Blatt 0. Keine Abgabe

1. Let M be any topological space. Let K be a compact subset of M and F be a closed subset of M. Prove that if $F \subset K$ then F is compact.
2. A topological space M is called Hausdorff if, for any two disjoint points $x, y \in M$, there exist two disjoint open sets $U, V \subset M$ such that $x \in U$ and $y \in V$. Prove the following properties of a compact subset K of a Hausdorff topological space M.
(a) For any $x \in K^{c}$ there exists an open set W_{x} containing x and disjoint from K.
(b) K is a closed subset of M.
3. Let X, Y be two topological spaces and $f: X \rightarrow Y$ be a continuous mapping. Prove that if K is a compact subset of X then $f(K)$ is a compact subset of Y.
4. Prove that, on any C-manifold M, there exists a countable sequence $\left\{\Omega_{k}\right\}$ of relatively compact open sets such that $\Omega_{k} \Subset \Omega_{k+1}$ (that is, Ω_{k} is relatively compact and $\bar{\Omega}_{k} \subset$ Ω_{k+1}) and the union of all Ω_{k} is M. Prove also that if M is connected then the sets Ω_{k} can also be taken connected.
Remark. An increasing sequence $\left\{\Omega_{k}\right\}$ of open subsets of M whose union is M, is called an exhaustion sequence. If in addition $\Omega_{k} \Subset \Omega_{k+1}$ then the sequence $\left\{\Omega_{k}\right\}$ is called a compact exhaustion sequence.
5. Let M be a C-manifold of dimension n. Let V be a chart on M and E be a subset of V. The compact inclusion $E \Subset V$ can be understood in two ways: in the sense of the topology of M as well as in the sense of the topology of \mathbb{R}^{n}, when identifying V with a subset of \mathbb{R}^{n}. Prove that these two meanings of $E \Subset V$ are equivalent.
6. Prove that, on any C-manifold M, there is a countable locally finite family of relatively compact charts covering M. (A family of sets is called locally finite if any compact subset of M intersects at most finitely many sets from this family).
7. Fix some positive integers n, m, let $F: \mathbb{R}^{n+m} \rightarrow \mathbb{R}^{m}$ be a C^{1}-function. Consider the null set of F, that is, the set

$$
M=\left\{x \in \mathbb{R}^{n+m}: F(x)=0\right\}
$$

and assume that, for any point $x \in M$, the Jacobi matrix $F^{\prime}(x)$ has the rank m. Prove that M is a C-manifold of dimension n.

Hint. Use the implicit function theorem.

Blatt 1. Abgabe bis 26.04.2024

In all exercises, M is a smooth manifold of dimension n.
8. A path on M is any smooth mapping $\gamma:[0, a] \rightarrow M$, where $a>0$. Set $x=\gamma(0)$. For any function $f \in C^{\infty}(M)$, define the derivative of f along the path γ at the point x by

$$
\frac{\partial f}{\partial \gamma}:=\left.\frac{d}{d t} f(\gamma(t))\right|_{t=0} .
$$

(a) Prove that $\frac{\partial}{\partial \gamma}$ is an \mathbb{R}-differentiation at x, that is, $\frac{\partial}{\partial \gamma} \in T_{x} M$.
(b) Prove that any tangent vector $\xi \in T_{x} M$ can be represented in the form $\xi=\frac{\partial}{\partial \gamma}$ for some path γ.
9. A smooth vector field on M is a mapping $X: C^{\infty}(M) \rightarrow C^{\infty}(M)$ such that, for any $x \in M$, the mapping

$$
\begin{aligned}
C^{\infty}(M) & \rightarrow \mathbb{R} \\
f & \mapsto X(f)(x)
\end{aligned}
$$

is a \mathbb{R}-differentiation at x. Prove that, in any chart U with the local coordinates x^{1}, \ldots, x^{n}, there are functions $a^{1}, \ldots, a^{n} \in C^{\infty}(U)$ such that

$$
X(f)=\sum_{i=1}^{n} a^{i} \frac{\partial f}{\partial x^{i}} \text { for any } f \in C^{\infty}(M) .
$$

Hint. Use the fact that any \mathbb{R}-differentiation ξ can be represented in the form

$$
\xi=\sum_{i=1}^{n} \xi^{i} \frac{\partial}{\partial x^{i}}
$$

for some $\xi^{i} \in \mathbb{R}$.
10. Let X and Y be two smooth vector fields on M (as in Exercise 9). Define the Lie bracket $[X, Y]$ of X, Y as a mapping of $C^{\infty}(M)$ into itself by

$$
[X, Y]:=X Y-Y X,
$$

that is, $[X, Y](f)=X(Y(f))-Y(X(f))$ for any $f \in C^{\infty}(M)$.
Prove that $[X, Y]$ is a smooth vector field on M.
Hint. In the local coordinates, $X(f)$ is a combination of the first partial derivatives $\frac{\partial f}{\partial x^{i}}$ (by Exercise 9). Hence, $X Y(f)$ and $Y X(f)$ can contain the second derivatives of f. The point of the present claim is that the difference $X Y(f)-Y X(f)$ depends on the first derivatives of f only, that is, the second derivatives cancel out.
11. (The Jacobi identity) Prove the following identity for three smooth vector fields X, Y, Z on a smooth manifold M :

$$
\begin{equation*}
[X,[Y, Z]]+[Z,[X, Y]]+[Y,[Z, X]]=0 \tag{1}
\end{equation*}
$$

Hint. By linearity, it suffices to consider the case when X, Y, Z are given in the local coordinates x^{1}, \ldots, x^{n} by

$$
X=a \frac{\partial}{\partial x^{i}}, \quad Y=b \frac{\partial}{\partial x^{j}}, \quad Z=c \frac{\partial}{\partial x^{k}},
$$

where a, b, c are smooth functions of x^{1}, \ldots, x^{n} and i, j, k are some indices from $1, \ldots, n$.

