P )=—"— 42— — 4.32
h?dm( dx) a2 hde (432)

(cf. (4.29)). The equation (4.26) becomes

'+ ah =0,
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which is satisfied, for example, if h (x) = cosh Bz and o = —3%. In this case, we have
by (4.32)

. 2

d d
A= = + Qﬁcothﬁx%.

By Theorem 4.15, we obtain

~ at Pt (ZL‘,y)
N T

= 1 1 exp _ﬂ — 62t
(47t)*/* cosh Bz cosh By 4t '

Example. Consider in R! measure p is given by

du = e”Cde,
where dz is the Lebesgue measure. Then, by (4.32) with h = 2%,
d> d
A=—+421r—. 4.33
dx? * Yl (4.33)
We claim that the heat kernel p; (x,y) of (R, gg, i) is given by the explicit formula:
1 2rye 2t — 22 — 92 )
P\T,Y) = 7,5 XP -1, 4.34
(@) (27 sinh 2t)1/2 ( 1 —e 4 (4.34)

that is called the Mehler kernel. It is a matter of a routine (but hideous) computation
to verify that the function (4.34) does solve the heat equation and satisfy the conditions
of Lemma 4.9, which implies that is it a regular fundamental solution. It is easy to see

that
o1 ey,
pe(z,y) < Wexp TR

which implies that p; (z,y) — 0 as * — oo uniformly in ¢. Hence, we conclude by
Theorem 4.11 that p; (x,y) is indeed the heat kernel.

Example. Continuing the previous example, it easily follows from (4.33) that function

hiz)=e™

satisfies the equation
Ah+2h = 0.

Clearly, the change of measure dji = h%dyu is equivalent to
dp = e dr.

By Theorem 4.15 and (4.34), we obtain that the heat kernel p; of (R, gg, 1) is given by

~ x?
b (z,y) = GQtM = pi (z,y) exp (2° + y* + 2t)

h(x)h(y)
1 2rye 2 — (22 + y?) et
T (2rsih2r)? o 1— e )
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4.9 Heat kernel on H?

As was shown in Example 4.6, the heat kernel p; (z,y) in the hyperbolic space H" is a
function of r = d (z,y) and t.

Theorem 4.16 The heat kernel of H? is given by the following formula:

(o) = — " ” (4.35)
= ————exp|—— —t]. :
Py (47t)*? sinhr P\ Ty

The following formulas for p; (z,y) in H" are known: if n = 2m + 1 then

(=™ L O\ 22
p(w,y) = (2m)™ (dnt)1/2 ( ) ¢ ) (4.36)

sinh 7 Or

which in the case n = 3 gives (4.35), and if n = 2m + 2 then

e (2, y) = (—1)™V2 —(2m21)2t< 1 @) / ( se” wds a7

€ . a._ 1
(2m)™ (4rt)*/? sinh 7 Or cosh s — coshr)z

In particular, the heat kernel in H? is given by

(4.38)

Pt (xay) =

82
V2 .Y /°° se”1ds
r

—e :
(47t)%/* cosh s — coshr)z

Of course, once the formula is known, one can prove it by checking that it is a regular
fundamental solution (which, however, is quite involved) and that p, (x,y) — 0 as
T — 00.

We will give here a non-computational proof of (4.35), which to some extend also
explains why the heat kernel has this shape.

Proof. By Theorem 4.13, it suffices to prove (4.35) in the case y = o where o is the
origin in H3. Let (r,0) be the polar coordinates in H? \ {o}. As we know, H? can be
considered as a model manifold bases on R? (see Sections 1.13 and 4.7), and the area
function of H? is given by

S (r) = 4msinh®r.

Recall also that the Laplacian in the polar coordinates has the following expression:

2
1
Aps = 8_ +200thr2 +

87“2 87’* mASZ . (439)

Denote by g the Riemannian measure of H?3.
For a smooth positive function h on H?, depending only on r, consider the weighted
model (H?, i) where dji = h?du. The area function of (H3, 1) is given by

S(r)y=n*(r)S(r).

Choose function h as follows:
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so that B
S (r) = 4nr?,

that is, S (r) is equal to the area function of R®. By a miraculous coincidence, the
function h happens to satisfy in H? \ {0} the equation

Ah+h =0, (4.40)

which follows from (4.39) by a straightforward computation. The function h extends
by continuity to the origin o by setting h (o) = 1. In fact, the extended function is
smooth in H? and satisfies (4.40) in the entire H?® (Exercise 52).

Denoting by p; the heat kernel of (H?, i), we obtain by Theorem 4.15 that

pe(z,y) = %. (4.41)

Since the area functions of the weighted models (H?, 1) and R? are the same, we
conclude by Theorem 4.14 that their heat kernels at the origin are the same, that is

- ( ) 1 7'2
T,0) = ——5XP | ——( .
pt ) ( t)3/2 It
Comblnlng Wlth (441), we Obtaln

1 T

pe (x,0) = e 'py (x,0) h (z) h(0) = —— ——exp (—Z—z — t) :

(47t)%/? sinhr

which was to be proved. m

4.10 Heat kernel on S!

In this section p; (z,y) is the heat kernel of the Laplace operator on the circle S!. We
identify S' with the quotient R/27Z, that is, consider elements of S' as real numbers
modulo 27k with k € Z.

Proposition 4.17 For allt > 0 and x,y € S*,
1 I~ 2
Dt (x,y):§+;26 cosk (z —vy), (4.42)
k=

where the series converges absolutely and uniformly in (t,z,y) € [g,00) x Q x Q, for
any € > 0.

Proof. By Theorem 3.18, the heat kernel of a compact manifold M (or a precompact
open subset of any manifold) is given by the eigenfunction expansion

o

pe(w,y) = e Mo () v (y) (4.43)

k=1
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where {v;} is an orthonormal basis in L? (M) that consists of eigenfunctions of A, and
{A\x} are their eigenvalues, and the convergence is absolute and uniform in (¢,z,y) €
[e,00) x 2 x Q, for any € > 0.

By Exercise 50, the eigenvalues of A on S' are given by the sequence {m?} = _,
where the eigenvalue 0 has the eigenfunction const and the eigenvalue m? with m > 1
has two independent eigenfunctions cos mf and sin mé. Since

2
/d@z/ df =2m
St 0

27 21
/ cos?> mbdl = / cos’mbdf = 7, / sin? mldl = / sin? mfdo = 7,
st 0 st 0

and

we obtain the following orthonormal basis in L? (S') that consists of the eigenfunctions
of A:

1 cosx sinx cosmx sinmx

By (4.43) we obtain

1 1 —
pe(x,y) = o + p Z e cos ma cos my + p Z et sin ma sin my
= m=1
I 1 2
= —+ = e ™ cosm (z—y),
o T (z —y)

which was to be proved. m

Proposition 4.18 Let q; (x,y) = W exp <—%> be the heat kernel in R*. Then
the heat kernel p; (x,y) of S' is given by

pe(x,y) = Z q (x4 2mn,y) . (4.44)

ne”L

Proof. Set
G (r,y) = Z q (x + 27, y)
nez
and observe that the series converges in any reasonable sense because ¢; (z,y) decays
quickly in |z — y|. Using the fact that ¢, (x,y) satisfies the heat equation in ¢, z for any
fixed y, it is easy to show that so does ¢ (x,y).
Next, we obtain

2w
/CYt(w,y)d$=Z/ gt (z +2mn,y) dx =
st 0

nez

2m(n+1) 00
:Z/ qt(z7y)dZ=/ g (2,y)dz =1
2 _

nez ¥ >
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that is,

/Sl G (2, y) do = 1. (4.45)

Also, we have

y+e y+e
/ @(w,y)d:cz/ g (v,y)dz — 1 ase — 0.
)

—€ y—e

Hence, ¢; (x,y) is a regular fundamental solution to the heat equation on S'. By
Theorem 4.10, we obtain

th ($7y) Z 2 ($,y) '
It follows from (4.42) that

/ Dt <I7y) dx - ]-7
st

which together with (4.45) implies the identity ¢; (z,y) = p: (z,y) . =

Corollary 4.19 (The Poisson summation formula) For all t > 0, we have the follow-

ing identity )
_k,2t o m mT™n
E eVt = \/; E exp (— ; ) . (4.46)

kEZ nez

Proof. Rewrite (4.42) as follows

1 _
e (z,y) = o E e ¥t cos k (x —y). (4.47)
kEZ

In particular, for x = y = 0 we obtain

p(0,0) = =37, (4.48)

2m
keZ
From (4.44) at x = y = 0, we obtain
1 m°n?
p:(0,0) = —exp(— )
t % (47Tt)1/2 t

Comparing the above two lines, we obtain (4.46). =
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Chapter 5

* Stochastic completeness

Definition. A weighted manifold (M, g, ) is called stochastically complete if the heat
kernel p; (z,y) satisfies the identity

/M pr () dpe () = 1, (5.1)

forallt >0 and x € M.

The condition (5.1) can also be stated as ;1 = 1. Recall that in general we have
0 < P1 <1 as it follows from Corollaries 3.10 and 3.12.

If the condition (5.1) fails, that is, P;1 # 1 then the manifold M is called stochas-
tically incomplete.

Our purpose here is to provide conditions for the stochastic completeness (or in-
completeness) in various terms.

5.1 Uniqueness for the bounded Cauchy problem

Fix 0 < T < oo, set I = (0,7) and consider the Cauchy problem in I x M

(5.2)

{%:Au, in I x M,
u’t:0:f7

where f is a given function from Cj, (M). The problem (5.2) is understood in the
classical sense, that is, u € C*°(I x M) and u (t,x) — f (z) locally uniformly in z € M
as t — 0. Here we consider the question of the uniqueness of a bounded solution of

(5.2).

Theorem 5.1 Fiz o >0 and T € (0,00|. For any weighted manifold M, the following
conditions are equivalent.

(a) M is stochastically complete.
(b) The equation Av = awv in M has the only bounded non-negative solution v = 0.

(¢) The Cauchy problem (5.2) in (0,T) x M has at most one bounded solution.

137
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Remark. As we will see from the proof, in condition (b) the assumption that v is
non-negative can be dropped without violating the statement.

Proof. We first assume 1" < oo and prove the following sequence of implications
—(a) = = (b) = ~(c) = ~(a),

where — means the negation of the statement.

Proof of = (a) = —(b). So, we assume that M is stochastically incomplete and
prove that there exists a non-zero bounded solution to the equation —Av 4+ av = 0.
Consider the function

P1(z) = /Mpt (z,y) du (y)

which by Lemma 4.4 is C* smooth, 0 < P;1 < 1 and, by the hypothesis of stochastic
incompleteness, P;1 # 1. Consider also the function

w (x) :/ e P (z) dt. (5.3)
0
Let us verify that w € C (M), it satisfies the estimate
0<w<al (5.4)

and the equation
— Aw + aw = 1. (5.5)

The inequalities (5.4) follows from 0 < P,1 < 1. To prove the other properties, consider
an exhaustion {§2;} of M and define in €} the function

wi (z) = / PR () dt,

where f = 1o,. Expanding f = > "/7, a,v; in the basis of eigenfunctions of A in €;, we
obtain

o0
Q; —
Prf= E e Mgy,
k=1

whence . -
— Z —(Ak-‘ra)tdt) _ Z Qe
e AUk Vg,
k=1 (/0 k=1 A+
It follows that w; € Wy (©2) and
R S LI RIS
1 )\k (0%

Hence,

[e.e]

)\kak > (67033 >
—Aw; + aw; = v = arvr, = [ = 1.
Z )\k +« ; >\k + o k ; Rk f
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Similarly to Corollary 2.8, we conclude that w; € C'* (€2;). Since w; /" w as i — o0,
we obtain by (an extension of) Proposition 4.1 that w is C* smooth and satisfies (5.5).

It follows from P;1(x) # 1 that there exist # € M and ¢ > 0 such that P,1 (z) < 1.
Then (5.3) implies that, for this value of x, we have a strict inequality w (z) < a™!.
Hence, w # o~ L.

Finally, consider the function v = 1 — aw, which by (5.5) satisfies the equation
Av = av. Tt follows from (5.4) that 0 < v < 1, and w # a~! implies v # 0. Hence, we
have constructed a non-zero non-negative bounded solution to Av = aw, which finishes
the proof.

Proof of = (b) = = (¢). Let v be a bounded non-zero solution to equation Av = aw.
By Corollary 2.8, v € C* (M). Then the function

u(t,x) = e () (5.6)
satisfies the heat equation because
Au = e Av = ae®v = Ju.

Hence, u solves the Cauchy problem in R, x M with the initial condition « (0,z) =
v (x), and this solution u is bounded on (0,7) x M (note that T is finite). Let us
compare u (t,x) with the function Pw (z). Since v € Cy (M), the function P (x)
solves the heat equation and satisfies the initial condition with the function v in the
classical sense (cf. Lemma 4.9). It follows from Corollary 3.12 that

sup |Pv| < sup |v],

whereas by (5.6)

sup |u (t,-)| = e* sup |v| > sup |v].
Therefore, u # P,v, and the bounded Cauchy problem in (0,7") x M has two different
solutions with the same initial function v.

Proof of = (¢) = —(a). Assume that the problem (5.2) has two different bounded
solutions with the same initial function. Subtracting these solutions, we obtain a non-
zero bounded solution w (¢,x) to (5.2) with the initial function f = 0. Without loss
of generality, we can assume that 0 < supu < 1. Consider the function w = 1 — u,
for which we have 0 < infw < 1. The function w is a non-negative solution to the
Cauchy problem (5.2) with the initial function f = 1. By Lemma 4.5, we conclude
that w (t,-) > P, 1. Hence, inf P,1 < 1 and M is stochastically incomplete.

Finally, let us prove the equivalence of (a), (b), (¢) in the case T' = oco. Since the
condition (c¢) with 7" = oo is weaker than that for 7" < oo, it suffices to show that (c)
with 7" = oo implies (a). Assume from the contrary that M is stochastically incomplete,
that is, P,1 # 1. Then the functions u; = 1 and us = FP;1 are two different bounded
solutions to the Cauchy problem (5.2) in Ry x M with the same initial function f =1,
so that (a) fails, which was to be proved. m

5.2 Geodesic completeness

Let (M, g) be a Riemannian manifold and d (z,y) be the geodesic distance on M (see
Section 1.14 for the definition). The manifold (M, g) is said to be metrically complete if
the metric space (M, d) is complete, that is, any Cauchy sequence in (M, d) converges.
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A smooth path v (t) : (a,b) — M is called a geodesics if, for any t € (a,b) and
for all s close enough to ¢, the path 7|y 4 is a shortest path between the points v (t)
and 7 (s). A Riemannian manifold (M,g) is called geodesically complete if, for any
x € M and & € T, M\ {0}, there is a geodesics v : [0,400) — M of infinite length such
that v (0) = x and 4 (0) = £. It is known that, on a geodesically complete connected
manifold, any two points can be connected by a shortest geodesics.

We state the following theorem without proof.

Hopf-Rinow Theorem. For a Riemannian manifold (M,g), the following condi-
tions are equivalent:

(a) (M,g) is metrically complete.
(b) (M,g) is geodesically complete.

(¢) All geodesic balls in M are relatively compact sets.

This theorem will not be used, but it motivates us to give the following definition.

Definition. A Riemannian manifold (M, g) is said to be complete if all the geodesic
balls in M are relatively compact.

For example, any compact manifold is complete.

5.3 Stochastic completeness and the volume growth
Define the volume function V (z,r) of a weighted manifold (M, g, 1) by
Vi, r) = p(B(z,r)),

where B (z,r) is the geodesic ball. Note that V (z,7) < oo for all x € M and r > 0
provided M is complete.

Recall that a manifold M is stochastically complete, if the heat kernel p; (z,v)
satisfies the identity

/Mpt (z,y)du(y) =1,

for all x € M and ¢t > 0 (see Section 5.1). The result of this section is the following
volume test for the stochastic completeness.

Theorem 5.2 Let (M, g, 1) be a complete connected weighted manifold. If, for some

point xog € M,
o rdr
/ InV(xg,r) o (5.7)

then M s stochastically complete.
Condition (5.7) holds, in particular, if
V(zo,7) < exp (Cr?). (5.8)

As a consequence we see that both R™ and H" are stochastically complete.
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Fix 0 < T < o0, set I = (0,7) and consider the following Cauchy problem in
I xM

ot

ou :
Sr=Auu inlx M,
{ i — (5.9)

A solution is sought in the class u € C*°(I x M), and the initial condition means that
u (t,z) — 0 locally uniformly in x € M ast — 0 (cf. Section 5.1). By Theorem 5.1, the
stochastic completeness of M is equivalent to the uniqueness property of the Cauchy
problem in the class of bounded solutions. In other words, in order to prove Theorem
5.2, it suffices to verify that the only bounded solution to (5.9) is u = 0.

The assertion will follow from the following more general fact.

Theorem 5.3 Let (M, g, i) be a complete connected weighted manifold, and let u(x,t)
be a solution to the Cauchy problem (5.9). Assume that, for some xq € M and for all
R >0,

T
[ [ et < e (s, (5.10)
0 JB(zo,R)
where f(r) is a positive increasing function on (0,400) such that

> rdr
77 = % (5.11)

Then u=0 1 I x M.

Theorem 5.3 provides the uniqueness class (5.10) for the Cauchy problem. The
condition (5.11) holds if, for example, f(r) = Cr?, but fails for f(r) = Cr?* when
e > 0.

Before we embark on the proof, let us mention the following consequence.

Corollary 5.4 If M =R" and u (t,x) be a solution to (5.9) satisfying the condition
lu(t,z)] < Cexp (C \a:‘]Z) forallt €I, x € R", (5.12)

then w = 0. Moreover, the same is true if u satisfies instead of (5.12) the condition
lu(t,z)] < Cexp(f(|z|)) foralltel, xeR", (5.13)

where f (r) is a convex increasing function on (0, 4+00) satisfying (5.11).

Proof. Since (5.12) is a particular case of (5.13) for the function f (r) = Cr?, it suffices
to treat the condition (5.13). In R™ we have V (z,7) = ¢r™. Therefore, (5.13) implies
that

/O /B(O 0 u?(z,t) dp(z)dt < CR"exp (f (R)) = Cexp(f (R)),

where ]7(7’) = f(r) + nlnr. The convexity of f implies that Inr < C'f (r) for large
enough r. Hence, f (r) < Cf (r) and function f also satisfies the condition (5.11). By
Theorem 5.3, we conclude u =0. m
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The class of functions u satisfying (5.12) is called the Tikhonov class, and the
conditions (5.13) and (5.11) define the Tdcklind class. The uniqueness of the Cauchy
problem in R™ in each of these classes are classical results.

Proof of Theorem 5.2. By Theorem 5.1, it suffices to verify that the only bounded
solution to the Cauchy value problem (5.9) is u = 0. Indeed, if u is a bounded solution
of (5.9), then setting

S :=sup|u| < co

we obtain .
[ wtadute) < STV o 1) = exo (7 ().
0 B(zo,R)
where
f(r) == (S*TV (z,r)) .
It follows from the hypothesis (5.7) that the function f satisfies (5.11). Hence, by

Theorem 5.3, we obtain v =0. =

Proof of Theorem 5.3. Denote for simplicity B, = B(zg, 7). The main technical
part of the proof is the following claim.

Claim. Let u(t,x) solve the heat equation in (b,a) X M where b < a are reals, and
assume that u (t,x) extends to a continuous function in [b,a] x M. Assume also that,

for all R > 0,
b
/ /B (2, t) du(e)dt < exp (F(R))

where f 1s a function as in Theorem 5.2. Then, for any R > 0 satisfying the condition

RZ
—-b< — 5.14
“ 7= 8f4R) (5:14)
the following inequality holds:
*(a,)dp < 2(b, Ydjt + — 1
Br Bur

Let us first show how this Claim allows to prove that any solution u to (5.9),
satisfying (5.10), is identical 0. Extend u (¢,x) to t = 0 by setting u (0, ) = 0 so that
u is continuous in [0,7) x M. Fix R > 0 and ¢ € (0,7'). For any non-negative integer
k, set

R, =4"R

and, for any k > 1, choose (so far arbitrarily) a number 7 to satisfy the condition

R2
0<7< CT}SIC), (5.16)

where ¢ = %. Then define a decreasing sequence of times {¢;} inductively by tq =t

and tk = tk,’—l — Tk-
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The sequence of the balls Br, and the time moments ;.

If t;, > 0 then function u satisfies all the conditions of the Claim with a = ¢;,_; and
b = t;, and we obtain from (5.15)

J

which implies by induction that

(5.17)

s dn < [0t )
BRk k—1

R

k
4
u’(t,)dp < / w (b, )i+ Y (5.18)

If it happens that ¢, = 0 for some k then, by the initial condition in (5.9),

/ u?(ty, -)dp = 0.
B,

In this case, it follows from (5.18) that

= 4
u(t,)dp < § =—
/BR i:1 R’Lz—l

which implies by letting R — oo that u(-,t) = 0 (here we use the connectedness of M).

Hence, to finish the proof, it suffices to construct, for any R > 0 and ¢t € (0,7), a
sequence {t;} as above that vanishes at a finite k. The condition ¢, = 0 is equivalent
to

t=7T1+ 7o+ ... + 7. (5.19)

The only restriction on 7y is the inequality (5.16). The hypothesis that f(r) is an
increasing function implies that

'r’dr <Z/Rk+1 rdr Z k+1,

R
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which together with (5.11) yields

7
2 7

1 k

o0
= OQ.
o )

Therefore, the sequence {7}, can be chosen to satisfy simultaneously (5.16) and

o0
ZTk:OO.
k=1

By diminishing some of 7y, we can achieve (5.19) for any finite ¢, which finishes the
proof.

Now we prove the above Claim. Since the both integrals in (5.15) are continuous
with respect to a and b, we can slightly reduce a and slightly increase b; hence, we can
assume that u (¢, ) is not only continuous in [b,a] x M but also smooth.

Let p(x) be a Lipschitz function on M (to be specified below) with the Lipschitz
constant 1. Fix a real s ¢ [b, a] (also to be specified below) and consider the following
the function

E(t,x) =

which is defined on R x M except for t = s, in particular, on [b,a] x M. By the weak
gradient Vp is in L™ (M) and satisfies the inequality |Vp| < 1, which implies, for any
t # s,

Ve (1)) < 212

—2(t—s)

Since

ok _ p)

ot A(t—s)
we obtain

%3 2

- < 0. 2

= el <0 (520)

For a given R > 0, define a function ¢ (z) by

o (z) = min <(3— “Lﬁ)+,1>

Obviously, we have 0 < o < 1 on M, ¢ =1 in Byg, and ¢ = 0 outside Bsg. Since the
function d (-, z¢) is Lipschitz with the Lipschitz constant 1, we obtain that ¢ is Lipschitz
with the Lipschitz constant 1/R. Then we have |Vy| < 1/R. By the completeness of
M, all the balls in M are relatively compact sets, which implies ¢ € Lipy (M).
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Function ¢ ()

Consider the function up?e® as a function of x for any fixed ¢t € [b,a]. Since it
is obtained from locally Lipschitz functions by taking product and composition, this
function is locally Lipschitz on M. Since this function has a compact support, it
belongs to Lipy (M), whence

up’et € WH(M).
Multiplying the heat equation

U _ A
ot —ort

by up?e® and integrating it over [b, a] x M, we obtain

// T 2efdudt = // ) up®eldpudt. (5.21)

Since both functions u and ¢ are smooth in ¢ € [b, a], the time integral on the left hand
side can be computed as follows:

1 CL@(UQ) 25 1 22
e Y ey 22664t 29
2/b = 3 / O 2% (5.22)

Using the Green formula to evaluate the spatial integral on the right hand side of
(5.21), we obtain

AﬁAwmwewu——/ﬁvmvwﬁé»m.

M

Applying the product rule and the chain rule to compute V(ugp?et), we obtain

—<VU, V(U(pZeg» = = |VU|2 90265 - (Vu, v£>u§02€£ o 2<vu7 V90>u90€£
< = |Vulf et + |Vul [VE] [ul g

1
+ (5 (V| o* + 2 |Vg0|2u2> et

1
(=5 7l 4 1Vl 1961 ) e+ 219 a2t
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Combining with (5.21), (5.22), and using (5.20), we obtain

{/ugpefdu} = // gugpegdudt+2// ) upeldpdt
M b

= //(—IWIW—IW|2+2|W| Ve [u]) pefdpdt
b M
+4//|V¢|2u265dudt
b M
= — [ [vellul - 19u)* e
b M
+4//|Vg0|2u265d,udt
b M
whence )
[/ UQ@ZegdH} §4//|Vgp|2u2e§d,udt. (5.23)
M b

b M

Using the properties of function ¢ (x), in particular, |[V¢| < 1/R, we obtain from (5.23)

/ u2(a,~)eg(“")d,u§/ u? (b, )ef O dp 4+ — / / 2eSdpdt. (5.24)
Bgr Bur

b Bs4r\B2r

Let us now specify p(x) and s. Set p(z) to be the distance function from the ball Bg,
that is,

Function p (z).
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Set s = 2a — b so that, for all t € [b,al,
a—b<s—t<2(a—0),

whence 2(2) 2(2)
pe(x p°(x
t,r)=— < — <0. 5.25
) =160 S "5@a-p = (5:25)
Consequently, we can drop the factor e on the left hand side of (5.24) because £ = 0 in
Bg, and drop the factor e in the first integral on the right hand side of (5.24) because
¢ <0. Clearly, if x € Byg\Bag then p(x) > R, which together with (5.25) implies that

R2

m in [b, a] X B4R\BZR-

f(t,l’) < -

Hence, we obtain from (5.24)

4 R\
u?(a, - d,ug/ w?(b, -)dp + — exp (——)//UZdudt.
f e s [ 20t e (-5,

b Bur
By (5.10) we have
//qu,udt <exp(f(4R))
b Bygr
whence
/ u?(a,-)dp < / u?(b, -)du + iexp <—R—2 + f(4R))
Br 7 ~ JBug 7 R? 8 (CL - b) .

Finally, applying the hypothesis (5.14), we obtain (5.15). =
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Chapter 6

* Gaussian estimates in the
integrated form

As one can see from explicit examples of heat kernels (4.18), (4.34), (4.35), the de-
pendence of the heat kernel p; (z,y) on the points z,y is frequently given by the term

exp <—c@) that is called the Gaussian factor. The Gaussian pointwise upper

bounds of the heat kernel require certain additional assumptions about the manifold
in question.

On the contrary, it is relatively straightforward to obtain the integrated upper
bounds of the heat kernel, which is the main topic of this Chapter

6.1 The integrated maximum principle
Recall that any function f € Lipy,. (M) has the weak gradient V f € Efjc (M).

Theorem 6.1 (The integrated maximum principle) Let £(t,x) be a continuous func-

tion on I x M, where I C [0,+00) is an interval. Assume that, for any t € I, & (t,x) is

locally Lipschitz in x € M, the partial derivative % exists and is continuous in I X M,

and the following inequality holds on I x M :

0 1o
— + = <0. .
=+ 5 Ve <0 (6.1)

Then, for any function f € L* (M), the function

1= [ (PP @) At (62
M
18 non-increasing in t € I. Furthermore, for all t,ty € I, if t > ty then
J (t) < J (tg) e” P (t=to), (6.3)

Remark. Let d(z) be a Lipschitz function on M with the Lipschitz constant 1. Then
we have |Vd| < 1. It follows that the following functions satisfy (6.1):

()
2t

f(t, [E) =

149
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and
2

§(t2) = ad(a) - S,

where a is a real constant. In applications d (x) is normally chosen to be the distance
from z to some set.

Proof. Let us first reduce the problem to the case of non-negative f. Indeed, if f is
signed then set g = | P, f| and notice that

|Ptf| = |Pt—toPtof| < Pi4,9.

Assuming that Theorem 6.1 has been already proved for function g, we obtain

/ (Pf)? e dp < / (Pity9)” " dp
M

< 72)\1(t to g’e to )dlu

s
— —2)\1(t to / P f 2 £t0 )d'u
M

Hence, we can assume in the sequel that f > 0. It suffices to prove that, for any
relatively compact open set {2 C M, the function

o )= [ (PF)" ()<t

is non-increasing in ¢t € I. Since u(t,-) := Pf € L?(Q) and £ (¢,-) is bounded in
2, the function Jg (¢) is finite (unlike J (¢) that a priori may be equal to o). Note
also that Jg (t) is continuous in ¢ € I. Indeed, the path ¢ — w (t,-) is continuous in

€ [0,+00) in L?(2) and the path ¢ — e2¢(t) is obviously continuous in ¢ € I in
the sup-norm in Cj, (), which implies that the path ¢ — w (¢, -) 2t is continuous in
telin L*(Q).

To prove that Jq (t) is non-increasing in I it suffices to show that the derivative
% exists and is non—positive for all t € Iy := I\ {0}. Fix some t € Iy. Since the
functions £ (,-) and 2 % (t,-) are continuous and bounded in Q, they both belong to
Cy (Q). Therefore, the partial derivative % is at the same time the derivative % in
Cy (Q). In the same way, the function ef(* ?15 differentiable in C} (€2) and

det Qe o0&
P Q.1 4
a ot ot (64)

The function w (¢,-) is L* ()-differentiable and its L? derivative % is given by

du
— = Au. )
o U (6.5)

Using the product rules for L? derivatives, we conclude that wuef is differentiable in
L*(Q) and

— (ue) = —e* +u—-. (6.6)
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It follows that the inner product (u,ueg) = Jq (t) is differentiable as a real valued
function of ¢ and, by the product rule and by (6.4), (6.5), (6.6),

dlog  (du d (ued)
a (dt’”e ) * <u dt

du de®
— el ¢ 2 =
2(dt,ue)—|—<u, dt>

— 2 (Au,uef) + <u2 6€e§>. 67)

"ot

By the chain rule for Lipschitz functions, we have e¢®) € Lip;,. (M). Since the function
e¢®) is bounded and Lipschitz in Q and u (¢, -) € W3 (), we obtain that ue € W ().
By the Green formula, we obtain

2 (Au,uef) = —2/(Vu, \Y (ueg))d,u.

Q

Since both functions u and e are locally Lipschitz, the product rule and the chain
rule apply for expanding V (ue®). Substituting the result into (6.7) and using (6.1),
we obtain

da
. —

1 .
- -2 /Q (Vu+§uV§) etdu, (6.8)

—2/ (|Vu|2 e* + uet (Vu, VE) + iuQ Ve 65) du
Q

whence %2 < (. To prove (6.3), observe that

(Vu + %qu) /% =V (uet/?).

Since uet/? € Wi (), we can apply the variational principle, which yields

1 2
/(Vu+—uV§> etdy = /|V(ue5/2)|2d,u
Q 2 Q

> 0 (@) [ ety
Q
A1 (€) Ja(t) (6.9)
Hence, (6.8) yields

dJo

s < =2M0 (Q) Ja (1),

whence (6.3) follows. m



152 CHAPTER 6. * GAUSSIAN ESTIMATES IN THE INTEGRATED FORM

6.2 The Davies-(Gzaffney inequality

For any set A on a weighted manifold M and any r > 0, denote by A, the r-
neighborhood of A, that is,

A, ={zeM:d(x,A)<r}.
Write also AS = (A4,) = M\ A,.
Theorem 6.2 Let A be a measurable subset of a weighted manifold M. Then, for any

function f € L*(M) and for all positive r,t,

/A (P.f) dp < f2du + exp (—% - 2)@5) /Adeu, (6.10)

Ac

c
r

where X\ = M\ (M). In particular, if f € L? (A) then

/

2
(P dp < | f]2esp (‘% - w) | (6.11)

c
™

Sets A and A¢

Proof. Fix some s > t and consider the function

§(ra) = G,

defined for x € M and 7 € [0, s). Set also
J (1) = / (Pf)? £ dp.
M

Since the function £ satisfies the condition

9 1.
=4z <
g + 5 IVE” <0,

we obtain by Theorem 6.1 that

J(t) < J(0)exp (—2At). (6.12)
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Since & (1,2) = 0 for z € AS, we have

J(t) > /A (Pf)? dp. (6.13)

On the other hand, using the fact that £ (0,2) < 0 for all  and

2

£(0,7) < —72"— for all z € A,

S

we obtain

J(0) < Acf dp + exp <—%) /Af dj. (6.14)

Combining together (6.12), (6.13), (6.14) and letting s — ¢+, we obtain (6.10).
The inequality (6.11) trivially follows from (6.10) and the observation that [,. f2du =
0. m

Corollary 6.3 (The Davies-Gaffney inequality). If A and B are two disjoint measur-
able subsets of M and f € L*(A), g € L*(B), then, for all t > 0,

(5,91 < Wl (- 252 - xe). (6.15)
f
ano (8>

Sets A and B

Proof. Set r = d (A, B). Then B C A¢ and by (6.11)

[ (B < W7o (—f - 2At> .
i 2

Applying the Cauchy-Schwarz inequality, we obtain

1/2
(Pf.g)] < ( / (Ptf)2du) lgll
B
,rQ
< Wlellgleexp (-5 - ¢).

which was to be proved. m

Note that (6.15) is in fact equivalent to (6.11) since the latter follows from (6.15)
by dividing by |/g||, and taking sup in all g € L? (B) with B = A’.
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Assuming that the sets A and B in (6.15) have finite measures and setting f = 14
and g = 1p, we obtain from (6.15)

(PiLa 1) < /i A(B) exp (—W - At) ,

or, in terms of the heat kernel,

//pt(w,y)du(x)du(y) < vV u(A)pu(B) exp (—M - At) : (6.16)

4t

This can be considered as an integrated form of the Gaussian upper bound of the
heat kernel. Note that, unlike the pointwise bounds, the estimate (6.16) holds on an
arbitrary manifold.

6.3 Upper bounds of higher eigenvalues

We give here an application of Corollary 6.3 to eigenvalue estimates on a compact
weighted manifold M. As before, denote by Ax(M) be the k-th smallest eigenvalue of
A counted with the multiplicity. Recall that Ax(M) > 0 and A (M) = 0.

Theorem 6.4 Let M be a connected compact weighted manifold. Let Ay, As, ..., Ay be
k > 2 disjoint measurable sets on M, and set

i#]
Then )
4 2u(M
Ae(M) < — max IHL . (6.17)
3 5\ aAga(ay)
In particular, if we have two sets A; = A and A; = B then (6.17) becomes
4 2u(M ’
(M) < & (mL> , (6.18)
# \ " VuAu(B)

where § := d(A, B).
Proof. We first prove (6.18). Let {¢,},—, be an orthonormal basis in L*(M, ) that

consists of the eigenfunctions of A, so that ¢, has the eigenvalue A\, = A\;.(M). By the
eigenfunction expansion (3.43), we have for any ¢ > 0

| i@t = e [ w@ant) [ emaut)
_ ie‘”‘iaibi, (6.19)

where
a; = (1a,;) and b = (1p,¢;).
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By the Parseval identity

Y al =|l1al; = p(A) and > b7 =|[1p[l3 = u(B).
i=1 =1

Since A\; = 0, the first eigenfunction ¢, is identical constant. By the normalization
condition |[¢;|l2 = 1 we obtain ¢, = 1/+/pu(M) , which implies

M4 _ _
00 d b= (1p¢1) ,U(M)

ay = (1A7 901) =

Therefore, (6.19) yields
// pi(w, y)dp(e)du(y) = abi+Y e Mab,
AB =2
~ 12 /o 1/2
> aib — e (Z a?) (Z bf)
=2 i=2

> HAB) oo/ Au(B).

whence

o
Y

|
®
&

Choosing t from the identity

we conclude

which was to be proved.
Let us now turn to the general case k > 2. Consider the following integrals

Jim = /Al /Am p(t, x,y)dp(z)dp(y)

and set
0 ._ (1
a; " ‘= ( Aw%pi)'
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Exactly as above, we have

Jlm = Ze_t)‘iagl)agm)

A Am 00 . k-1 .
o /ZMM() )+Ze MOl 4 3 e NitgDglm)
i=k =2
A (A, _
> SO ot )
k—1
+3 e tgglm. (6.20)
=2

On the other hand, by (6.16)

Tim < /(A (e 5. (6.21)

Therefore, we can further argue as in the case k = 2 provided the term in (6.20) can
be discarded, which the case when

k—1
S e Mala™ > 0. (6.22)
i=2
Let us show that (6.22) can be achieved by choosing [, m. To that end, let us interpret
the sequence

a) = (agj),agj), ...,ag) )

as a (k — 2)-dimensional vector in R¥=2. Here j ranges from 1 to k so that we have k
vectors a') in R*=2, Let us introduce the inner product of two vectors u = (us, ..., ux_1)
and v = (vy, ..., vp_1) in R¥=2 by

k—1

(u,v); = Ze"\"tuivi (6.23)

1=2

and apply the following elementary fact:

Lemma 6.5 From any n+ 2 vectors in a n-dimensional Fuclidean space, it is possible
to choose two vectors with non-negative inner product.

Note that n + 2 is the smallest number for which the statement of Lemma 6.5 is
true. Indeed, choose an orthonormal basis eq,es, ..., e, in the given Euclidean space
and consider the vector

Vi= —€ — €3 — ... — €p.

Then any two of the following n + 1 vectors
€1 +ev, ea +€v, ..., €, +EV, V

have a negative inner product, provided € > 0 is small enough.
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Lemma 6.5 is easily proved by induction in n. The inductive basis for n = 1 is
trivial. The inductive step is shown on the diagram. Indeed, assume that the n + 2
vectors vy, vy, ..., Unio in R™ have pairwise obtuse angles. Denote by F the orthogonal
complement of v,,2 in R™ and by v, the orthogonal projection of v; onto E.

Y Unt2

The vectors v] are the orthognal projections of v; onto E.

For any « < n + 1, the vector v; can be represented as
0
Vi = V; — &EiUny2,

where
g;i = — (U, Upya) > 0.

Therefore, we have
(v, v;) = (U], V}) + €4 [Uns|” -

By the inductive hypothesis, we have (vj,v;) > 0 for some 4, j, which implies (v;, v;) >
0, contradicting the assumption.

Now we can finish the proof of Theorem 6.4. Fix some ¢t > 0. By Lemma 6.5, we
can find [, m so that (a),a™), > 0; that is (6.22) holds. Then (6.20) and (6.21) yield

e—t)\k > ,U(AZ)N(Am) e~ 52

at

075

and we are left to choose t. However, ¢ should not depend on [, m because we use t to
define the inner product (6.23) before choosing [, m. So, we first write

pA)(4y) 2

—tAg .
€ >min————= —¢ 4
Y p(M)

and then define t by

whence (6.17) follows. m
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